Lecture 10: Pesin Charts and Applications

Setup: T: M-M is a
$$C^2$$
 diffeomorphism on a Riemannian manifold
and $\Lambda \subseteq M$ is a hyperbolic set:
(i) Λ is compact and T-invariant
(2) Oscledets Decomposition: $\forall x \in \Lambda$, $T_x M = E^{(x)} \oplus E^{(x)}$, $E^{(x)} = {inear}$
 $\cdot |\underline{nvariance}: (dT)_x E^{(x)} = E^{(Tx)}, (dT)_x E^{(x)} = E^{(Tx)}$
 $\cdot |\underline{nvariance}: (dT)_x E^{(x)} = E^{(Tx)}, (dT)_x E^{(x)} = E^{(Tx)}$
 $\cdot \underline{uniform Expansion / Contraction}: \exists C>0, 0 < \lambda < 1$ s.t. $\forall x \in \Lambda$
 $\# \forall \vec{u} \in E^{(x)}, \forall n \ge 0$ $\|(dT)_x \vec{u}^{*}\| \le C\lambda^{n} \|\vec{u}^{*}\|$
 $\# \forall \vec{u}^{*} \in E^{(x)}, \forall n \ge 0$ $\|(dT^{-n})_x \vec{u}^{*}\| \le C\lambda^{n} \|\vec{u}^{*}\|$.)

In this lecture we analyze the dynamics of T: A-A and show:

(a) T has exponential sensitivity to initial conditions at each xell
(b) Stable manifold theorem

The key to these rosults is a convenient system of local coordinator charts called Perin charts which transform $T^n = To \cdots o T$ near x into $F_{T^{n-1}(x)} \circ F_{T^{n-1}(x)} \circ \cdots \circ F_{Tx} \circ F_{Tx}$ where $F_{T^{n-1}(x)} \circ F_{T^{n-1}(x)} \circ F_{Tx}$ are perturbations of <u>linear</u> hyperbolic maps.

Everything works in arbitrary dimension, but well stick to the case dim M=2, which contains all the essential ideas, but is easier to explain.

Pesin Charts

^{et} Diagonalizing" dT on A: We construct linear change
of cordinates in
$$T_{x}H$$
, which bring
 $dT_{x}: T_{x}H \to T_{too}$ to diagonal form.
We stick to dim M=2 (the general case is similar, but
more tedicus). In the two dimensional case, $\exists 0 < \lambda < 1$ s.d. $\forall x < \Lambda$
 $\cdot E^{5}(x) = Span \{ \vec{e}_{s}(w) \}$, $\|\vec{e}_{s}(x)\| = 1$
 $\cdot E^{6}(x) = Span \{ \vec{e}_{s}(w) \}$, $\|\vec{e}_{s}(x)\| = 1$
 $\cdot \|(dT')_{x}\vec{e}_{s}(G)\| \le C\lambda^{n}$ (hai)
 $\cdot \|(dT')_{x}\vec{e}_{s}(G)\|^{2}$
(the some two site $e^{x}\lambda < 1$ and define (for fixed $x < 1$):
 $s_{x}(x) := J_{2}\left(\sum_{n=0}^{\infty} e^{2nx} \|(dT')_{x}\vec{e}_{s}(G)\|^{2}\right)^{1/2}$
(The sum converge because the summand is $O(e^{2nx}\lambda^{n}), e^{X_{s}(1)}$)
Fix $x \in \Lambda$ and define a linear map $C(x): \mathbb{R}^{d} \to T_{x}M$ by
 $C(x) \binom{n}{0} := s_{x}G^{-1}\vec{e}_{s}(x), C(x) \binom{n}{0} := u_{x}(x)^{-1}\vec{e}_{s}(x)$

