Ulpana: Efficienct Distance Preservin	g Graph Structures	Summer 2024
---------------------------------------	--------------------	-------------

Exercise 1 (Sep 16)

Lecturer: Merav Parter

Exercise 1 (Girth and Short Cycles). The number of 2k-cycles in a graph grows with number of edges. In this exercise, we will understand this function for the case k = 2.

(2a) Show that every graph with no 4-cycles has $O(n^{3/2})$ edges. Hint: A cherry in a graph is an ordered set $\langle u, \{v, w\} \rangle$ where v, w are neighbors of u. Bound the number of distinct cherries in the graph from below and above and use it to bound the number of edges in 4-cycle free graph.

(2b*) Prove that any *n*-vertex graph G with average degree Δ has $\Omega(\Delta^4)$ 4-cycles. *Remark:* The two claims above imply that the constant factor hidden in the $O(n^{3/2})$ edges is important. A graph with less than $c_1 \cdot n^{3/2}$ edges has no 4-cycle and every graph with at least $c_2 \cdot n^{3/2}$) edges has $\Omega(n^2)$ 4-cycles for $c_2 > c_1$.

Exercise 2 (Multiplicative Spanners). Show that the greedy spanner algorithm we saw in class has a runtime of $O(m \cdot n^{1+1/k})$. For simplicity, you may assume G being unweighted.