Exercise 3: June 27

Lecturer: Merav Parter

Cut Sparsification

Exercise 1. You are given a graph G that has a good edge-expansion such that for every $S \subset V,|S| \leq n / 2$, it holds that:

$$
|E(S, V \backslash S)| /|S| \geq \alpha, \quad \text { where } \quad \alpha=\Omega(\log n)
$$

Show that if we sample each edge $e \in G$ with probability $p=\Omega\left(\log n /\left(\alpha \cdot \epsilon^{2}\right)\right)$ then all cuts are preserved within $(1 \pm \epsilon)$ of their expectation with high probability (at least $1-1 / n^{5}$). That is, show that w.h.p. for every $S \subseteq V,|S| \leq n / 2$, the number of sampled edges in the cut $(S, V \backslash S)$ is $(1 \pm \epsilon) \cdot p \cdot|E(S, V \backslash S)|$. Instructions: you should not use the cut counting argument that we saw in class, i.e., do not use the fact that there are at most $n^{O(\alpha)}$ cuts of size $\alpha \cdot c$ where c in the min-cut in G.

Reachability Shortcuts

Exercise 2 (Shortcuts for Paths). We presented in the talk a simple algorithm for computing 2-shortcuts for n-length dipaths with $O(n \log n)$ edges. Show that for every given diameter bound d and an n-length dipath P one can compute a d-shortcut for P with $\widetilde{O}(n / d)$ edges.

Exercise 3 (Subsetwise Shortcuts). Let $T C(G)$ denote the transitive closure of a graph G. Given a graph $G=(V, E)$, a subset $S \subseteq V$ and an integer d, a set of edges $H \subseteq T C(G)$ is an (S, d)-shortcut, if for every $u, v \in V$, there is a $u-v$ path $P_{u, v}$ in $G \cup H$ that contains at most d vertices from S. Show that given an n-vertex m-edge DAG G, a subset $S \subseteq V$ and a diameter bound d, one can compute an (S, d)-shortcut H with $\widetilde{O}\left(|S|+|S|^{2} / D^{3}\right)$ edges.

