Succinct Graph Structures and Their Applications

Spring 2024

Home Exam : July 30

Lecturer: Merav Parter

Instructions: The exam consists of 4 problem sets, each worth 25 points. In case needed (and unless stated otherwise), you are allowed to use constructions that we showed in class as a black-box, but still required to add full proofs. Typing in LaTeX (and such) is highly recommended, but not a must (in case you do not have time). Please submit your solutions through email to merav.parter@weizmann.ac.il by midnight of July 31, 12am. Good luck!

Labeling Schemes

Exercise 1. Let T be an n-vertex undirected tree, where each vertex in T has a unique identifier id(v) with $O(\log n)$ bits. (a) show an $O(\log^2 n)$ -size labeling scheme for computing the LCA (lowest common ancestor) between two vertices u and v. I.e., design labels L(u) of $O(\log^2 n)$ bits such that given L(u) and L(v), one can compute the identifier of the LCA of u and v in the tree T.

(b) For every three vertices a, b, c, let Center(a, b, c) denote the center of these vertices, namely, a vertex z such that the three tree paths from z to a, b, c are edge-disjoint. Show that one can assign a $O(\log^2 n)$ -bit labels such that given the labels of any three vertices a, b, c, one can deduce the identifier of their center Center(a, b, c).

Spanners

Exercise 2. We showed in class the Baswana-Sen algorithm for computing 3-spanners for unweighted undirected graph. Extend this algorithm to provide a randomized almost linear time algorithm for computing 3-spanners for *n*-vertex *weighted* graph. You are required to describe the entire algorithm and its analysis.

Fault Tolerant Graph Structures

Exercise 3. For an undirected graph G, a subgraph $G' \subseteq G$ and vertex pair $u, v \in V$, define conn(u, v, G') = 1 iff u and v are connected in G'. A subgraph $H \subseteq G$ is an f-edge FT-connected subgraph if for every $u, v \in V$ and $F \subseteq E$, $|F| \leq f$, it holds that:

$$\operatorname{conn}(u, v, H \setminus F) = \operatorname{conn}(u, v, G \setminus F)$$
.

Show an $O(f \cdot m)$ -time algorithm that given any *n*-vertex graph G and parameter f, constructs an f-edge FT-connected subgraph $H \subseteq G$ with at most $(f + 1) \cdot (n - 1)$ edges.

Exercise 4. Consider an unweighted *n*-vertex graph G = (V, E) with diameter *D*. (a) Show that for every $s, t \in V$ and $F \subseteq E$, if *s* and *t* are connected in $G \setminus F$, then $dist(s, t, G \setminus F) = O(|F|D)$. (b) For a given source *s*, a 2-FT BFS tree $H \subseteq G$ is a *G*-subgraph satisfying that $dist(s, t, H \setminus F) = dist(s, t, G \setminus F)$ for every $t \in V$ and every pair of edges $F \subseteq E$, $|F| \leq 2$. Use (a) to show that one can compute a 2-FT BFS tree $H \subseteq G$ with $O(D^2n)$ edges.