 $\frac{\text{Thm } (" \text{ Osoledets - Poin Reduction"}): \exists C > 0 \text{ s.t. } \forall x \in \Lambda, \\ (i) C(T_x)^{-1} (d,T)_{x} \circ C(x) = \begin{pmatrix} \lambda_x(x) & 0 \\ 0 & \mu & G_1 \end{pmatrix} \leftarrow \text{diagonal } | \\ 0 & \mu & G_1 \end{pmatrix} \leftarrow \text{diagonal } | \\ (i) C_0^{-1} = (\lambda_x(x)) < e^{-\chi} \quad 1 < e^{\chi} < |\mu_x(x)| < C_0 \leftarrow \frac{\text{uniformly}}{\text{hyperbdul}} | \\ (i) C_0^{-1} = (\lambda_x(x)) < e^{-\chi} \quad 1 < e^{\chi} < |\mu_x(x)| < C_0 \leftarrow \frac{\text{uniformly}}{\text{hyperbdul}} | \\ (i) C_0^{-1} = (\lambda_x(x)) < e^{-\chi} \quad 1 < e^{\chi} < |\mu_x(x)| < C_0 \leftarrow \frac{\text{uniformly}}{\text{hyperbdul}} | \\ (i) C_0^{-1} = (\lambda_x(x)) < e^{-\chi} \quad 1 < e^{\chi} < |\mu_x(x)| < C_0 \leftarrow \frac{\text{uniformly}}{\text{hyperbdul}} | \\ (i) C_0^{-1} = (\lambda_x(x)) < e^{-\chi} \quad 1 < e^{\chi} < |\mu_x(x)| < C_0 \leftarrow \frac{1}{2} + \frac{1}{2$

 $\frac{P_{TOO}[: The key observation is khet since (dT)_x [Span { \vec{e}(w)] = dT_x (E^{(w)}) = E^{(Tx)} = Span { \vec{e}'(Tw)],}$ it must be the case that $(dT)_x \vec{e}'(x) = \pm ||Q|T)_x \vec{e}'(w)|| e^{(Tx)}.$ Therefore: $C_x(Tx)^{-1}(dT)_x C_x(x) {a \choose b} = \pm C_x(Tx)^{-1} [S_x(w)^{-1}||Q|T) \vec{e}'(w)||e^{(Tx)}]$ $= \pm \frac{S_x(Tx)^{-1}}{S_x(x)} ||Q|T|_x \vec{e}'(x)||Q|T|_x \vec{e}'(w)||Q|T|_x \vec{e}'(w)||e^{(Tx)}].$ So ${a eigen vector with e.v. } \lambda_x(x) := \pm \frac{S_x(Tx)^{-1}}{S_x(x)} ||Q|T|_x \vec{e}'(x)|.$

This shows that
$$\begin{aligned} \zeta(T_{x})^{-1} &= \pm \frac{u_{x}(T_{x})}{u_{x}(x)} \parallel Q(T)_{x} \tilde{e}^{h}(x) \parallel \\ \zeta(T_{x})^{-1} &= \int_{x} \frac{u_{x}(T_{x})}{u_{x}(x)} \parallel Q(T)_{x} \tilde{e}^{h}(x) \parallel \\ \zeta(T_{x})^{-1} &= \int_{x} \frac{u_{x}(T_{x})}{u_{x}(x)} = \int_{x} \frac{u_{x}(T_{x})}{u_{x}(x)} \\ \zeta(T_{x})^{-1} &= \int_{x} \frac{u_{x}(T_{x})}{u_{x}(x)} = \int_{x} \frac{u_{x}(T_{x})}{u_{x}(x)} \\ \zeta(T_{x})^{-1} &= \int_{x} \frac{u_{x}(T_{x})}{u_{x}(T_{x})} \\ \zeta(T_{x})^{-1$$

Next we estimate the eigenvalues:

$$S_{\chi}(x)^{2} = 2 \sum_{n=0}^{\infty} e^{2n\chi} \| dT_{\chi}^{n} \vec{e}^{s}(\omega) \|^{2} > 2 \sum_{n=1}^{\infty} e^{2n\chi} \| dT_{\chi}^{n} \vec{e}^{s}(\omega) \|^{2}$$

$$= 2 \sum_{n=0}^{\infty} e^{2(h_{1}+1)\chi} \| (dT_{\chi}^{n}) (dT_{\chi} \vec{e}^{s}(\omega)) \|^{2}$$

$$= \| dT_{\chi} \vec{e}^{s}(\omega) \|^{2} \cdot e^{2\chi} 2 \sum_{n=0}^{\infty} e^{2n\chi} \| dT_{\chi}^{n} \vec{e}^{s}(T_{\chi}) \|^{2}$$

$$= e^{2\chi} \| dT_{\chi} \vec{e}^{s}(\omega) \|^{2} S_{\chi}^{n}(T_{\chi})^{2}$$

