
QUENCHED AND ANNEALED TEMPORAL LIMIT
THEOREMS FOR CIRCLE ROTATIONS.

DMITRY DOLGOPYAT AND OMRI SARIG

In memory of Jean-Christophe Yoccoz

Abstract. Let h(x) = {x} − 1
2 . We study the distribution of∑n−1

k=0 h(x+ kα) when x is fixed, and n is sampled randomly uni-
formly in {1, . . . , N}, as N → ∞. Beck proved in [Bec10, Bec11]
that if x = 0 and α is a quadratic irrational, then these distribu-
tions converge, after proper scaling, to the Gaussian distribution.
We show that the set of α where a distributional scaling limit ex-
ists has Lebesgue measure zero, but that the following annealed
limit theorem holds: Let (α, n) be chosen randomly uniformly in

R/Z× {1, . . . , N}, then the distribution of
∑n−1

k=0 h(kα) converges
after proper scaling as N →∞ to the Cauchy distribution.

1. Introduction

We study the centered ergodic sums of functions h : T → R for the
rotation by a an irrational angle α

(1.1) Sn(α, x) =

(
n∑
k=1

h(x+ kα)

)
− n

∫
T
h(z)dz.

Weyl’s equidistribution theorem says that for every α ∈ R \Q, and for
every h Riemann integrable, 1

n
Sn(α, x) −−−→

n→∞
0 uniformly in x. We are

interested in higher-order asymptotics. We aim at results which hold
for a set of full Lebesgue measure of α.

If h is sufficiently smooth, then Sn(α, x) is bounded for almost every
α and all x (see [Her79] or appendix A). The situation for piecewise
smooth h is more complicated, and not completely undertstood even
for functions with a single singularity.
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Setup. Here we study (1.1), for the simplest example of a piecewise
smooth function with one discontinuity on T = R/Z:

(1.2) h(x) = {x} − 1

2
.

The fractional part {x} is the unique t ∈ [0, 1) s.t. x ∈ t+ Z.
Case (1.2) is sufficient for understanding the behavior for typical α

for all functions f(t) on T which are differentiable everywhere except
one point x0, and whose derivative on T\{x0} extends to a function of
bounded variation on T. This is because of the following result proven
in Appendix A:

Proposition 1.1. If f(t) is differentiable on T \ {x1, . . . , xν} and f ′

extends to a function with bounded variation on T, then there are
A1, . . . , Aν ∈ R s.t. for a.e. α there is ϕα ∈ C(T) s.t. for all x 6= xi,

f(x) =
ν∑
i=1

Aih(x+ xi) +

∫
T
f(t)dt+ ϕα(x)− ϕα(x+ α).

Of course there are many functions h for which Proposition 1.1 holds.
The choice (1.2) is convenient, because of its nice Fourier series.

Methodology. Sn(α, x) is very oscillatory. Therefore, instead of look-
ing for simple asymptotic formulas for Sn(α, x), which is hopeless, we
will look for simple scaling limits for the distribution of Sn(α, x) when
x, or α, or n (or some of their combinations) are randomized. There
are several natural ways to carry out the randomization:

(1) Spatial vs temporal limit theorems: In a spatial limit theorem, the
initial condition x chosen randomly from the space T. In a temporal
limit theorem, the initial condition x is fixed, and the “time” n is
chosen randomly uniformly in {1, . . . , N} as N →∞. Neither limit
theorem implies the other, see [DS17].

(2) Quenched vs annealed limit theorems: In a quenched limit theorem,
α is fixed. In an annealed limit theorem α is randomized. The
terminology is motivated by the theory of random walks in random
environment; the parameter α is the “environment parameter.”

We indicate what is known and what is still open in our case.

Known results on spatial limit theorems: The quenched spatial
limit theorem fails; the annealed spatial limit theorem holds.

The failure of the quenched spatial limit theorem is very general.
Namely, It follows from the Denjoy-Koksma inequality that there are
no quenched spatial distributional limit theorems for any rotation by
α ∈ R \ Q, and every function of bounded variation which is not a
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coboundary (e.g. h(x) = {x}− 1
2
). In the coboundary case, the spatial

limit theorem is trivial. Many people have looked for weaker quenched
versions of spatial distributional limit theorem (e.g. along special sub-
sequences of “times”). See [DF15, DS17] for references and further
discussion.

The annealed spatial limit theorem is a famous result of Kesten.

Theorem 1.2. ([Kes60]) If (x, α) is uniformly distributed on T × T
then the distribution of Sn(α,x)

lnn
converges as n → ∞ to a symmetric

Cauchy distribution: ∃ρ1 6= 0 s.t. for all t ∈ R,

lim
n→∞

P
(
Sn(α, x)

lnn
≤ t

)
=

1

2
+

arctan(t/ρ1)

π
.

See [Kes60] for the value of constant ρ1. The same result holds for
h(x) = 1[0,β)({x}) − β with β ∈ R, with different ρ1 = ρ1(β) [Kes60,
Kes62].

Known results on temporal limit theorems: Quenched temporal
limit theorems are known for special α; There were no results on the
annealed temporal limit theorem until this work.

The first temporal limit theorem for an irrational rotation (indeed
for any dynamical system) is due to J. Beck [Bec10, Bec11]. Let

MN(α, x) :=
1

N

N∑
n=1

Sn(α, x) , Sn(α, x) := Sn(α, x)−MN(α, x).

Theorem 1.3 (Beck). Let α be an irrational root of a quadratic polyno-
mial with integer coefficients. Fix x = 0. If n is uniformly distributed

on {1 . . . N} then Sn(α,x)√
lnN

converges to a normal distribution as N →∞.

A similar result holds for the same x and α with h(x) = {x} − 1
2

replaced by 1[0,β)({x}) − β, β ∈ Q [Bec10, Bec11]. [ADDS15, DS17]
extended this to all x ∈ [0, 1). A remarkable recent paper by Bromberg
& Ulcigrai [BU] gives a further extension to all x, all irrational α of
bounded type, and for an uncountable collection of β (which depends on
α). Recall that the set of α of bounded type is a set of full Hausdorff
dimension [Jar29], but zero Lebesgue measure [Khi24].

This paper: We show that for h(x) = {x}− 1
2
, the quenched temporal

limit theorem fails for a.e. α, but that the annealed temporal limit
theorem holds. See §2 for precise statements.
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Heuristic overview of the proof. When we expand the ergodic
sums of h into Fourier series, we find that the resulting trigonomet-
ric series can be split into the contribution of “resonant” and “non-
resonant” harmonics.

The non-resonant harmonics are many in number, but small in size.
They tend to cancel out, and their total contribution is of order

√
lnN .

It is natural to expect that this contribution has Gaussian statistics. If
α has bounded type, all harmonics are non-resonant, and as Bromberg
and Ulcigrai show in the case 1[0,β) − β the limiting distribution is
indeed Gaussian.

The resonant harmonics are small in number, but much larger in size:
Individual resonant harmonics have contribution of order lnN . For
typical α, the number, strength, and location of the resonant harmonics
changes erratically with N in a non-universal way. This leads to the
failure of temporal distributional limit theorems for typical α.

We remark that a similar obstruction to quenched limit theorems
have been observed before in the theory of random walks in random
environment [DG12, PS13, CGZ00].

To justify this heuristic we fix N and compute the distribution of
resonances when α is uniformly distributed. Since the distribution of
resonances is non-trivial, changing a scale typically leads to a different
temporal distribution proving that there is no limit as N → ∞. As
a byproduct of our analysis we obtain some insight on the frequency
with which a given limit distribution occurs.

Functions with more than one discontinuity. In a separate paper
we use a different method to show that given a piecewise smooth dis-
continuous function with arbitrary finite number of discontinuities, the
quenched temporal limit theorems fails for Lebesgue almost all α. But
this method does not provide an annealed result, and it does not give
us as detailed information as we get here on the scaling limits which
appear along subsequences for typical α.

2. Statement of results

Fix x ∈ T arbitrary. Let Sn(α, x) :=
∑n

k=1 h(x+ kα), and

MN(α, x) =
1

N

N∑
n=1

Sn(α, x),

Sn(α, x) = Sn(α, x)−MN(α, x).
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Consider the cumulative distribution function of Sn(α,x)
lnN

:

FN(α)(z) = FxN(α)(z) =
1

N
Card

(
1 ≤ n ≤ N :

Sn(α, x)

lnN
≤ z

)
.

