## Exercise 2: May 17

Lecturer: Merav Parter

Exercise 1 (Coloring in $O\left(\log ^{*} n\right)$ Rounds). In this exercise, we consider slight extensions of the $O\left(\log ^{*} n\right)$-round algorithm $\mathcal{A}$ for 3 -coloring oriented trees that we saw in class. In the following, it is sufficient to specify the modifications, and explain the correctness. (a) Show that a similar algorithm also works for the $n$-length cycle (even without orientation) upon minor modifications. (b) Show that for any $n$-vertex graph with maximum degree $\Delta$, one can modify algorithm $\mathcal{A}$ to provide $2^{O(\Delta)}$-coloring within $O\left(\log ^{*} n\right)$ rounds.

Exercise 2 (Color Reduction). In this exercise, we consider general $n$-vertex graphs with maximum degree $\Delta$. Prove the following two statements. (a) Given a $k$-coloring $C: V \rightarrow[1, k]$ of a graph with $k \geq \Delta+2$ colors, in a single round one can compute a $(k-1)$-coloring $C^{\prime}: V \rightarrow[1, k-1]$.
(b) Given a $k$-coloring $C: V \rightarrow[1, k]$ of a graph with $k \geq \Delta+2$ colors, in $O(\Delta \log (k /(\Delta+1)))$ rounds, one can compute a $(\Delta+1)$-coloring $C^{\prime}: V \rightarrow[1, \Delta+1]$. Hint: Split the colors $[1, k]$ to several buckets (how many?) and reduce the colors of all the buckets simultaneously (use (a)!). Show first that in $O(\Delta)$ rounds, we can reduce the number of colors to at most $k / 2$, and repeat this procedure for $O(\log (k / \Delta+1))$ rounds.

Exercise 3 (FD of Bounded Arboricity Graphs). The arboricity of a graph $G=(V, E)$, denoted by $a(G)$, is the minimum number $a$ of edge-disjoint forests $F_{1}, \ldots, F_{a}$ whose union covers the entire edge set ${ }^{1}$ $E$. Such a decomposition is called $a$-forest decomposition. Forest decompositions have many applications (e.g., $O(a)$ coloring for graphs with arboricity $a$ ). In this exercise, we will provide a local algorithm for computing an approximate forest decomposition with at most $(2+\epsilon) \cdot a(G)$ forests. In the distributed output format of the decomposition algorithm, every vertex is required to know its parent in each of the forests $F_{1}, \ldots, F_{(2+\epsilon) \cdot a(G)}$ (the union of all these forests should cover $\left.E(G)\right)$. Throughout, assume that all vertices in $G$ are given as input the parameter $a(G)$ and the approximation parameter $\epsilon$.

The first step for computing the forest decomposition is based on computing a vertex partitioning of the graph $L_{1}, \ldots, L_{k}$ such that each vertex $v \in L_{i}$ has at most $(2+\epsilon) a(G)$ neighbors in $G\left(\bigcup_{j=i}^{k} L_{i}\right)$. This partitioning is based on showing the following observation.
(a) A graph $G$ with arboricity $a=a(G)$ has at least $\epsilon /(2+\epsilon)|V(G)|$ vertices with degree $\leq(2+\epsilon) a$.
(b) Use claim (a) to define the partitioning $L_{1}, \ldots, L_{k}$ for $k=O(1 / \epsilon \cdot \log n)$ using $O(k)$ rounds. In the distributed output format, each vertex $v$ should learn its index $i$ such that $v \in L_{i}$.
(c) Use the vertex partitioning of (b), to orient the edges of $G$ such that the out-degree of each vertex is at most $(2+\epsilon) a$. Show that this can be done in a single communication round. In the output format, each vertex $v$ is required to learn the orientation of all its edges (and thus in particular, its outgoing edges).
(d) Finally, use the edge orientation of (c) to locally define the forest decomposition $F_{1}, \ldots, F_{(2+\epsilon) \cdot a(G)}$. Show that in your solution, each $F_{i}$ is indeed a forest.

[^0]
[^0]:    ${ }^{1}$ Clearly graphs with bounded arboricity $a(G)=O(1)$ are sparse (with at most $O(n)$ edges), however, they might contain high-degree nodes (e.g., the star graph has arboricity of 1 ). Therefore the maximum degree $\Delta$ might be considerably larger than $a(G)$.

