Lecture 11: Structural Stability 1

The Stability Problem: Study the sensitivity of a model to · errors in the initial condition < last lecture l renaining { lectures · errors in the model itself (i.e. the map) · cross in each iteration (noise, numerical errors) Preliminary Def-s Let Diff (M) denote the collection of diffeomorphisms of a Riemannian manifold M. Well use two notions of distance on M • C'-distance: dist_C (T,S):= sup_c dist(T(x), S(x)) xem • C^{1} - distance: Embedd M isometrically into \mathbb{R}^{N} , and view vectors in $T_{x}M$ as vectors in \mathbb{R}^{N} . dist $_{C^{1}}(T,S) = Sup$ dist $(T_{x}, S_{x}) \neq \mathcal{K}_{C^{1}}$ + Sup sup dist (dT, i, dS, i) xem ifeT, M dist (T,S) is small, (X,,...,X) for M to exprom How to think about this: If and we use a coordinate chart $T(x_{i_{j}},...,x_{d}) = \begin{pmatrix} F_{i_{j}}(\underline{x}) \\ \vdots \\ F_{d}(\underline{x}) \end{pmatrix}, \quad S(x_{i_{j}},..,x_{d}) = \begin{pmatrix} G_{i_{j}}(\underline{x}) \\ \vdots \\ G_{d}(\underline{x}) \end{pmatrix}$ then $\|\vec{F} - \vec{G}\|_{\mathcal{D}_{1}} \left\| \frac{\partial(F_{i_{1}}, ..., F_{d})}{\partial(x_{i_{1}}, ..., x_{d})} - \frac{\partial(G_{i_{1}}, ..., G_{d})}{\partial(x_{i_{1}}, ..., x_{d})} \right\|$ are small.

To save time, we'll expross all our stability results of consequences of one "moster theorem" which we'll prove at the end of the course.

⁽⁴⁾ Diagran Fixing Thm": * Suppose T:
$$H \rightarrow M$$
 is a c^A
diffeomorphism with a hyperbolic set A. There exist
• $\mathcal{E}_{\gamma}, \mathcal{e}_{\gamma}, \mathcal{e}_{\gamma} > 0$
• an open set $O \supseteq A$, as follows.
Suppose S is a diffeo s.t. dist_{C^A}(T, S) < \mathcal{E}_{γ} ,
h: $X \rightarrow X$ is a homeomorphism of a metric space X
and $\phi: X \rightarrow O$ is a continuous map s.t. $\phi(x) \subseteq O$ and
dist_{C⁰} (ϕ oh, So ϕ) < $\mathcal{E}_{2,j}$ i.e.
 $X \xrightarrow{h} X$
 $\phi \downarrow \qquad \downarrow \phi \qquad \mathcal{E}_{2}$ -commutes"
 $O \xrightarrow{S} M$

Moreover: ∀e Jo s.t. dist_ (\$oh, So\$)<0 ⇒ dist_(\$,\$)<e.

* this is not a standard name.

Application 1: Shadowing Theory.
Ddf-: A S-pseudo orbit is a sequence of points
$$\{x_k\}$$

st. dist $(x_{kn1}, T(x_k)) < S$ for all k.
Example. If we celculate $T^{+}G_{c}$? numerically with
transcation error < S, what we obtain is a S-pseudo-orbit
Anosov Shadowing Lemma. Suppose Λ is a hyperbolic set
of a C^A diffeomorphism $T: H \rightarrow M$. Then $\forall E \exists S \ st$.
for any S -pseudo-orbit $(x_k)_{k \in \mathbb{Z}}$ inside Λ , $\exists x$ in M s.t.
 $d(T^kx, x_k) < E$ for all $k \in \mathbb{Z}$.
We say: "the orbit of x E-shadows the orbit of $(x_k)^n$.
Proof. Consider the diagram
 $\frac{Z}{T} \xrightarrow{h} Z$ $h(z) = zri$
 $4 \downarrow \qquad 14$
 $0 \xrightarrow{T} 0$ $4(b) = x_k$
It S-commutes:
 $d(\varphi_{oh}, Top) = \sup_{k} d((\varphi_{oh})(k), (Top)(k))$
 $= \sup_{k} (x_{k+i}, T(x_k)) < S$
By the diagram fixing theorem, if $\delta < \varepsilon_{2}$
the $\exists \psi: Z \rightarrow O$ s.t. $\psi_{oh} = To\psi$.
Moreover, given ε , we can choose δ s.t. dist $(\psi, \varphi) < \varepsilon$.

Let $x := \psi(o)$. Then $d(\tau^{k}(x), x_{k}) = d((\tau^{k}\circ\psi)(o), x_{k}) = d(\psi(h^{k}(o)), x_{k})$ $= d(\psi(k), x_{k}) = d(\psi(k), \phi(k)) < dist_{co}(\psi, \phi) < \varepsilon.$ So the orbit of x shows (x_{k}) .