When α is random FN(α) becomes a random element in the space X
of distribution functions endowed with Prokhorov topology.

We begin with the annealed temporal distributional limit theorem:

Theorem 2.1. Fix x ∈ T arbitrary. Let (α, n) be uniformly distributed

on T × {1, . . . , N}. Then Sn(α,x)
lnN

converges in law as N → ∞ to the

symmetric Cauchy distribution with scale parameter 1
3π
√

3
:

(2.1) lim
N→∞

P
(
Sn(α, x)

lnN
≤ t

)
=

1

2
+

arctan(t/ρ2)

π
(t ∈ R)

(2.2) ρ2 =
1

3π
√

3
.

Next we turn to the quenched result, beginning with some prepa-
rations. Recall (see e.g. [DF, Section 2.1]) that the Cauchy random
variable can be represented up to scaling as

(2.3) C =
∞∑
m=1

Θm

ξm

where Ξ = {ξm} is a Poisson process on R and Θm are i.i.d bounded
random variables with zero mean independent of Ξ. To make our ex-
position more self-contained we recall the derivation of (2.3) in Appen-
dix B.

In our case Θm will be distributed like the following random variable
Θ. Let θ be uniformly distributed on [0, 1] and define

(2.4) Θ(θ) =
∞∑
k=1

cos(2πkθ)

2π2k2
, θ ∼ U [0, 1].

Notice that

(2.5) Θ(θ) =
θ2 − θ

2
+

1

12
on [0, 1],

as can be verified by expanding θ2−θ
2

+ 1
12

on [0, 1] into a Fourier series.

Notice also that for every θ ∈ [0, 1], Θ(θ) = ζ2

2
− 1

24
, where ζ = θ − 1

2
.
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Thus − 1
24
≤ Θ ≤ 1

12
, and

(2.6) P(Θ < t) =


0 t ≤ − 1

24

2
√

2t+ 1
12

t ∈ (− 1
24
, 1

12
)

1 t > 1
12
.

Next, given a sequence Ξ = {ξm} s.t.
∑

m ξ
−2
m <∞ we can define

(2.7) CΞ =
∑
m

Θm

ξm

where Θm are i.i.d. random variables with distribution given by (2.6).
(In the proof of Theorem 2.1, {ξm} would describe the small denomina-
tors of Sn and {Θm} would describe the corresponding numerators, see
formula (3.2) in Section 3.) The sum in (2.7) converges almost surely
due to Kolmogorov’s Three Series Theorem (note that (2.4) easily im-
plies that E(Θ) = 0). Let FΞ be the cumulative distribution function
of CΞ. If Ξ is a Poisson process on R, then FΞ is a random element of
Prokhorov’s space X.

Theorem 2.2. Fix x ∈ T arbitrary. If α has absolutely continuous
distribution on T with bounded density then FN(α) converges in law as
N →∞ to FΞ where Ξ is the Poisson process on R with intensity

(2.8) c =
6

π2
.

A similar result has been proven for sub-diffusive random walks in
random environment in [DG12] with the following distinctions:

(1) for random walks Θm+1 have exponential distribution rather than
the distribution given by (2.4)

(2) For random walk the Poisson process in the denominator of (2.3)
is supported on R+ and can have intensity c̃x−s with s 6= 0.

We now explain how to use Theorem 2.2 to show that for a.e. α, there
is no non-trivial temporal distributional limit theorem for Sn(α, x). It
is enough to show that for a.e. α, one can find several sequences Nk

with different scaling limits for Sn(α, x) as n ∼ U{1, . . . , Nk}. Let

D(Θ) := {finite linear combinations of i.i.d. with distribution Θ}
(closure in X).

Corollary 2.3. Fix x ∈ T arbitrary. For a.e. α, for every Y ∈ D(Θ),
there are Nk →∞, Bk →∞, Ak ∈ R s.t.

(2.9)
Sn(α, x)− Ak

Bk

dist−−−→
k→∞

Y, as n ∼ U{1, . . . , Nk}.



QUENCHED AND ANNEALED TLTS FOR CIRCLE ROTATIONS. 7

In particular, for a.e. α, the distribution of Θ (2.6), and the normal
distribution are distributional limit points of properly rescaled ergodic
sums Sn(α, x) as n ∼ U{1, . . . , N}.

Proof. Put on X the probability measure µ induced by the FΞ, when Ξ
is the Poisson point process with intensity c as in Theorem 2.2.

Observe that for every Y ∈ D(Θ),

(2.10) ∃ decreasing seq. of open Un ⊂ X s.t. µ(Un) > 0 and Un ↓ {Y }.

Indeed, fix a countable dense set {fn}n≥1 ⊂ Cc(R), and let Un :=⋂n
i=1{X : |EX(fi) − EY (fi)| < 1

n
}, then Un ↓ {Y }. Since Y ∈ D(Θ),

∃a1 < · · · < ak and iid Θi ∼ Θ s.t. X :=
∑k

i=1 aiΘi ∈ Un. Since
f1, . . . , fn are uniformly continuous with compact support, there is
δ > 0 s.t. if X1, X2 are random variables s.t. there is a coupling
with P(|X1 − X2| ≥ δ) ≤ δ then for each i ∈ {1, . . . n} we have

|EX1(fi)− EX2(fi)| <
1

n
. Note that given a sequence {bi} ∈ `2

E

(∑
i

biΘi

)
= 0, Var

(∑
i

biΘi

)
= Var(Θ)

∑
i

b2
i .

Accordingly, the Chebyshev inequality shows that if Ξ = {ξi} is a
sequence s.t.

(2.11)
k∑
i=1

∣∣∣∣ 1

ai
− 1

ξi

∣∣∣∣2 +
∞∑

i=k+1

1

ξ2
i

≤ δ2

Var(Θ)

then FΞ ∈ Un. It remains to note that if Ξ = {ξi} is a Poisson point
process then for each δ > 0, (2.11) holds with positive probability.
Indeed let Aδ,R be the event that of Ξ∩ [−R,R] consists of there being

exactly k points ξ1, . . . , ξk and
k∑
i=1

∣∣∣∣ 1

ai
− 1

ξi

∣∣∣∣2 ≤ δ2

2Var(Θ)
. Then for each

δ, R the probability of Aδ,R is positive while E

∑
|ξi|≥R

1

ξ2
i

 =
2c

R
(see

formula (B.3) in Appendix B). Thus if R = 8cVar(Θ)
δ2

then the Markov

inequality shows that P

∑
|ξ|≥R

1

ξ2
i

≥ δ2

2Var(Θ)

 ≤ 1

2
. Since ξ ∩ [−R,R]

and ξ ∩ (R \ [−R,R]) are independent, (2.11) has positive probability
proving (2.10).

We claim that for any n, for almost every α, every sequence has
a subsequence {N ′m} such that FN ′m(α) ∈ Un for all m. A diagonal
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argument then produces a subsequence {Nk} along which we have (2.9)
with Ak := MNk(α) and Bk := lnNk.

Fix n and set U := Un. To produce {N ′m} it is enough to show that
for each N,

(2.12) mes(α ∈ T : ∃N ≥ N such that FN(α) ∈ U) = 1.

Let µ(U) = 2ε. Let α be uniformly distributed. By Theorem 2.2 there
exists n1 ≥ N and a set A1 ⊂ T such that mes(A1) ≥ ε so that for every
α ∈ A1, Fn1(α) ∈ U. If mes(A1) = 1 we are done; otherwise we apply
Theorem 2.2 with α uniformly distributed on T \ A1 and find n2 ≥ n1

and a set A2 ⊂ T \ A1 such that mes(A2) ≥ εmes(A2) so that for each
α ∈ A2, Fn2(α) ∈ U. Continuing in this way, we obtain nm ↑ ∞ such
that for α ∈ Aj, Fnj(α) ∈ U and mes(T \ ∪kj=1Aj) ≤ (1− ε)k. Letting
k to infinity we obtain (2.12). �

Corollary 2.3 shows that for every x, for a.e. α, there is no non-trivial
temporal distributional limit theorem for Sn(α, x).

3. The main steps in the proofs of Theorems 2.1, 2.2

We state the main steps in the proofs of Theorems 2.1, 2.2. The
technical work needed to carry out these steps is in the next section.

