
 

Lecture 8 Uniform Distribution

Deff A sequence of ane o n is called uniformly
distributed or equidistributed in for if
for any sub interval 2 pl oil

I men N xneca.pl k pl

Our aim is to prove the following

Weyl's Equidistribution Thm Suppose α is irrational

and KEIN Then n 2 fractional part of nka is

uniformly distributed in oil

Proof for k n This is the easiest case

Consider the map R T T R x x 2 mode

This map preemer Lebesgue's measure X

Claim R is uniquely ergodic

Proof It's convenient to introduce the following notation

for u o T IR
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The key observation here is that we can calculate
the ergodic sum fxRI Gil for all x1 etint
Ease 1 n ol X 1 so Efnots 1 fxodi
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By linearity for every pct Span X n e 2 Trig
trigonometric polynomial
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By the Stone Weierstrass theorem the trigonometric

polynomials are dense in T
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exercise out

In other words any let it d generic
Necessarily R is uniquely ergodic if there were

some other ergodic inv measured its generic points wouldn't
be X generic Consider what happens for f sit fdd Sfdd

In particular x o is X generic whence by an exercise
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for any open ball B x r sit dB x 1 o

All balls are like that e g a b B 11
Direct Proof Sandwitch fe 1
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Profforte The idea is to manufacture n 2

from sum uniquely ergodi map We'll do this in detail next
time Now we just demonstrate the key idea looking at k

Define Tp x y x β yex on Tx T

T x y x zβ y txt xp x zp y zx β
T x y Tp 2 28 9th f x 3β 9 3 8 28
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Choosing β 22 x α y 0

we obtain

Tf α 0 Cnt α no nin E a α n 2

If we can show unique ergodicity we can deduce

that 2,0 is generic whence 2h25 is uniformly
distributed in T

Additional skew product extensions give higher power



Proof of Uniform Distribution of n 21 for ke

Steph A Map with an Orbit Which Generates nka

A Formula from Linear Algebra Let A Jk
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Proof For n 1 this is because 1 1 0

Assume by induction the formula holds for n Then
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A Map with an Orbit Which Generates nka Fix

some β to be determined later and define T Tpk
by T p pH

β k β ntp tan stay t.tk mode

A mode for A as before

Claim β irrationaland initial condition β 5 51 sit

T pi51 β x n'd

Proof Observe that T β x pk An mods

Since the last row of A R 1 1

the last coordinate of T β x pk equals

7 β E a i ignition
As functions of n p n
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are dey j polynomials in n Since theyhavedifferentdegrees

they are linearly independent Dimension comideration give
span 1 Platt Pruett Span n t t

So β 5 51 Sit

n 1 β 1 sit i 1 skit n 2
Observe that α leading coefficient β k so β Q
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Step 2 Takis uniquely ergodic for all Ken β Q

Key Observation T is a tower of skew product

Tp kt β n k k
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Therefore it's natural to use induction on k and

Furstenberg's theorem on skew products

k 1 Tp β T β T Tpr pin Bap

This map is uniquely ergodic because for every
X and every continuous function f β ti on 583 7

I Éilfotp.in pic fEif pintnp ftp.tldt uniformly
on βxT by the unique ergodicity of the map
RB T T Rpftl β mode recall that β Q

We also see that the unique invariant measure of

TB is my sit
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Inductionsteps Assume by induction that Tp k is
uniquely ergodic with the unique invariant measure my S.t

Sf dm I fipita staldt idt fee ph
βxT

0

We'll show that Tp k is uniquely ergodic with invariant
measure Mky Furstenberg's thm says that it's enough
to check the following conditions

a Tp l is uniquely ergodic with inv measure my

b Tp k is ergodic with respect to my xX mky

Condition a is our induction hypothesis It remains to

check b To do this we must show that if
f fix pk is a bounded measurable invariant

function i e fo Tp k f a e then f const a e

Consider the function on

F 1in hail f β y it

Let's expand F to a Fourier series as an L
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2
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If we can show that Flat for all a we'll get
that F when le f is constant and equal a e to F e

By the invariance of f
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We now change the index of summation 1 CAT's

noting that Aᵗ5 maps 2 bijectively to 2kt because

it is an integermatrixwith determinant one This teach to
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Here CATE 1ˢᵗ coordof CATI he nothing In kt

because CAT's A 1 1 j L hi
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Since the Fourier expansion is unique we can equate coefficients

and find that
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Passing to absolute values leads to
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Recall Parseval's identity Ʃ Ecml 5 F dm
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Claim Necessarily mz m My 0

Proof Let 1 p q Recall that At di g taxia 45 f
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So m2 m Mp 0 as claimed



It remains to see that F a to m 0

We just saw that F 1 to m m mkt 0

Substituting this in the equation
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Since the LHS to and RHS to
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In addition as we saw above
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Since we're anuming that F 11 to we can

divide by Fla and obtain
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But β Q Necessarily mF
In summary F n 0 1 0

It follows that ftp.xy pla Fee count



We just showed that any
bounded measurable

Tp kt inv function is constant almost everywhere

It follows that Tp.ly
is ergodic whence by

Furstenberg's thm uniquely ergodic

Step 3 Uniform Distribution of 4h15

Fix some a b 0,1 Given so build two

continuous function f X g t on TI sit

f t 1
a bit g H
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Next define F G Bx Bx T
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comments
For the initial condition p β 3 5k
sit T p β x n 2 we have
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Thus limsup l n N n's a b la blte
N

Similarly using f and F we can show that

limint I I n N n 2 e a b la bl e
Ned

Since E is arbitrary limit limsup la bl

This completes the proof of Weyl's UniformDistribution
theorem for Inka

Exercise Suppose p H agtdtag.it t attao
and ad is irrational Prove that p ni is uniformly
distributed in oil fractional part



Since h U B and B Rd h q x 9 dqs
We call x Cq1 ggil a local coordinate system
Conversely any d tuple x d B determines

a point p x pglet.CM defined by

plan d h si i d
We call pc h t

a lochart

Writing in Coordinates

Functions 4 0 I becomes

9 x ph yoh
t

xy prd ZEB

Curves C f 1 1 It becomes

t oh t x ftt deal
Maps f T V2 Ui em becomes

F x repeat hoofohi lay plat 9,111 9,611

where h O B is h ql x g large

h O B is h Cgt 9,511 9dg
so

TheMainissue There are many choices of local
coordinate system h T B We must be careful to
keep all our definitions independent of the choice of
coordinates

soooooote