Thus
$$S_{\chi}(\tau_{\chi})^{2} \| d\tau_{\chi} \vec{e}'(\chi)\|^{2} < \vec{e}^{-\tau\chi}S_{\chi}(\chi)^{2}$$
, whence

$$|\lambda_{\chi}(\chi)| = \frac{S_{\chi}(\tau_{\chi}) \| d\tau_{\chi} \vec{e}'(\chi)\|}{S_{\chi}(\chi)^{2}} < \vec{e}^{-\chi}$$

Next, we bound $|\lambda_{z}G||$ from belows. Observe first that by the compactness of M and the C¹-smoothness of T, $H := \sup \{ \| dT_{z} \|, \| (dT')_{z} \| : z \in H \} < -\theta.$

$$\begin{split} S_{\chi}(x)^{2} &\equiv 2 \sum_{h=0}^{\infty} e^{2h\chi} \| dT_{\chi}^{h} \vec{e}^{r}(x) \|^{2} \\ &\leq 2 \left(1 + \sum_{h=1}^{\infty} e^{2h\chi} \| dT_{T_{\chi}}^{h-1} \vec{e}^{r}(\tau_{N}) \|^{2} \| dT_{\chi} e^{4(N)} \|^{2} \right) \\ &= 2 \left(1 + e^{2\chi} \| dT_{\chi} e^{4(N)} \|^{2} \sum_{k=0}^{\infty} e^{2(h-0)\chi} \| dT_{\chi}^{h-1} e^{9}(\tau_{\chi}) \|^{2} \right) \\ &\equiv \left(1 + e^{2\chi} \| dT_{\chi} e^{4(N)} \|^{2} \sum_{h=0}^{\infty} e^{2(h-0)\chi} \| dT_{\chi}^{h-1} e^{9}(\tau_{\chi}) \|^{2} \right) \\ &\equiv \left(1 + e^{2\chi} H^{2} \right) 2 \sum_{h=0}^{\infty} e^{2n\chi} \| dT_{T_{\chi}}^{h} \vec{e}^{0}(\tau_{\chi}) \|^{2} \\ &\leq \left(1 + e^{2\chi} H^{2} \right) S_{\chi} (T_{\chi})^{2} \right) \\ &\text{Thus} \quad \lambda_{\chi}(\chi)^{2} = \frac{S_{\chi} (\tau_{\chi})^{2}}{S_{\chi} (x)^{2}} \| dT_{\chi} e^{4(N)} \|^{2} \ge \left(1 + e^{2\chi} H^{2} \right)^{-1} \frac{1}{\exp \| dT_{\chi}^{1} \|^{2}} \\ &\geq \left[\left(H^{2}(1 + e^{2\chi} H^{2}) \right)^{-1} = g \| dx \| \cos t \right]. \end{split}$$

Similarly one shan that $e^{\chi} \leq u_{\chi}(\chi) \leq Comt$ For the next lamma, it is useful to assume that our manifold is isometrically embedded in \mathbb{R}^N for some $N \gg d$. (It's a general theorem that such an embedding exists.)

In this case, the tangent vectors to M are vectors in \mathbb{R}^N We say that $\overline{U_n} \longrightarrow \overline{U_n}$

- · (base point of \overline{r}) -> (base point of \overline{r})
- (direction of \overline{U}_{n}) \rightarrow (direction of \overline{U}) • (size of \overline{U}_{n}) \rightarrow (size of \overline{U})

<u>Continuity Lemma</u>: Suppose Λ is a hyperbolic set for a C^A diffeomorphism on a compact Riemannian manifold. Suppose zheΛ, and z_h → x. Then:
(i) z → E^h(z), E^S(z) are continuous on Λ. Specifically:
∃σ^h, σ^s_n {±1} s.t. σ^h, e^h(z_h) → e^h(z), σ^s_n e^S(z_h) → e^S(z)
(2) Lot I_n = (σ^h, o), then C_x(z_h) I_n → C_x(z)
(3) ||C_x(z)||, ||C_x(z)⁻¹|| are continuous and uniformly bounded away from zero and infinity on Λ.
(4) In fact, ||C_x(x)|| ≤ 1 on Λ.

Proof. Suppose $x_h \in \Lambda$ and $x_h \to x$. Since Λ is compact, $x \in \Lambda$. Recall that $\vec{e}^{S}(x_h)$ are unit vector. Therefore $\{\vec{e}^{S}(x_h)\}_{h=1}^{\infty}$ is precompact. Fix some $n_k \to \infty$ s.t. $\vec{e}^{S}(x_h) \xrightarrow[k \to \infty]{} \vec{U}$.