Step 1: Identifying the resonant harmonics. It is a classical fact
that the Fourier series of h(x) = {x}− 1

2
converges to h(x) everywhere:

(3.1) h(x) = −
∞∑
j=1

sin(2πjx)

πj
for all x ∈ R.

We will use this identity to represent

Sn(α, x) :=
n∑
k=1

h(x+ kα)− 1

N

N∑
k=1

h(x+ kα)

as a trigonometric sum, and then work to separate the “resonant fre-
quencies”, which contribute to the asymptotic distributional behavior
of Sn(α), from those which do not. We need the following definitions:

T := N ln2N,

gj,n :=
cos((2n+ 1)πjα + 2πjx)

2πj sin(πjα)
,

Sn,T (α) :=
T∑
j=1

gj,n.
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Proposition 3.1. Let (α, n) be uniformly distributed on T×{1, . . . , N}.
Then Sn(α, x) = Sn,T (α) + ε̂n where ε̂n

lnN

dist−−−→
N→∞

0.

The proof is given in §4.2. We follow the analysis of [Bec10, Bec11],
but we obtain weaker estimates since we consider a larger set of rotation
numbers than in [Bec10, Bec11].

In what follows, indices j in gj,n are called “harmonics.” We will
separate the harmonics into different classes, according to their contri-
bution to Sn,T (α). We begin with some standard definitions:

Given x ∈ R there is a unique pair y ∈ (−1
2
, 1

2
], m ∈ Z such that

x = m + y. We will call y the signed distance from x to the nearest
integer and denote it by ((x)). We let ‖x‖ = |((x))|, 〈〈x〉〉 = (−1)m((x))
where m is as above.

Fix N . An integer 1 ≤ j ≤ T = N ln2N is called a prime harmonic,
if jα = ((jα)) + m where gcd(j,m) = 1. If j and m are not co-
prime, that is r := gcd(j,m) 6= 1, then we call j/r the prime harmonic
associated to j. (If j is prime then the prime harmonic associated
with j is j itself.)

Definition 3.2. Fix δ > 0, and N � 1.

(1) p ∈ N is called a prime resonant harmonic, if p ≤ N , p is a prime
harmonic, and ‖pα‖ ≤ (δp lnN)−1.

(2) j ∈ N is called a resonant harmonic, if j ≤ N ln2N , and the prime
harmonic associated to j is a prime resonant harmonic.

Let R = R(δ,N) denote the set of resonant harmonics, P = P(δ,N)
the set of prime resonant harmonics, and O = O(δ,N) be the set of
non resonant harmonics which are less than T (N) = N ln2N. Split

Sn,T (α) = SRn,T (α) + SOn,T (α) where SJn,T =
∑
j∈J

gj,n.

Let VON (α) := En[SOn,T (α)2] ≡ 1
N

∑N
n=1 SOn,T (α)2.

Proposition 3.3. Suppose α ∈ T is distributed according to an abso-
lutely continuous measure with bounded density. For every ε > 0 there
are δ0 > 0 and EN(ε) ⊂ T Borel with the following properties:

(1) mes(EN(ε)) > 1− ε for all N large enough;

(2) for all 0 < δ < δ0, lim
N→∞

(
sup

α∈EN (ε)

VO(δ,N)
N (α)

ln2N

)
≤ ε.

The proof is given in §4.2. Here is a corollary.
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Corollary 3.4. For every ε > 0 there is a δ0 > 0 s.t. for all N large

enough and 0 < δ < δ0, Pα,n
(
|SO(δ,N)
n,T |
lnN

> ε

)
< ε, where 1 ≤ n ≤ N is

distributed uniformly, α ∈ T is sampled from an absolutely continuous
measure with bounded density, and α, n are independent.

Proof. Without loss of generality 3ε2 < ε. Fubini’s theorem gives

Pα,n

(
|SO(δ,N)
n,T |
lnN

> ε

)
≤ ε4 +

∫
EN (ε4)

Pn

(
|SO(δ,N)
n,T |
lnN

> ε

)
dα.

By Chebyshev’s Inequality, the integrand is less than 1
ε2
× 1

ln2N
VO(δ,N)
N .

On EN(ε4), this is less than 2ε2 for all N large enough (uniformly in

α). So Pα,n( 1
lnN
|SO(δ,N)
n,T | > ε) ≤ ε4 + 2ε2 < ε. �

Proposition 3.1 and Corollary 3.4 say that the asymptotic distribu-
tional behavior of Sn(α) is determined by the behavior of the sum of
the resonant terms SRn,T (α).

Step 2: An identity for the sum of resonant terms. Let

(3.2) ξj := j〈〈jα〉〉 lnN and Θj(n) := Θ
(

[(2n+1)jα+2jx] mod 2
2

)
,

where Θ(t) =
∞∑
k=1

cos(2πkt)

2π2k2
, see (2.4).

Proposition 3.5. For all δ small enough,

(3.3)
SR(δ,N)
n,T

lnN
=

∑
j∈P(δ,N)

Θj(n) +O
(

1
lnN

)
ξj

.

The big Oh is uniform in j but not in δ.

For the proof, see §4.3.

Step 3: Limit theorems for resonant harmonics. We will use
(3.3) to study of the distributional behavior of SRn,T .

First we will describe the distribution of the set of denominators
{ξj = j〈〈jα〉〉 lnN}j∈P(δ,N), and then we will describe the conditional
joint distribution of set of numerators, given {ξj}. Notice that we need
information on the point process (“random set”) {ξj : j ∈ P(δ,N)},
not just on individual terms.
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Proposition 3.6. Suppose that α is distributed according to a bounded
density on T. For each δ the point process{(

ln j

lnN
, 〈〈jα〉〉j lnN

)}
j∈P(δ,N)

converges in distribution as N → ∞ to the Poisson Point Process on
[0, 1]× [−1

δ
, 1
δ
], with constant intensity c = 6

π2 .

The second coordinate contains the information we need on {ξj}.
The information contained in the first coordinate is needed in the proof
of Proposition 3.7 below.

Proposition 3.6 is proven in [DF, Theorem 5] with 〈〈x〉〉 replaced
by ((x)). The proof given in [DF] relies on the Poisson limit theorem
for the sum along the orbit of the diagonal flow on SL2(R)/SL2(Z) of
the Siegel transform of functions of the form F (x, y) = 1IN (x)1JN (y)
where {IN} and {JN} are sequences of shrinking intervals. To obtain
Proposition 3.6 one needs to change slightly the definition of IN but
all the estimates used in [DF] remain valid in the present context.

Proposition 3.7. Suppose that α is distributed according to a bounded
density on T. For every r > 1 and ε > 0 there are δ, N0 and A(N, δ, r) ⊂
T such that mes(A(N, δ, r)) > 1− ε and

(1) If α ∈ A(N, δ, r) then |P(δ,N)| > r for all N > N0.
(2) For each neighborhood V of the uniform distribution on [0, 2]r there

exists NV such that for N ≥ NV the following holds. Let α ∈
A(N, δ, r) and jk be an enumeration of the prime resonant har-
monics in P(δ,N) which orders ‖jkα‖jk in decreasing order, then
the distribution of the random vector

(j1(α(2n+ 1) + 2x), . . . , jr(α(2n+ 1) + 2x)) mod 2

where n ∼ Uniform{1, . . . , N} belongs to V.

Proposition 3.7 is proved in §4.4.

Proof of Theorem 2.1. This theorem describes the distributional
behavior of 1

lnN
Sn(α) as (α, n) ∼ U(T × {1, . . . , N}), when N → ∞.

Step 1 says that for every ε there are δ,N0 such that for all N > N0,

1

lnN
Sn(α, x) =

1

lnN
SR(δ)
n,T + ∆n(α)

where P(|∆n(α)| ≥ ε) ≤ ε, as (α, n) ∼ U(T× {1, . . . , N}). To see this
take ∆n := 1

lnN
(ε̂n + SOn,T ), and use Proposition 3.1 and Corollary 3.4.
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We will prove Theorem 2.1 by showing that 1
lnN
SR(δ,N)
n (α)

dist−−−→
N→∞

Cδ

as (α, n) ∼ U(T × {1, . . . , N}), where Cδ are random variables such

that Cδ
dist−−→
δ→0

Cauchy.

Let jk be an enumeration of P(δ,N) which orders ‖jkα‖jk in de-
creasing order. By step 2,

SR(δ,N)
n,T

lnN
=
∑ Θjk(n) +O( 1

lnN
)

ξjk
.

