Distributed Graph Algorithms

Spring 2023

Exercise 2: May 17

Lecturer: Merav Parter

Exercise 1 (Coloring in $O(\log^* n)$ Rounds). In this exercise, we consider slight extensions of the $O(\log^* n)$ -round algorithm \mathcal{A} for 3-coloring oriented trees that we saw in class. In the following, it is sufficient to specify the modifications, and explain the correctness. (a) Show that a similar algorithm also works for the *n*-length cycle (even without orientation) upon minor modifications. (b) Show that for any *n*-vertex graph with maximum degree Δ , one can modify algorithm \mathcal{A} to provide $2^{O(\Delta)}$ -coloring within $O(\log^* n)$ rounds.

Exercise 2 (Color Reduction). In this exercise, we consider general *n*-vertex graphs with maximum degree Δ . Prove the following two statements. (a) Given a *k*-coloring $C: V \to [1, k]$ of a graph with $k \ge \Delta + 2$ colors, in a single round one can compute a (k-1)-coloring $C': V \to [1, k-1]$.

(b) Given a k-coloring $C: V \to [1, k]$ of a graph with $k \ge \Delta + 2$ colors, in $O(\Delta \log(k/(\Delta + 1)))$ rounds, one can compute a $(\Delta + 1)$ -coloring $C': V \to [1, \Delta + 1]$. **Hint**: Split the colors [1, k] to several buckets (how many?) and reduce the colors of all the buckets simultaneously (use (a)!). Show first that in $O(\Delta)$ rounds, we can reduce the number of colors to at most k/2, and repeat this procedure for $O(\log(k/\Delta + 1))$ rounds.

Exercise 3 (FD of Bounded Arboricity Graphs). The arboricity of a graph G = (V, E), denoted by a(G), is the minimum number a of edge-disjoint forests F_1, \ldots, F_a whose union covers the entire edge set¹ E. Such a decomposition is called a-forest decomposition. Forest decompositions have many applications (e.g., O(a) coloring for graphs with arboricity a). In this exercise, we will provide a local algorithm for computing an approximate forest decomposition with at most $(2+\epsilon) \cdot a(G)$ forests. In the distributed output format of the decomposition algorithm, every vertex is required to know its parent in each of the forests $F_1, \ldots, F_{(2+\epsilon) \cdot a(G)}$ (the union of all these forests should cover E(G)). Throughout, assume that all vertices in G are given as input the parameter a(G) and the approximation parameter ϵ .

The first step for computing the forest decomposition is based on computing a vertex *partitioning* of the graph L_1, \ldots, L_k such that each vertex $v \in L_i$ has at most $(2 + \epsilon)a(G)$ neighbors in $G(\bigcup_{j=i}^k L_i)$. This partitioning is based on showing the following observation.

(a) A graph G with arboricity a = a(G) has at least $\epsilon/(2+\epsilon)|V(G)|$ vertices with degree $\leq (2+\epsilon)a$.

(b) Use claim (a) to define the partitioning L_1, \ldots, L_k for $k = O(1/\epsilon \cdot \log n)$ using O(k) rounds. In the distributed output format, each vertex v should learn its index i such that $v \in L_i$.

(c) Use the vertex partitioning of (b), to orient the edges of G such that the out-degree of each vertex is at most $(2 + \epsilon)a$. Show that this can be done in a single communication round. In the output format, each vertex v is required to learn the orientation of all its edges (and thus in particular, its outgoing edges).

(d) Finally, use the edge orientation of (c) to locally define the forest decomposition $F_1, \ldots, F_{(2+\epsilon) \cdot a(G)}$. Show that in your solution, each F_i is indeed a forest.

¹Clearly graphs with bounded arboricity a(G) = O(1) are sparse (with at most O(n) edges), however, they might contain high-degree nodes (e.g., the star graph has arboricity of 1). Therefore the maximum degree Δ might be considerably larger than a(G).