Since x_h→x, GeT_x M
Since || dT^N e^s(x_h)|| ≤ Cλ^N and T is continuarly different, x_{h_k} T^N(x_k)
∀N≥0 (||dT^N_x G||_{T^N(x)} ≤ Cλ^N). So G cannot have a component in Eⁿ(x) (otherase ||dT^N_x G|| would explode, not shrink). So GeE^s(x). Also

$$\|\vec{J}\| = \lim_{k \to J} \|\vec{e}^{*}(x_{n_{k}})\| = 1,$$

Herefore $\overline{G} \in \pm \overline{e}^{s}(x)$. Thus: any limit point of $\overline{e}^{s}(x)$ equals $\pm \overline{e}^{s}(x)$. Set $\sigma_{n}^{s} = sgn[\cos \ddagger(e^{s}(x_{n}), e^{s}(x))]$. Then $\sigma_{n}^{s} \overline{e}^{s}(x_{n}) \rightarrow \overline{e}^{s}(x)$ viewed as directions in \mathbb{R}^{N}

(because on subsequences s.t. $\vec{e}'(x_n) \rightarrow \pm \vec{e}'(x_n) \vec{f}'_n \rightarrow \pm \vec{f}$).

(2)
$$\chi \mapsto S_{\chi}(x) := \delta_{Z} \left(\sum_{n=0}^{\infty} e^{2n\chi} \| \left(\theta | T^{n} \right)_{\chi} e^{S} (x) \|^{2} \right)$$
 is continuous on Λ
because, by (Λ), the summands are continuous in χ , and
the series converges uniformly on Λ (it's dominated by $\Sigma (\Lambda^{2})^{n}$).
Similarly, $\chi \mapsto u_{\chi}(x)$ is continuous on Λ .
Since $S_{\chi}, u_{\chi} \ge S_{Z}$, $\chi \mapsto u_{\chi}(x)^{-1}, S_{\chi}(x)^{-1}$ are continuous.

Thus
$$C_{\chi}(x_{n})T_{\eta}\begin{pmatrix}1\\0\end{pmatrix} = S_{\chi}(x_{n})^{-1}\sigma_{n}^{s}\vec{e}^{s}(x_{n})$$

 $\longrightarrow S_{\chi}(x)^{-1}\vec{e}^{s}(x) = C_{\chi}(x)\begin{pmatrix}1\\0\end{pmatrix}$
Similarly, $C_{\chi}(x_{n})T_{\eta}\begin{pmatrix}0\\\eta\end{pmatrix} \longrightarrow C_{\chi}(x)\begin{pmatrix}0\\\eta\end{pmatrix}$.

(3) This follows from (2).

(4) Define a new inner product $\langle \cdot, \cdot \rangle_{x}^{*}$ on $T_{x}H$ by: $\cdot \|e^{s}(x)\|_{x}^{*} := s_{x}(x)$ $\cdot \|e^{u}(x)\|_{x}^{*} := u_{x}(x)$ $\cdot \langle e^{u}(x), e^{s}(x) \rangle_{x}^{*} = 0$.

(This inner product is called the Lyapunov inner product.) Chaim: $\|\cdot\|_{x}^{x} \ge \|\cdot\|_{x}$

$$\frac{\operatorname{Prorf}}{\left|\left|\operatorname{ae}^{\circ}+\operatorname{be}^{\circ}\right|\right|_{x}^{x}} = \left[\operatorname{a}^{2}s(x)^{2}+\operatorname{b}^{2}u_{x}Gy^{*}\right] \geq \left[\operatorname{a}^{2}+\operatorname{b}^{\circ}\right] \left(:: S_{x}, u_{x} \geq dz\right)$$

$$= \left[\operatorname{a}^{2}+\left(\operatorname{a}^{2}+\operatorname{b}^{\circ}\right)+\operatorname{b}^{2}\right] \geq \left[\operatorname{a}^{2}+\operatorname{b}^{2}\right]^{2} = \left[\operatorname{a}^{2}+\operatorname{b}^{1}\right]$$

$$= \left[\operatorname{ae}^{\circ}\right]_{x} + \left[\operatorname{be}^{\circ}\right]_{x} \geq \left[\operatorname{ae}^{\circ}+\operatorname{be}^{\circ}\right]_{x}.$$