Proposition 3.6 says that the point process {ξjk} converges in law to
the Poisson Point Process on [−1

δ
, 1
δ
]. Proposition 3.7 says that given

{ξjk}, (Θj1(n)) + O( 1
lnN

), . . . ,Θj|P|(n) + O( 1
lnN

))
dist−−−→
N→∞

(Θ1, . . . ,Θ|P|)

where Θi are are independent identically distributed random variables
with distribution (2.6).

It follows that
SR(δ,N)
n,T

lnN

dist−−−→
N→∞

∑
Θm
ξm

where Θi are independent, dis-

tributed like (2.6), and {ξm} is a Poisson Point Process Cδ on [−1
δ
, 1
δ
]

with density c = 6/π2. In the limit Cδ −−→
δ→0

Cauchy random variable,

see Appendix B. This completes the proof of Theorem 2.1 except for
the formula (2.2) which is proven in the appendix. �

Proof of Theorem 2.2. Theorem 2.2 describes the convergence in
distribution of the (X–valued) random variable

FN(α)(·) :=
1

N
Card

(
1 ≤ n ≤ N : Sn(α,x)

lnN
≤ ·
)

to FΞ as N → ∞, when α is sampled from an absolutely continuous
distribution on T with bounded density. We will assume for simplicity
that the density is constant, the changes needed to treat the general
case are routine and are left to the reader.

Again we claim that it is enough to prove the result with SRn,T replac-
ing Sn. Let ∆n(α) be as above. By step 1, for every ε there are δ and N0

s.t. for all N > N0, P(|∆n(α)| ≥ ε) ≤ ε as (α, n) ∼ U(T×{1, . . . , N}).
By Fubini’s theorem for such N

mes

(
α :

Card(1 ≤ n ≤ N : |∆n(α)| ≥ ε)

N
≥
√
ε

)
≤
√
ε.

It follows that the set of α where the asymptotic distributional behavior
of 1

lnN
SRn,T (α) is different from that of 1

lnN
Sn(α) in the limit N →

∞, δ → 0 has measure zero.
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Thus to prove Theorem 2.2, it is enough to show that

F δN(α)(·) :=
1

N
Card

(
1 ≤ n ≤ N :

SRn,T (α)

lnN
≤ ·
)

converges in law, as N →∞, to an X-valued random variable FδΞ such

that FδΞ
dist−−→
δ→0

FΞ, where FΞ is the cumulative distribution function of

the random variable CΞ defined in (2.7). This is done as before, using
Propositions 3.6 and 3.7. �

4. Proofs of the Key Steps.

4.1. Preliminaries. The following facts are elementary:

Lemma 4.1.

(a) If the harmonic j is not prime and it is associated to the prime
harmonic p, j = rp, then ((jα)) = r((pα)).

(b) For every x ∈ R, 2
π
≤ | sin(πx)|

π‖x‖ ≤
π
2
, and

| sin(πx)| = π‖x‖+O(‖x‖3) as x→ 0.

(c) For every x ∈ R and m,N ∈ N,

m∑
j=1

sin(y + jx) =
cos(y + x/2)− cos(y + (2m+ 1)x/2)

2 sin(x/2)
(4.1)

m∑
j=1

cos(y + 2jx) =
sin(mx) cos((m+ 1)x+ y)

sinx
(4.2)

(d) If α is uniformly distributed on T then for each j 6= 0 jα is also
uniformly distributed on T.

(e) For every 0 < a < 1
2
, mes(α ∈ T : ‖jα‖ < a) = 2a. (mes =Lebesgue)

(f)
∫
T∩[‖jα‖>a]

dα
‖jα‖ = 2 ln

(
1
2a

)
,
∫
T∩[‖jα‖>a]

dα
‖jα‖2 = 2

a
− 1.

Part (e) of Lemma 4.1 implies the following estimates:

(4.3) lim
N→∞

mes
{
α ∈ T : j‖jα‖ > ln−1.1 j for all j ≥ N/ ln10N

}
= 1,

(4.4) lim
N→∞

mes(α ∈ T : j‖jα‖ > ln−2N for all j ≤ 2T ) = 1,

(4.5) lim
N→∞

mes
{
α ∈ T : #

(
j : ‖jα‖ < ln6N

N
, j < 2T

)
≤ ln9N} = 1.
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We prove (4.5), and leave the proofs of (4.3),(4.4) (which are easier)

to the reader. Let F̃N denote the set of α in (4.5), then

F̃ c
N = {α ∈ T :

2T∑
j=1

1
[‖jα‖< ln6 N

N
]
(α) > ln9N}.

By Lemma 4.1(e), the sum has expectation
2N ln2N∑
j=1

2 ln6N
N

. By Markov’s

inequality, mes(F̃ c
N) ≤ 1

ln9N

2N ln2N∑
j=1

2 ln6N
N
−−−→
N→∞

0.

We also observe the following consequnce of (4.2)

(4.6)

∣∣∣∣∣
m∑
j=1

cos(y + 2πmx)

∣∣∣∣∣ ≤ min

(
π

2||x||
,m

)
.

To see that (4.6) is less than π
2||x|| we estimate the numerator of (4.2)

by 1 and the denominator by Lemma 4.1(b). To see that (4.6) is less
than m, note that each term in the LHS is less than 1 in absolute value.

We note that (4.3) is a very special case of Khinchine’s Theorem
on Diophantine approximations (see e.g. [BRV17, Thm 2.3]). This
theorem says that if ϕ : N→ R+ is a function such that

∑
q ϕ(q) <∞,

then for almost every α the inequality

(4.7) ‖qα‖ < ϕ(q)

has only finitely many solutions, while if
∑

q ϕ(q) = ∞ and ϕ is non

increasing then (4.7) has infinitely many solutions.
Next we list some tightness estimates. Recall that a family of real-

valued functions {fn} on a probability space (Ω,F ,P) is called tight, if
for every ε > 0 there is an a > 0 s.t. P(|fn| > a) < ε for all n.

Lemma 4.2. Let α ∼ U(T) then
{

1
N lnN

∑N
j=1

1
‖jα‖

}
N∈N

is tight.

Proof. For every ε > 0,

(4.8) mes

(
α :

N∑
j=1

1

‖jα‖
6=

N∑
j=1

[
1

‖jα‖
1[ε/(4N),1/2] (‖jα‖)

])
≤ ε

2
,

because the event in the brackets equals
⋃N
j=1{α : ‖jα‖ < ε

4N
} up to

measure zero, and mes{α : ‖jα‖ < ε
4N
} = ε

2N
by Lemma 4.2(e).
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On the other hand, one can check using Lemma 4.2(f) that

E

(
N∑
j=1

[
1

‖jα‖
1[ε/(4N),1/2] (‖jα‖)

])
= 2N

(
lnN + ln

2

ε

)
≤ 3N lnN

if N is sufficiently large. Hence by Markov’s inequality

(4.9) P

(
N∑
j=1

[
1

‖jα‖
1[ε/(4N),1/2] (‖jα‖)

]
≥ 6N lnN

ε

)
≤ ε

2
.

Combining (4.8) and (4.9) we see that P
(∑N

j=1
1
‖jα‖ ≥

6N lnN
ε

)
≤ ε. �

Lemma 4.3. Let α ∼ U(T), then the following families of functions
are tight as N →∞ (recall that T := N ln2N):

(a)
1

ln2N

T∑
j=1

1

j‖jα‖
.

(b)
1

(ln lnT )2

T lnβ2 T∑
j=T ln−β1 T

1

j‖jα‖
1[ln−β3 T,lnβ4 T ](j‖jα‖), for every β1, β2, β3, β4.

(c)
1

lnT ln lnT

T∑
j=1

1

j‖jα‖
1[ln−β3 T,lnβ4 T ](j‖jα‖), for every β3, β4.

We omit the proof, because it is similar to the proof of Lemma 4.2.

4.2. Step 1 (Propositions 3.1 and 3.3). The proofs of these Propo-
sitions follow [Bec11] closely, but we decided to give all the details, since
our assumptions are different.

Proof of Proposition 3.1. The starting point is the Fourier series ex-

pansion of h(x) = {x}− 1
2

given in (3.1). Let hT (x) = −
T∑
j=1

sin(2πjx)

πj
.

