Distributed Graph Algorithms

Exercise 1: April 19

Lecturer: David Peleg

Exercise 1. Assume that every vertex knows the structure of the entire graph, and the communication model is CONGEST. Prove or disprove the following claims concerning a network G(V, E).

- (a) If there are at least k edge-disjoint paths of length at most d between the nodes v and w, then it is possible to send m messages from v to w in time O(d + m/k).
- (b) If dist(v, w) = k and there are k^2 edge-disjoint paths between the nodes v and w, then it is possible to send k^2 messages from v to w in time O(k).

Exercise 2. Consider the Multiple Messages (MM) problem with messages of size $O(\log n)$ on *n*-vertex networks G(V, E) of diameter D, under the assumptions specified in class (namely, the availability of a mechanism for routing each message along a shortest path).

- (a) Prove that the message complexity of MM has a universal lower bound of $Message(MM, G) = \Omega(n \cdot D \cdot \log n)$, or give a counter example.
- (b) Prove that in the synchronous setting, Time(MM, G) = O(n). Here you may assume that when two messages M_i and M_j are queued to be sent over the same outgoing link, M_i will be sent before M_j if and only if i < j. Suggested approach: Prove (say, by induction on t) that for every $t \ge 1$, at the end of round t of the

execution, the message M_i is either at distance at least t - i + 1 from the source r_1 or has already reached its destination v_i .

Spring 2023