 $\underline{Claim}: \|C_{\infty}(x)\| \leq 1:$

$$\begin{split} \left\| C_{\chi}(x) {a \choose b} \right\|_{\chi} &\leq \left\| C_{\chi}(x) {a \choose b} \right\|_{\chi}^{*} = \left\| S_{\chi}(x)^{-1} a e^{S}(x) + u_{\chi}(x)^{-1} b e^{S}(x) \right\|_{\chi}^{*} \\ &= \sqrt{\left(\left\| (S_{\chi}(x)^{-1} a) e^{S}(x) \right\|_{\chi}^{*} \right)^{2} + \left(\left\| (u_{\chi}(x)^{-1} b) e^{S}(x) \right\|_{\chi}^{*} \right)^{2}} \\ &= \sqrt{a^{2} + b^{2}} = \left\| \left({a \choose L} \right) \right\|_{R^{2}}. \end{split}$$

"Diagonalizing" T:
$$\Lambda \rightarrow \Lambda$$
 We construct licel conditions
chorts which bring T: $\Lambda \rightarrow \Lambda$ hear x to the form of a
"particled" linear hyperbolic map (which depends on x).
The exponential map $\exp_x: T_x \to M \to M$
is defined as follows:
 $\exp_x(\overline{G}) = \Im(10\overline{H})$, where
 $\Im_{\overline{G}}(C)$ is the geodonic from x in
direction \overline{V} .
Eacts from Differential Geometry: If M is a compact
Riemannian manifold, then
 $\cdot \exists r(M) = 0$, called the injectivity radius, s.f.
 $\exp_x: \{\overline{U} \in T_x H : \|\overline{U}\| < r(H)\} \to M$
is injective, diff contiable, and
 $\exp_x(\underline{C}) = x; (d \exp_x) = Id$
 $\cdot \exists p(H) > 0$ s.t. $\exp_x[\{\overline{U} \in T_x H : \|\overline{U}\| < r(H)\}] = \mathbb{S}(x; p(H))$
 \cdot Decreasing $r(M)$, we may assume that $\exp_x: \mathbb{S}(0; r(H)) \to \operatorname{image}$
is bi-Lipschitz with Lipschitz constant at $x \in \Lambda$ is the
map $\Psi_x: \mathbb{R}^2 \to M, \quad \Psi_x(\underline{U}) = \exp_x[(\overline{C}(\overline{M})\underline{U}).$
Fix $X > 0$ s.f. $\operatorname{sch}^X = 1$ (λ from def 2 of Λ)
Fix $C_0 > 0$ above.

$$F_{x}(\xi,\eta) = (A(x)\xi + h_{x}(\xi,\eta), B(x)\eta + h_{x}(\xi,\eta))$$

chere:

• contraction in
$$\mathbf{J}$$
: $C_0^{-1} \leq |A(\mathbf{x})| < e^{-\mathcal{X}}$

· expansion in n
$$e^{\chi} \in |B(\omega)| \in C_{o}$$

•
$$h_i(\underline{x}, \eta)$$
 are "negligible": $h_i(o_i o) = 0$, $(dh_i)_{\underline{o}} = 0$,
 $\|\underline{y}\| < q_0 \Rightarrow \|(dh_i)_{\underline{u}}\| \le \varepsilon \|\underline{u}\|$ E appears

* Remark: C² can be relaxed to having Hölder continuous fist derivative.

Sketch of Proof. The proof is done by examining the
Taylor expansion of
$$F_{x}(\overline{x}, \eta)$$
 at (0,0), noting that
• F_{x} is continuously differentiable trice $\stackrel{\text{free}}{} (C^{2} - \alpha numption)$
• $F_{x}(0,0) = (0,0)$ (because $\exp_{T_{00}}^{-1}(T_{00}) = 0$)
• $(dF_{x})_{0} = d(C_{x}(T_{x})^{-1}exp_{T_{x}}^{-1}oT_{0}exp_{x}o(x)) = 0$
= $C_{x}(T_{x})^{-1}(dexp_{T_{x}}^{-1})dT_{x}d(exp_{x}) = C_{x}(x)$
= $C_{x}(T_{x})^{-1}dT_{x}C_{x}(x)$ (:: $(dexp_{x})_{0} = 1d$; $(dexp_{T_{x}}^{-1})_{x} = 1d)$
= $diagonal matrix $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, $(Al < e^{x}, (Bl > e^{x})$.$

• The error form (h_1, h_2) vanishes togettor with its 1st derivation at 0.