Summation by parts (see [Bec11, formula (8.6)]) gives us that∣∣∣∣∣
n∑
k=1

h(x+ kα)−
n∑
k=1

hT (x+ kα)

∣∣∣∣∣ ≤ 1

T

n∑
k=1

1

‖kα‖
≤ 1

T

N∑
k=1

1

‖kα‖
.

The last expression converges to 0 in distribution as α ∼ U(T) and
N → ∞, by Lemma 4.2 (recall that T = N ln2N). Thus it suffices to
study the distribution of

(4.10)
n∑
k=1

hT (x+ kα)− 1

N

N∑
n=1

(
n∑
k=1

hT (x+ kα)

)
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as α ∼ U(T) and N →∞.
A direct calculation using Lemma 4.1(c) shows that

(4.10) = Sn,T (α) +
T∑
j=1

fj

where

fj =
1

N

N∑
n=1

gj,n =
sin(2πjx+ 2πjα)− sin(2πjx+ 2π(N + 1)jα)

4πNj sin2(πjα)
,

(cf. [Bec11, Lemma 8.2]).
Observe that by (4.6) there is a universal constant C such that

(4.11) |fj| ≤ C min

(
1

jN‖jα‖2
,

1

j‖jα‖

)
.

Let T := N/ ln10N. By (4.4), with probability close to 1 we have
1/(j‖jα‖) < ln2N for all j ≤ T , so with probability close to 1, all j ≤ T
satisfy ‖jα‖ ∈ [ 1

T ln2N
, 1

2
]. We split

[
1

T ln2N
, 1

2

]
=
[

1
T ln2N

, 1
N

]
∪
[

1
N
, 1

2

]
and apply the bounds in (4.11) to each piece. Thus on

(4.12) FN := {α : ∀j ≤ T, j‖jα‖ > ln−2N}
we have

T∑
j=T+1

|fj| ≤ C
T∑

j=T+1

|f̃j|

where

f̃j =
1[ 1

N
, 1
2

](‖jα‖)
Nj‖jα‖2

+

(1[ 1
T ln2 N

, 1
2

](‖jα‖)
j‖jα‖

−
1[ 1

N
, 1
2

](‖jα‖)
j‖jα‖

)
.

Since by Lemma 4.1(f) Eα
(∑T

j=T+1 f̃j

)
≤ C(ln lnN)2, and by (4.4)

mes(FN) −−−→
N→∞

1 we conclude that
1

lnN

T∑
j=T+1

|fj|
dist−−−→
N→∞

0 as (α, n) ∼

U(T× {1, . . . , N}).

Next, we show that
1

lnT

T∑
j=1

fj
dist−−−→
N→∞

0. By (4.11),
T∑
j=1

|fj| ≤ CBN

with BN =
T∑
j=1

1

Nj‖jα‖2
, so it is enough to show that BN

lnN

dist−−−→
N→∞

0.

Here is the proof. Split BN = B−N +B+
N where the first term contains

the j s.t. j‖jα‖ ≥ δ−1

lnN
, and B+

N contains the j s.t. j‖jα‖ < δ−1

lnN
.
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By Lemma 4.1(f)

Eα
(
B−N
lnN

)
≤ C

(
δT lnN

N lnN

)
= O

(
1

ln10N

)
.

Hence by Markov’s inequality 1
lnN

B−N
dist−−−→
N→∞

0.

Fix ε > 0 and let FN be as in (4.12) above, then (4.4) says that
mes(FN) > 1− ε for all N large enough.

Let R(N) =
{
j ≤ T : δj‖jα‖ lnN ≤ 1

}
. By Lemma 4.1(a)

(4.13) R(N) ⊂
⋃

p∈P(δ,N)

{kp : k ∈ Z, p ∈ P(δ,N), kp ≤ T}.

Given p ∈ P , let

Rp(δ) := {resonant harmonics in R, associated to p}.

(4.13) implies that for some constants C,C

B+
N ≤

∑
p∈P(δ,N)

∑
j∈Rp(δ)

C

Nj‖jα‖2

(Lemma 4.1(a))
=

∑
p∈P(δ,N)

∑
kp∈Rp(δ)

C

Nk3p‖pα‖2

≤
∑

p∈P(δ,N)

C

Np‖pα‖2

(
∞∑
k=1

1

k3

)
≤

∑
p∈P(δ,N)

C

Np‖pα‖2

≤
∑

p∈P(δ,N)

C T

N(p‖pα‖)2

(α∈FN )

≤
∑

p∈P(δ,N)

C T (ln2N)2

N
≤ CCard(P(δ,N))

ln6N
.

By Proposition 3.6, if α is distributed according to a bounded density
on T, then Card(P(δ,N)) converges in law as N →∞ to a Poissonian
random variable. Therefore there is K(ε) so that

mes{α ∈ T : Card(P(δ,N)) ≤ K(ε)} > 1− ε.

It follows that mes{α ∈ T : B+
N ≤ K(ε)C ln−6N} > 1 − 2ε, whence

1
lnN

B+
N

dist−−−→
N→∞

0.

To summarize,

ε̂N := Sn(α, x)−Sn,T (α) =
T∑
j=1

fj+error which tends to 0 in distribution,

and
1

lnN

T∑
j=1

|fj| =
1

lnN

 T∑
j=T+1

|fj|+B−N +B+
N

 dist−−−→
N→∞

0 by the ar-

guments above. �
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Proof of Proposition 3.3. We give the proof assuming that α ∼ U(T).
The modifications needed to deal with absolutely continuous measures
with bounded densities are routine, and are left ot the reader.

Simple algebra gives VON = 1
N

∑
j∈O

N∑
n=1

g2
j,n + 1

N

∑
j1,j2∈O
j1 6=j2

gj1,ngj2,n, where

gj,n = cos((2n+1)πjα+2πjx)
2πj sin(πjα)

. To bound the sum of diagonal terms, we use

that by (4.6) |gj,n| < 1
j‖jα‖ , whence

(4.14)
1

N

∑
j∈O

N∑
n=1

g2
j,n ≤

∑
j∈O

1

N

N∑
n=1

1

j2‖jα‖2
=: Diag(N).

To bound the sum of off-diagonal terms, we first collect terms to get

1

N

∑
j1,j2∈O
j1 6=j2

gj1,ngj2,n =
∑

j1,j2∈O
j1 6=j2

1

4π2j1j2 sin(πj1α) sin(πj2α)
Γ̃j1,j2,N ,

where

Γ̃j1,j2,N :=
1

N

N∑
n=1

cos((2n+ 1)πj1α + 2πjx) cos((2n+ 1)πj2α + 2πjx).

Now the identity cos A+B
2

cos A−B
2

= 1
2
[cosA+ cosB] and (4.6) give

Γ̃j1,j2,N ≤ C
[
min

(
1

N‖(j1−j2)α‖ , 1
)

+ min
(

1
N‖(j1+j2)α‖ , 1

)]
.

This and the estimate j| sin(πjα)| ≥ 2j‖jα‖ (Lemma 4.1(b)) implies
that for some universal constant C

1

N

∑
j1,j2∈O
j1 6=j2

gj1,ngj2,n ≤ C
[
OffDiag−(N) + OffDiag+(N)

]
where

(4.15) OffDiag± :=
∑

j1,j2∈O
j1 6=j2

min
(

1
N‖(j1±j2)α‖ , N‖(j1 ± j2)α‖

)
j1‖j1α‖ · j2‖j2α‖

.

Since min(x, x−1) ≤ 1 for all x, the numerator is bounded by one.
Thus VON ≤ Diag(N)+C[OffDiag−+OffDiag+]. We need the follow-

ing additional decomposition:

(4.16) OffDiag± := OffDiag±i + OffDiag±ii + OffDiag±iii + OffDiag±iv

where

(i) OffDiag−i : sum over the terms s.t. ‖(j1 − j2)α‖ ≥ ln6N
N

;
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(ii) OffDiag−ii : ‖(j1 − j2)α‖ ≤ ln6N
N

, and j1‖j1α‖ ≥ ln10N ;

(iii) OffDiag−iii: ‖(j1 − j2)α‖ ≤ ln6N
N

, and

j1‖j1α‖ ≤ ln10N, j2‖j2α‖ ≥ ln10N ;

(iv) OffDiag−iv: ‖(j1 − j2)α‖ ≤ ln6N
N

,

j1‖j1α‖ ≤ ln10N, j2‖j2α‖ ≤ ln10N.

