
Distributed Graph Algorithms Spring 2023

Exercise 2: May 17
Lecturer: Merav Parter

Exercise 1 (Coloring in O(log∗ n) Rounds). In this exercise, we consider slight extensions of the
O(log∗ n)-round algorithm A for 3-coloring oriented trees that we saw in class. In the following, it is sufficient
to specify the modifications, and explain the correctness. (a) Show that a similar algorithm also works for
the n-length cycle (even without orientation) upon minor modifications. (b) Show that for any n-vertex
graph with maximum degree ∆, one can modify algorithm A to provide 2O(∆)-coloring within O(log∗ n)
rounds.

Exercise 2 (Color Reduction). In this exercise, we consider general n-vertex graphs with maximum de-
gree ∆. Prove the following two statements. (a) Given a k-coloring C : V → [1, k] of a graph with k ≥ ∆+2
colors, in a single round one can compute a (k − 1)-coloring C ′ : V → [1, k − 1].
(b) Given a k-coloring C : V → [1, k] of a graph with k ≥ ∆+ 2 colors, in O(∆ log(k/(∆ + 1))) rounds, one
can compute a (∆ + 1)-coloring C ′ : V → [1,∆ + 1]. Hint: Split the colors [1, k] to several buckets (how
many?) and reduce the colors of all the buckets simultaneously (use (a)!). Show first that in O(∆) rounds,
we can reduce the number of colors to at most k/2, and repeat this procedure for O(log(k/∆+ 1)) rounds.

Exercise 3 (FD of Bounded Arboricity Graphs). The arboricity of a graph G = (V,E), denoted by
a(G), is the minimum number a of edge-disjoint forests F1, . . . , Fa whose union covers the entire edge set1

E. Such a decomposition is called a-forest decomposition. Forest decompositions have many applications
(e.g., O(a) coloring for graphs with arboricity a). In this exercise, we will provide a local algorithm for
computing an approximate forest decomposition with at most (2+ϵ) ·a(G) forests. In the distributed output
format of the decomposition algorithm, every vertex is required to know its parent in each of the forests
F1, . . . , F(2+ϵ)·a(G) (the union of all these forests should cover E(G)). Throughout, assume that all vertices
in G are given as input the parameter a(G) and the approximation parameter ϵ.

The first step for computing the forest decomposition is based on computing a vertex partitioning of the
graph L1, . . . , Lk such that each vertex v ∈ Li has at most (2 + ϵ)a(G) neighbors in G(

⋃k
j=i Li). This

partitioning is based on showing the following observation.

(a) A graph G with arboricity a = a(G) has at least ϵ/(2 + ϵ)|V (G)| vertices with degree ≤ (2 + ϵ)a.

(b) Use claim (a) to define the partitioning L1, . . . , Lk for k = O(1/ϵ · log n) using O(k) rounds. In the
distributed output format, each vertex v should learn its index i such that v ∈ Li.

(c) Use the vertex partitioning of (b), to orient the edges of G such that the out-degree of each vertex is at
most (2 + ϵ)a. Show that this can be done in a single communication round. In the output format, each
vertex v is required to learn the orientation of all its edges (and thus in particular, its outgoing edges).

(d) Finally, use the edge orientation of (c) to locally define the forest decomposition F1, . . . , F(2+ϵ)·a(G). Show
that in your solution, each Fi is indeed a forest.

1Clearly graphs with bounded arboricity a(G) = O(1) are sparse (with at most O(n) edges), however, they might contain
high-degree nodes (e.g., the star graph has arboricity of 1). Therefore the maximum degree ∆ might be considerably larger
than a(G).

2-1