The size of the reighborhood of \underline{O} in \mathbb{R}^2 where the error has small derivative is controlled by the size of the second derivatives of F_x at \underline{O} , and these are bounded, since • T is C^2 on M and M is compact; • $\|C_x(\cdot)\|$, $\|C_x(\cdot)^{-1}\|$ are uniformly bounded.

Since $\Psi_x = \exp o C_x(x)$ is uniformly bi-Lipschitz an this neighborhood (again since $\|C_x(\cdot)\|$, $\|C_x(\cdot)^{-1}\|$ are globally bounded), it maps to a neigh of x in M with size bounded below (i.e. containing a ball $B(x, \xi_0)$ with fixed ξ_0).

* See the fortnote in the previous page

Exponential Sensitivity to Initial Conditions (ESIC) 2

Theorem Suppose A is a hyperbolic set for a C diffeonophism on a compact Riemannian manifold. Then T has exponential sensitivity to initial conditions on A:

Observe Mat

$$\begin{aligned} \psi_{T(x)}^{-1} \circ T^{n} & \psi_{x} = \\ &= (\psi_{T(x)}^{-1} \circ T \circ \psi_{x}) \circ (\psi_{x}^{-1} \circ T \circ \psi_{x}) \circ \dots \circ (\psi_{Tx}^{-1} \circ T \circ \psi_{x}) \\ &= F_{T(x)}^{-1} \circ F_{T(x)}^{-1} \circ F_{T(x)}^{-1} \circ F_{x}^{-1} & \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots \circ F_{x}^{-1}, \\ &= F_{Tx}^{n-1} \circ F_{Tx}^{-2} \circ \dots$$

We write for short $F_{k}(\overline{J}, \eta) = F_{T_{x}}(\overline{J}, \eta) = \left(A_{k}\overline{J} + h_{k}^{2}(\overline{J}, \eta), B_{k}\eta + h_{k}^{2}(\overline{J}, \eta)\right)$ Wore $|A_{k}| < e^{-\chi}, (B_{k}) > e^{\chi}, \|(h_{k})_{n}\| \leq \epsilon \|\|\|^{h}$ Fix some point y = 4 (0, 7, 0), with (0, 7, 0) \in Poin chart of x. Let N be the first time $T^{N}(y) \notin B(T^{N}, p)$. Then My e Pesin chart of Tex for n=0,1,2,..., N-1. Write $T'(y) = \Psi_{T(x)}(\overline{x}_{n}, \eta_{n})$, with $|\overline{x}_{n}|, |\eta_{n}| = O(a)$. We have the recursion for mula (5, 7,)=F. (5, 7) ie. $\int_{n_{fl}} \overline{S}_{n_{fl}} = A_n \overline{F}_n + h_h^a (\overline{J}_n, \eta_h)$ $\int_{n_{fl}} \eta_{n_{fl}} = B_n \eta_h + h_h^2 (\overline{J}_n, \eta_h)$ (OEnEN) Note that $|A_n| \in e^{-x}$, $|B_n| \ge e^{x}$ and $\left|h_{h}^{\prime}\left(\overline{s}_{h},\eta_{h}\right)\right|=\left|h_{h}^{\prime}\left(\overline{s}_{h},\eta_{h}\right)-h_{h}^{\prime}\left(o,o\right)\right|\leq\max\left\|\nabla h^{\prime}\right\|\cdot\left\|\binom{z_{h}}{\eta_{h}}\right\|\quad\left(\vdots\cdot h_{h}^{\prime}\left(o,o\right)=o\right)$

 $\leq \varepsilon \left(\left| \overline{S}_{n} \right| + \left| \gamma_{n} \right| \right)$