Similarly for OffDiag+ with ‖(j1 + j2)α‖ instead of ‖(j1 − j2)α‖.
We now have the following upper bound

(4.17) VON ≤ Diag + C
iv∑
k=i

(
OffDiag−k + OffDiag+

k

)
.

For every ε > 0, and for each of the nine summands D1, . . . , D9 above,
we will construct δ0 > 0 and Borel sets A1(ε,N), . . . , A9(ε,N) ⊂ T s.t.
mes[Ai] > 1− ε

9
, and with the following property:

(4.18) ∀0 < δ < δ0, lim
N→∞

(
sup
α∈Ai

Di

ln2N

)
≤ ε

9
.

This will prove the proposition, with EN(ε) :=
9⋂
i=1

Ai.

We begin by recalling some facts on the typical behavior of ‖jα‖ for
α ∼ U(T). Recall that T := N ln2N , and let

E∗N :=

α ∈ T :

(A) ∀j > N
ln10N

, j‖jα‖ > ln−1.1 j
(B) ∀j ≤ 2T, j‖jα‖ > ln−2N

(C) #{1 ≤ j ≤ 2T : ‖jα‖ < ln6N
N
} ≤ ln9N

 .

Then mes(E∗N) −−−→
N→∞

1, by (4.3),(4.4), and (4.5). Most of our sets Ai

will be subsets of E∗N .

The summand Diag =
∑

j∈O
1
N

∑N
n=1

1
j2‖jα‖2 .

Suppose α ∈ E∗N . By the definition of resonant harmonics, for every
j ∈ O either δj‖jα‖ lnN ≥ 1, or N ≤ j ≤ T.
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In the first case, j‖jα‖ ≥ (δ lnN)−1. In the second case, by property
(A) of E∗N , j‖jα‖ > ln−1.1 j ≥ ln−1.1 T . Accordingly,

Eα(Diag · 1E∗N ) ≤

[
N∑
j=1

∫
T

1

j2‖jα‖2
1[j‖jα‖>(δ lnN)−1]dα

+
T∑

j=N+1

∫
T

1

j2‖jα‖2
1[j‖jα‖>ln−1.1 T ]dα

]

≤

[
N∑
j=1

2δj lnN

j2
+

T∑
j=N+1

2j ln1.1 T

j2

]
(by Lemma 4.1(f))

≤ 2δ ln2N + 4 ln1.1N ln lnN.

Let δ0 := ε2/1000, and choose N0 so large that for all N > N0,

mes(E∗N) > 1− ε/9 and 4 ln1.1N ln lnN
ln2N

< ε2/1000. By Markov’s inequal-
ity, for all N > N0 and δ < δ0,

mes{α ∈ E∗N : Diag > ε
9

ln2N} ≤ 2δ ln2N + 4 ln lnN

(ε/9) ln2N
<
ε

9
.

We obtain (4.18) with Di = Diag, Ai := {α ∈ E∗N : Diag ≤ ε
9

ln2N},
and δ0 := ε2/1000. Notice that this Ai depends on ε.

The summand OffDiag−i : This is the part of (4.15) with j1, j2 s.t.

‖(j1 − j2)α‖ ≥ ln6N
N

.

OffDiag−i ≤
∑

j1,j2∈O

1/ ln6N

j1‖j1α‖ · j2‖j2α‖

≤ 1

ln6N

(
T∑
j=1

1

j‖jα‖

)2

=
1

ln2N

(
1

ln2N

T∑
j=1

1

j‖jα‖

)2

.

By Lemma 4.3(a), the term in the brackets is tight: there is a constant

K = K(ε) s.t. for all N , A := {α ∈ T : 1
ln2N

∑T
j=1

1
j‖jα‖ ≤ K} has

measure more than 1− ε
9
.

For all N > exp 4

√
9K2

ε
, for every α ∈ A, 1

ln2N
OffDiag−i ≤ K2

ln4N
< ε

9
,

and we get (4.18) with Ai = A, N0 = exp 4

√
9K2

ε
.

The summand OffDiag−ii : Suppose α ∈ E∗N , and let j2 ∈ O be an
index which appears in OffDiag−ii . Let I(j2) be the set of j1 s.t. (j1, j2)
appear in OffDiag−ii , namely

I(j2) := {j1 ∈ O : ‖(j1 − j2)α‖ ≤ ln6N
N
, j1‖j1α‖ ≥ ln10N}.
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By property (C) in the definition of E∗N (applied to |j1 − j2|), the
cardinality of I(j2) is bounded by 2 ln9N .

Since the numerator in (4.15) is bounded by one, and since in case
(ii) j1‖j1α‖ ≥ ln10N , we have

OffDiag−ii
ln2N

≤ 1

ln2N

T∑
j2=1

1

j2‖j2α‖

 ∑
j1∈I(j2)

1
j1‖j1α‖


≤ 1

ln2N

T∑
j2=1

1

j2‖j2α‖

(
|I(j2)|
ln10N

)
≤ 2

ln3N

T∑
j=1

1

j‖jα‖
=

2

lnN

(
1

ln2N

T∑
j=1

1
j‖jα‖

)
.

The term in the brackets is tight by Lemma 4.3(a), and we can continue
to obtain (4.18) as we did in case (i).

The summand OffDiag−iii: This is similar to OffDiag−ii .

The summand OffDiag−iv: Suppose the pair of indices (j1, j2) appears

in OffDiag−iv: ‖(j1− j2)α‖ ≤ ln6N
N

, j1‖j1α‖ ≤ ln10N , j2‖j2α‖ ≤ ln10N .
Let jmax := max(j1, j2) and jmin := min(j1, j2).

We claim that if α ∈ E∗N , then

ln−2N ≤jmin‖jminα‖ ≤ ln10N ;(4.19)

ln−1.1 T ≤jmax‖jmaxα‖ ≤ ln10N ;(4.20)

jmax ≥
N

ln8N
.(4.21)

Here is the proof. The left side of (4.19) is because jmin ≤ T := N ln2N
by definition of O and by property (B) in the definition of E∗N . The
right side is because we are in case (iv). Let ∆j := jmax − jmin, then
∆j ≤ jmax ≤ T , whence by property (B), ∆j‖(∆j)α‖ > ln−2N . So

∆j > (‖(∆j)α‖ ln2N)−1. In case (iv), ‖(∆j)α‖ ≤ ln6N
N

, so ∆j ≥ N
ln8N

.
Since jmax ≥ ∆j, (4.21) follows. The right side of (4.20) is by the
definition of case (iv). The left side is because of (4.21), property (A)
in the definition of E∗N , and because jmax ≤ T .

We can now see that for every α ∈ E∗N ,

OffDiag−iv(N)

ln2N
≤

2

ln2N

 T∑
j= N

ln8 N

1

j‖jα‖
1[ln−1.1 T≤j‖jα‖≤ln10N ]

( T∑
j=1

1

j‖jα‖
1[ln−2 T≤j‖jα‖≤ln10N ]

)
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≤ 2(ln lnT )3 lnT

ln2N
×

 1

(ln lnT )2

T∑
j= T

ln10 T

1

j‖jα‖
1[ln−1.1 T≤j‖jα‖≤ln10N ]

×
×

(
1

lnT ln lnT

T∑
j=1

1

j‖jα‖
1[ln−2 T≤j‖jα‖≤ln10N ]

)
.

The first term tends to zero (because T = N ln2N), and the second
and third terms are tight by Lemma 4.3(b),(c). We can now proceed
as before to obtain (4.18) for Di = OffDiag−iv.

The summands OffDiag+
k , k = i, . . . , iv: These can be handled in

the same way as OffDiag−k , except that in cases (ii),(iii) and (iv) we
need to apply properties (B) and (C) to j1 +j2 instead of |j1−j2|. This
is legitimate since j1 + j2 ≤ 2T . �

4.3. Step 2 (Proposition 3.5).

Proof of Proposition 3.5. Fix δ > 0 small, α ∈ T \Q, and N � 1, and
set P = P(δ,N),R = R(δ,N). Recall that

Rp(δ) := {resonant harmonics in R, associated to p}.
Then we have the following decomposition for SRn,T/ lnN

(4.22)
SRn,T
lnN

≡ 1

lnN

∑
j∈R

gj,n =
1

lnN

∑
p∈P

∑
kp∈Rp(δ)

cos((kp)tn)

2πkp sin(πkpα)
.

where

(4.23) tn = (2n+ 1)πα + 2πx

To continue, we need the following observations on Rp(δ):

Claim 1: Suppose p ∈ P , and Lp := min(b1
2
δp lnNc, bN ln2N/pc).