<u>Application 2</u>: Existence of Poriodic Orbits <u>Anosov</u> "Closing Lemma": Suppose Λ is a hyperbolic set of a C¹ diffeomorphism. For every $\varepsilon \rightarrow \delta$ as follow. Suppose $x \in \Lambda$ and $d(T^{N}x, x) < \delta$. Then $\exists y \ st$. $T^{N}(y) = y$ and $d(T^{V}y, T^{V}x) < \varepsilon \ (k=0,1,..,N)$.

Proof. Apply the "diagram fixing theorem" to $\frac{\mathbb{Z}}{\mathbb{N}\mathbb{Z}} \xrightarrow{h} \mathbb{Z}_{\mathbb{N}\mathbb{Z}} \qquad h(k) = k \in 1 \pmod{\mathbb{N}}$ $\stackrel{f}{=} \mathbb{U} \qquad \begin{array}{c} h \\ \mathbb{Z}} \\ \mathbb{N}\mathbb{Z} \qquad h(k) = k \in 1 \pmod{\mathbb{N}} \\ \begin{array}{c} h \\ \mathbb{Z}} \\ \mathbb{Z} \\ \mathbb{Z}} \\ \begin{array}{c} h \\ \mathbb{Z}} \\ \mathbb{Z} \\ \mathbb{Z}} \\ \mathbb{Z} \\ \mathbb{Z} \\ \mathbb{Z}} \\ \begin{array}{c} h \\ \mathbb{Z}} \\ \mathbb{Z} \\ \mathbb{Z} \\ \mathbb{Z} \\ \mathbb{Z}} \\ \mathbb{Z} \\ \mathbb{Z} \\ \mathbb{Z} \\ \mathbb{Z} \\ \mathbb{Z} \\ \mathbb{Z}} \\ \mathbb{Z} \\ \mathbb{$

More over, if
$$\delta \mathcal{B}$$
 sufficiently small, $dist_{\mathcal{C}^0}(4, \phi) < \varepsilon$.
Let $y := \psi(0)$. Then
 $d(y, x) = d(\psi(0), \phi(0)) < \varepsilon$
 $T^N(y) = (T^N_0 \psi)(0) = (\psi \circ h^N)(0) = \psi(0) = \psi$. \Box

Thm. Suppose A is a hyperbolic set. Then for every E>0, there is a periodic orbit in the E-reighborhood of A. [Later, we'll see that this periodic orbit must be hyperbolic.]

Application 3: Structural Stability

Structural Stability of Hyperbolic Sets: Let T: M-M be a C^{1} diffeor muphism with a hyperbolic set Λ . Then Experimentsh $O \ge \Lambda$ and $\varepsilon > 0$ as follows. Any C^{1} diffeormorphism $S: O \rightarrow S(O)$ such that $dist_{C^{n}}(T, S) < \varepsilon$ has a hyperbolic set $\Lambda' \le O$, and \exists homeomorphism $(f: \Lambda - \Lambda)^{*} s.t.$ $\Lambda \xrightarrow{T} \Lambda$ (f = I)f commuter. $\Lambda' \rightarrow \Lambda'$ (f = I)f

Moreover, VS JEst. if dist (T.S) < E, then dist (4,il) < S. Remark 1: 4 is called a topological conjugacy of TI, SI, <u>Remark 2</u>: In general, 4 is not differentiable. <u>Proof</u>. Apply the diagram fixing there to id $\int_{1}^{1} \int_{1}^{1} \int_{1}^{1$ exactly commuter. $\Lambda \xrightarrow{T} \Lambda$ $4 \downarrow \qquad 1 4$ exactly commutes. $\Lambda' \xrightarrow{} \Lambda'$

Claim: If e is small enough, then I is a homeomorphism. <u>Proof</u>. We already know that 4 is continuous. We need to show that it has a continuous <u>inverse</u>. Fix e' to be determined later, and annue dist (T,S) is so small that dist (4, id) < &'. Apply the diagram fixing theorem to $\Lambda' \xrightarrow{S} \Lambda'$ id []id 0 - M This gives $\tilde{\psi}: \Lambda' \to O$ continuous s.t. $\tilde{\psi} \circ S = T \circ \tilde{\psi}$. In addition, if dist (S,T) is sufficiently small, dut ($\tilde{\psi}$, id)xé.

We obtain the following commuting diagram:

$$\Lambda \xrightarrow{T} \Lambda$$

 $4 \downarrow \qquad \downarrow 4$
 $\Lambda' \xrightarrow{S} \Lambda'$
 $4 \downarrow \qquad \downarrow 4$
 $4 \downarrow 4$
 $4 \downarrow \qquad \downarrow 4$
 $4 \downarrow 4$
 $4 \downarrow$

Observe that dist $(\tilde{\psi}\circ\psi, id) < 2\varepsilon'$, because for all x $d(\tilde{\psi}(\psi(x), x) \in dist (\tilde{\psi}(\psi(x), \psi(x)) + dist (\psi(x), \psi) < 2\varepsilon')$. We see that we have for committing diagrams:

If $\varepsilon' < \varepsilon_{\varepsilon} := local aniqueness constant in the diagram fixing$ $theorem, then necessarily <math>\psi \circ \psi = id$, and so $\psi : \Lambda \rightarrow \psi(\Lambda)$. has a continuous inverse.

It remains to show that Λ' is a hyperbolic set for S. This requires further tools.