Thus $\begin{cases} |\overline{y}_{nn}| \leq (e^{\chi} + \epsilon) |\overline{y}_{n}| + \epsilon |\eta_{n}| \\ |\eta_{nn}| \geq (e^{\chi} - \epsilon) |\eta_{n}| - \epsilon |\overline{y}_{n}| & \eta_{0} \neq 0 \end{cases}$ Claim Suppose & is so small that (E+2E) <1, (E-2E)>1. Then the solution to (4) satisfies $|\eta_{k}| \ge (e^{\chi} - 2\varepsilon)^{k} |\eta|_{0} \quad (k = 0, 1, ..., N)$ Proof. First we show that IF, I ≤ 19, 1 and 19, 1 ≥ 19, 1. • <u>k=0</u>: |] = |y | because J=0, y =0. In, 1≥ In 1 because of (*). · Induction Step: Acsume | Fk | ≤ 19k | and 19k ≥ 19k |, then $|\mathcal{F}_{k_{1}}| \leq (e^{-\chi} + e)|\mathcal{I}_{k}| + \epsilon |\mathcal{I}_{k}| \leq (e^{-\chi} + 2\epsilon)|\mathcal{I}_{k}| < |\mathcal{I}_{k_{1}}| \leq |\mathcal{I}_{k_{1}}|$ $|\eta_{k,\mu}| \ge (e^{\chi} - \varepsilon) |\eta_{L}| - \varepsilon |\eta_{k}| \ge (e^{\chi} - 2\varepsilon) |\eta_{L}| > |\eta_{L}|$ as required.

Substituting these inequalities in (+), we obtain $|\eta_{k+1}| \ge (e^{\chi} - \epsilon)|\eta_{k}| - \epsilon|\eta_{k}| = (e^{\chi} - 2\epsilon)|\eta_{k}|$ The claim follows.

Recall that $N := \text{first n s.t. } T^{N}(y) \notin \text{Pesin chart of } T^{N}(x)$ (or N := + D if there is no such n.)

Let
$$Q_{1} = \Psi_{\chi}(\tau_{0},\eta_{0})$$
 then
• $T^{N}(y)$ is autride the Poin chart of $T^{N}(x)$ where $d(T^{N}y, T^{N}x) > \delta_{0}$
• Vocken $d(T^{N}y, T^{N}x) = d(exp_{T^{N}_{\chi}}(c_{\chi}(T^{N}x)(\tau_{\chi}^{N})))$ exp_{T^{N}_{\chi}}(c_{\chi}(T^{N}y)(\tau_{\chi}^{0})))
 $\geq Lip(exp_{T^{N}_{\chi}})^{-1} || C_{\chi}(T^{N}x)(\tau_{\chi}^{N}x) ||$
 $\geq Lip(exp_{T^{N}_{\chi}})^{-1} || C_{\chi}(T^{N}x)^{-1} ||^{-4} \sqrt{\frac{\pi}{2}} + \eta_{k}^{2}$
 $\geq K^{-1}\eta_{k}|$, where $K = \sup_{M} (Lip exp_{3}^{-1}) \cdot \sup_{\Lambda} ||C_{\chi}(s)^{-1}||$
 $\geq K^{-1}\chi^{k}|\eta_{0}|$, where $K = \sup_{M} (Lip exp_{3}^{-1}) \cdot \sup_{\Lambda} ||C_{\chi}(s)^{-1}||$
 $\geq K^{-1}\chi^{k}|\eta_{0}|$, where $K = (e^{\chi} - 2e) > 1$
 $d(y, z) = d(\psi_{\chi}(\tau_{0},\eta_{0}),\psi_{\chi}(0,0))$
 $= d(exp_{\chi}(C_{\chi}(w)) \cdot \sqrt{\frac{\pi}{3}} + \eta_{0}^{-1} \leq Ll\eta_{0}|$
 $getwelly bounded$ for some period
Ne can how deduce ESIC at x :
Take $\eta_{0} = \frac{4}{L}\chi^{-n}$, then $d(y, z) < \chi^{-n}$.
 $\cdot Case 4(N \leq n)$: Take $k := N$, then $1 \leq k \leq n$ and
 $d(T^{N}y, T^{N}x) \equiv d(T^{N}y, T^{N}x) > \delta_{0}$
 $\cdot Cax 2(N > n)$: Take $k := n$, then $1 \leq k \leq n$ and
 $d(T^{N}y, T^{N}x) = d(T^{N}y, T^{N}x) \geq K^{-1}\delta^{n} \cdot \eta_{0}] = \frac{4}{KL}$.
Taking $\tau_{1} := \min_{N} \{\delta_{0}, f^{N}u_{1}\}, \text{ for some such that}$
 $d(T^{N}y, T^{N}x) = d(T^{N}y, T^{N}x) \geq K^{-1}\delta^{n} \cdot \eta_{0}] = \frac{4}{KL}$.