For every 1 ≤ k ≤ Lp

(a) kp ∈ Rp(δ) and ((kpα)) = k((pα));
(b) 1

2πkp sin(πkpα)
= 1

p〈〈pα〉〉

(
1

2π2k2
+O (‖pα‖2)

)
.

Proof: Write pα = m+ ((pα)) with m ∈ Z. If j = kp with 1 ≤ k ≤ Lp,
then jα = km+ k((pα)) and, since p is prime resonant,

|k((pα))| = k‖pα‖ ≤ Lp(δp lnN)−1 ≤ 1

2
.

Since α is irrational, this is a strict inequality, whence ((jα)) = k((pα)).
This also shows that jα = km+ ((jα)) whence r := gcd(j, km) = k,

and j is associated to p ≡ j/r. To complete the proof that j ∈ Rp(δ)
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we just need to check that j ≤ N ln2N . This is immediate from the
definition of Lp. This proves (a).

For (b), we write again pα = m + ((pα)) with m ∈ Z and note that
sin(πkpα) = sin(πkm+π((kpα))) = (−1)m sin π((kpα)). We saw above
that if k ≤ Lp, then ((kpα)) = k((pα)). So

sin(πkpα) = (−1)m sin πk((pα)) = (−1)mπk((pα)) +O(k3‖pα‖3).

Note that (−1)m((pα)) = 〈〈pα〉〉 because of the decomposition pα =
m+ ((pα)) above. So sin(πkpα) = πk〈〈pα〉〉+O(k3‖pα‖3). Thus

1

2πkp sin(πkpα)
=

1

2π2k2p〈〈pα〉〉 (1 +O (k2||pα||3))
=

1 +O (k2||pα||3)

2π2k2p〈〈pα〉〉
proving (b).

Claim 2: If p ∈ P and kp ∈ Rp(δ), then 1
2πkp sin(πkpα)

= O
(

1
k2p‖pα‖

)
.

Proof: Write kpα = ` + ((kpα)) with ` ∈ Z. Since p is associated to
kp, gcd(kp, `) = k. We have

‖kpα‖ = |kpα− `| = gcd(kp, `)

∣∣∣∣ kp

gcd(kp, `)
α− `

gcd(kp, `)

∣∣∣∣
= k

∣∣∣∣pα− `

gcd(kp, `)

∣∣∣∣ ≥ k‖pα‖.

In particular, k‖pα‖ ≤ ‖kpα‖ ≤ 1
2
. Therefore ‖kpα‖ = k‖pα‖, and

| sin(πkpα)| � π‖kpα‖ = πk‖pα‖, whence 1
2πkp sin(πkpα)

= O
(

1
k2p‖pα‖

)
.

Claim 3: Suppose p ∈ P , then

{kp : k = 1, . . . , Lp} ⊂ Rp(δ) ⊂
{
kp : k = 1, . . . ,

N ln2N

p

}
.

Proof: The first inclusion is by Claim 1(a), the second is because by
definition, every j ∈ R is less than T = N ln2N .

We now return to (4.22). Claims 2 and 3 say that the inner sum is∑
kp∈Rp(δ)

gkp,n =

Lp∑
k=1

gkp,n+O

 1

p‖pα‖

N ln2N/p∑
k=Lp+1

1

k2

. If Lp = bN ln2N/pc,

then the error term vanishes. If not, then Lp = b1
2
δp lnNc and the er-

ror term can be found by summation to be equal to O
(

1
δp‖pα‖ ·

1
p lnN

)
.

Thus
∑

kp∈Rp(δ) gkp,n =
∑Lp

k=1 gkp,n + O
(

1
p‖pα‖ ·

1
p lnN

)
(where the im-

plied constant is not uniform in δ).
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Applying Claim 1 to
∑Lp

k=1 gkp,n we obtain (recall (4.23))

SRn,T
lnN

=
1

lnN

∑
p∈P

1

p〈〈pα〉〉

(
Lp∑
k=1

(
cos((kp)tn)

2π2k2
+O(‖pα‖2)

)
+O

(
1

p lnN

))

=
1

lnN

∑
p∈P

1

p〈〈pα〉〉

(
Lp∑
k=1

cos((kp)tn)

2π2k2
+O(‖pα‖2Lp) +O

(
1

p lnN

))
.

For p ∈ P , ‖pα‖ < 1
δp lnN

, so ‖pα‖2Lp ≤
1
2
δp lnN

δ2p2 ln2N
= O

(
1

p lnN

)
. Thus

SRn,T
lnN

=
∑
p∈P

1

p〈〈pα〉〉 lnN

(
Lp∑
k=1

cos((kp)tn)

2π2k2
+O

(
1

p lnN

))
.

Every p ∈ P satisfies p ≤ N . So Lp ≥ min(b1
2
δp lnNc, bln2Nc), whence

∞∑
k=Lp+1

cos((kp)tn)

2π2k2
= O

(
1

p lnN

)
. So

SRn,T
lnN

=
∑
p∈P

1

p〈〈pα〉〉 lnN

(
∞∑
k=1

cos(k(ptn))

2π2k2
+O

(
1

lnN

))
.

This is equation (3.3). �

4.4. Step 3 (Proposition 3.7).

Proof of Proposition 3.7. We carry out the proof assuming α ∼ U(T),
and the leave the routine modifications needed to treat the general case
to the reader. Fix an integer r > 1 and a small real number ε > 0.

Claim 1: There exist δ > 0, N0 ≥ 1 s.t. for all N > N0, Ω(N, δ, r) :=
{α ∈ T : |P(δ,N)| ≥ r} has measure bigger than 1− ε.
Proof: Proposition 3.6 says that {j〈〈jα〉〉 lnN : j ∈ P(δ,N)} converges
as a point process to a Poisson point process with density 6

π2 on [−1
δ
, 1
δ
].

So #P(δ,N)
dist−−−→
N→∞

Poisson distribution with expectation 12
π2δ

. If we

choose δ small enough, the probability that this random variable is less
than 2r is smaller than ε

2
. So the claim holds with some N0.

Let µα,r,N := 1
N

∑N
n=1 δ(j1tn,...,jrtn) where tn = (2n + 1)πα + 2πx (see

(4.23)) and fix some weak-star open neighborhood V of the normalized
uniform Lebesgue on [0, 2]r. We will construct NV s.t. for all N ≥ NV,

mes (α ∈ Ω(N, δ, r) : µα,r,N ∈ V) > 1− 2ε

where jk := jk(α, δ,N) enumerate P(δ,N) as in Proposition 3.7.
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Without loss of generality, V =
⋂ν0
ν=1{µ : |

∫
[0,2]r

fνdµ| < ε} where

ε > 0, ν0 ∈ N, and fν(x1, . . . , xr) = eiπ
∑r
k=1 l

(ν)
k xk , where

l(ν) := (l
(ν)
1 , . . . , l(ν)

r ) ∈ Zr \ {0} (1 ≤ ν ≤ ν0).

This is because any weak star open neighborhood of Lebesgue’s mea-
sure on [0, 2]r contains a neighborhood of this form. Let

Lν := Lν(α, δ,N) :=
r∑

k=1

l
(ν)
k jk.

Claim 2: mes (α ∈ Ω(N, δ, r) : Lν = 0 for some 1 ≤ ν ≤ ν0) −−−→
N→∞

0.

Proof. Proposition 3.6 says that the sequence jk is superlacunary in
the sense that for each R

(4.24) mes

(
α : ∀1 ≤ k′ < k′′ ≤ r :

max(jk′ , jk′′)

min(jk′ , jk′′)
≥ R

)
−−−→
N→∞

1.

To see this recall that the gaps between neighboring points of a Poisson
process have an exponential distribution, therefore for any ε there exists
δ such that the gaps between ln jk′ and ln jk′′ are, with probability 1−ε,
bounded below by δ lnN.

Let k∗ν = arg max(jk : l
(ν)
k 6= 0). Applying (4.24) with

R = Rν := 2(r − 1)
∑
k

|l(ν)
k |

we see that for all N large enough, with almost full probability, jk∗ν ≥
2
∑
k 6=k∗
|l(ν)
k jk|, whence Lν 6= 0. This proves the claim.

Notice that this argument also shows that with almost full probabil-

ity, |Lν | ≤ 2l
(ν)
k∗ jk∗ν .

Claim 3: mes
(
α ∈ Ω(N, δ, r) : ∃ν ≤ ν0 s.t. ‖Lνα/2‖ ≤ lnN

N

)
−−−→
N→∞

0.

Proof. By Proposition 3.6, { ln j
lnN

: j ∈ P(δ,N)} converges as a point

process to a Poisson point process with intensity 12
π2δ

on [0, 1], therefore

mes
(
α ∈ Ω(N, δ, r) : jk∗ν >

N
ln4N

)
≤ mes

(
α ∈ T : ∃j ∈ P(δ,N) s.t. ln j

lnN
> 1− 4 ln lnN

lnN

)
−−−→
N→∞

0.

Therefore for allN large enough, with almost full probability in Ω(N, δ, r),
jk∗ν ≤ N/ ln4N , whence (for N large enough) also

1 ≤ |Lν | ≤ 2lk∗νjk∗ν <
N

ln4N
max
ν
‖l(ν)‖∞ <

N

ln3N
.
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A simple modification of (4.4) gives

mes(α ∈ T : j‖jα/2‖ > ln−2N for all 1 ≤ j ≤ N) −−−→
N→∞

1.

It follows that for all N large enough, with almost full probability in
Ω(N, δ, r), Lν‖Lνα/2‖ > 1/ ln2N , whence

‖Lνα/2‖ >
1

Lν ln2N
>

1
N

ln3N
· ln2N

=
lnN

N
,

proving the claim.

Fix NV s.t. for every N > NV, for each 1 ≤ ν ≤ ν0, ‖Lνα/2‖ >
lnN/N with almost full probability in Ω(N, δ, r). Make NV so large
that 1

lnNV
< ε. Then for every N > NV∣∣∣∣∫ fνdµα,r,N

∣∣∣∣ =
1

N

∣∣∣∣∣
N∑
n=1

eπiLν(α(2n+1)+2x)

∣∣∣∣∣ ≤ 1

N

2

|1− e2πiLνα|

=
1

N‖Lα/2‖
≤ 1

N · lnN
N

=
1

lnN
< ε,

whence µα,r,N ∈ V as required. �

Appendix A. Proof of proposition 1.1

Suppose f : T → R is differentiable on T \ {x1, . . . , xN}, and f ′

extends to a function of bounded variation on T. Since f ′ has bounded
variation, f ′ is bounded. So f is Lipschitz between its singularities. It
follows that L−i := lim

t→x−i
f(t), L+

i := lim
t→x+i

f(t) exist for each i.

Let ϕ(t) := f(t)−
∑N

i=1(L+
i −L−i )h(t+ x1)−

∫
T f(s)ds. It is easy to

see that ϕ|T\{x1,...,xN} extends to a continuous function ψ on T s.t.

ψ(t) = f(t)−
N∑
i=1

(L+
i − L−i )h(t+ x1)−

∫
T
f(s)ds

for every t ∈ T \ {x1, . . . , xN}. (But maybe the identity breaks at xi.)
By construction, ψ ∈ C(T) and ψ′|T\{x1,...,xN} = f ′|T\{x1,...,xN} extends

to a function with bounded variation on T.
Expand ψ to a Fourier series: ψ(x) =

∑
k∈Z−0

ake
2πikx.Our assumptions

imply ak = O(k−2). A formal solution of ψ = κα − κα ◦Rα gives

κα(x) ∼
∑

k∈Z\{0}

bk,αe
2πikx, where bk,α =

ak
1− e2πikα

.
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We claim that for a.e. α,
∑
k

|bk,α| <∞ so that κα is a well-defined

continuous function. Indeed bk,α = O
(
|ak|
||kα||

)
= O

(
1

k2||kα||

)
so it suf-

fices to check that
∞∑
k=1

1

k2||kα||
converges for a.e. α.

By Khinchine theorem for a.e. α we have ||kα|| > k−1.1 for all large

k, so
∞∑
k=1

1

k2||kα||
converges for a.e. α iff

∞∑
k=1

1

k2||kα||
1[||kα||>k−1.1]

converges for a.e. α. This is indeed the case, because∫
T

∞∑
k=1

1

k2||kα||
1[||kα||>k−1.1]dα =

∑ 1

k2
· 2 ln

(
k1.1

2

)
<∞. �

Appendix B. Cauchy and Poisson.

Let Ξ = {ξn} be a Poisson process on R with intensity c and let Θn

be i.i.d bounded random variables with zero mean independent of Ξ.
Note that the set of pairs {(ξm,Θm)} forms a marked Poisson process

on R × R (see [LP, Section 5.3] for background on marked Poisson
processes). Accordingly one can apply the exponential formula for
marked Poisson processes ([LP, page 42]) which says that if u is a
bounded continuous function on [L1, L2]× R and t ∈ R then

(B.1) E

exp
∑

ξm∈[L1,L2]

tu(ξm,Θm)

 =

exp

[
c

∫ L2

L1

EΘ

(
etu(y,Θ) − 1

)
dy

]
.

Note that computing the first and second derivative of (B.1) with re-
spect to t at t = 0 we obtain

(B.2) E

 ∑
ξm∈[L1,L2]

u(ξm,Θm)

 = c

∫ L2

L1

EΘ (u(y,Θ)) dy

(B.3) E

 ∑
ξm∈[L1,L2]

u2(ξm,Θm)

 = c

∫ L2

L1

EΘ

(
u2(y,Θ)

)
dy
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Now consider

YL =
∑
|ξn|<L

Θn

ξn
.

Our goal is to compute the distributional limit of YL as L→∞. Rewrite

YL =
∑
ξ∗n<L

Θ∗n
ξ∗n

where ξ∗n = |ξn|, Θ∗n = |ξn|
ξn

Θn. Note that {ξ∗n} is a Poisson

process on R+ with intensity 2c, |Θ∗n| = |Θn| and the distribution of Θ∗

is symmetric. Let F be the distribution function of Θ∗ and ϕ(t) be its
characteristic function. Note that ϕ is real, namely, ϕ(t) = E(cos(tΘ∗))
because Θ∗ is symmetric. Let ΦL(t) be the characteristic function of
YL. Applying (B.1) with uε(ξ,Θ) = i Θ

max(ξ,ε)
and letting ε to 0 we

obtain

ΦL(t) = exp

[
2c

∫ L

0

(ϕ(t/y)− 1) dy

]
.

where the factor 2 appears because the intensity of {ξ∗m} is 2c.
Introducing x = 1/y, δ = 1/L we can rewrite this expression as

ΦL(t) = exp

[
2c

∫ ∞
δ

ϕ(xt)− 1

x2
dx

]
.

The integral in the above expression equals to

Rδ(t) =

∫ ∞
δ

∫ K

−K

cos(xtθ)− 1

x2
dxdF (θ)

where K = ||Θ||∞. Using that the cosine function is even we obtain∫ ∞
δ

cos(xtθ)− 1

x2
dx = |tθ|

∫ ∞
δ|tθ|

cos(x)− 1

x2
dx

= |tθ|
∫ ∞

0

cos(x)− 1

x2
dx+O (δtθ) = −π|t||θ|

2
+O (δtθ) .

Integrating with respect to θ and using that E(|Θ∗|) = E(|Θ|) we see
that

lim
δ→0

Rδ(t) = −π|t|
2

E(|Θ|).

Hence
lim
L→∞

ΦL(t) = exp (−cπ|t|E(|Θ|)) .

It follows that YL converges as L→∞ to ρ2C where

(B.4) ρ2 = cπE(|Θ|)
and C is the standard Cauchy distribution with density 1

π(1+x2)
.

In particular, for Θ defined by (2.4) it follows from (2.5) that
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(B.5) E(|Θ|) =
1

2

∫ 1

0

∣∣∣∣θ2 − θ +
1

6

∣∣∣∣ dθ =
1

18
√

3
.

Combining (B.4), (2.8) and (B.5) we get (2.2).
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[Bec10] József Beck. Randomness of the square root of 2 and the giant leap,
Part 1. Period. Math. Hungar., 60(2):137–242, 2010.
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