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Abstract

We survey examples of dynamical systems on non–compact spaces which exhibit
measure rigidity on the level of infinite invariant measures in one or more of
the following ways: all locally finite ergodic invariant measures can be described;
exactly one (up to scaling) admits a generalized law of large numbers; the generic
points can be specified. The examples are horocycle flows on hyperbolic surfaces
of infinite genus, and certain skew products over irrational rotations and adic
transformations. In all cases, the locally finite ergodic invariant measures are
Maharam measures.
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1. Introduction

1.1. Motivation. A continuous map T on a compact metric space Ω0 is
called uniquely ergodic if it has exactly one invariant probability measure. It
is natural to ask what is the right notion of “unique ergodicity” for maps on
non–compact spaces whose invariant measures are all infinite. The question is
not what is possible, but rather what happens for “natural” examples.

Following a program initiated in [ANSS], we studied the measure rigidity of
non–compact analogues of classical uniquely ergodic systems. The systems we
studied include horocycle flows on surfaces of infinite genus, and non–compact
group extensions of irrational rotations and adic transformations. The purpose
of this lecture is to present our findings, and indicate some open problems.

This work grew out of the vision of Jon Aaronson, and it is with great
pleasure that I dedidate this paper to him, on the occasion of his birthday.
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1.2. Basic Definitions. Let T be a measurable map on a measurable
space (Ω,B), and suppose µ is a σ–finite measure on (Ω,B) s.t. µ(Ω) 6= 0.
We say that µ is invariant, if µ(T−1E) = µ(E) for all E ∈ B. We say that
µ is ergodic, if for every set E ∈ B s.t. T−1(E) = E, either µ(E) = 0 or
µ(Ω \ E) = 0.

We say that µ is conservative, if for every W ∈ B s.t. {T−n(W )}n≥0 are
pairwise disjoint, µ(W ) = 0. This condition is always satisfied in the following
cases: (1) µ is a finite invariant measure; and (2) µ is σ–finite non–atomic
ergodic invariant measure and T is a bimeasurable bijection [A1].

The ergodic theorems describe the information such measures contain on
the almost sure behavior of orbits {T kω}k≥0 (T k := T ◦ · · · ◦ T , k times):

Theorem 1.1 (Birkhoff). Let µ be a finite ergodic invariant measure for

T : Ω → Ω, then for every f ∈ L1(Ω,B, µ), 1
N

∑N
k=1 f(T

kω) −−−−→
N→∞

1
µ(Ω)

∫
Ω

fdµ µ–a.e.

Theorem 1.2 (Hopf). Suppose µ is a σ–finite conservative ergodic invariant
measure, then for every f, g ∈ L1(Ω,B, µ) s.t. g ≥ 0 and

∫
Ω
gdµ > 0,

∑N
k=1 f(T

kω)
∑N

k=1 g(T
kω)

−−−−→
N→∞

∫
Ω
fdµ∫

Ω
gdµ

for µ–almost every ω.

Specializing to the case when f and g are indicator functions of sets F , G of
positive finite measure, we see that if µ(Ω) = ∞ then the frequency of visits of
Tn(ω) to F and G tends to zero, but the ratio of these frequencies tends to a
definite limit.

The limit depends on µ, although it is the same for proportional measures.
It is therefore of great interest to know what are the possible ergodic invariant
measures up to scaling. To avoid pathologies (cf. [Sch2]), we restrict our at-
tention to measures which are locally finite in some sense which we now make
precise.

The following set-up is not the most general possible, but suffices for our
purposes. Suppose Ω0 is a locally compact second countable metric space with
Borel σ–algebra B0. Let Cc(Ω0) := {f : Ω0 → R : f continuous with compact
support}. A Borel measure µ on Ω0 is called a Radon measure, if µ(C) < ∞
for every compact set C ⊂ Ω0. Equivalently, every f ∈ Cc(Ω0) is absolutely
integrable.

In §14 we will need to deal with Borel maps T which are only defined on a
subset Ω ⊆ Ω0, Ω ∈ B0. Let B := {E∩Ω : E ∈ B0}. A measure µ on (Ω,B) is
called locally finite, if µ0(E) := µ(E ∩Ω) is a Radon measure on Ω0. If Ω = Ω0,
then the properties of being Radon and being locally finite are the same.

Theorems 1.1 and 1.2 are almost sure statements. It is interesting to know
what are their points of validity.
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Definition 1.1. A point ω ∈ Ω is called generic for µ if

1. µ(Ω) < ∞ and for all f ∈ Cc(Ω0),
1
N

∑N
k=1 f(T

kω) −−−−→
N→∞

1
µ(Ω)

∫
Ω
fdµ;

or

2. µ(Ω) = ∞, and for all f, g ∈ Cc(Ω0) such that g ≥ 0 and
∫
gdµ > 0,

∑N
k=1 f(T

kω)
∑N

k=1 g(T
kω)

−−−−→
N→∞

∫
Ω
fdµ∫

Ω
gdµ

.

Our assumptions on Ω0 and Hopf’s theorem guarantee that the set of generic
points of a locally finite conservative ergodic invariant measure µ has full µ–
measure.

Similar definitions can be made for flows. A Borel flow ϕ : Ω → Ω is a group
of maps ϕt : Ω → Ω (t ∈ R) such that (t, ω) 7→ ϕt(ω) is Borel, and ϕt◦ϕs = ϕt+s

(t, s ∈ R). A Borel measure is called ϕ–invariant, if it is ϕt–invariant for all t.
A Borel measure is called ϕ–ergodic, if any Borel set E s.t. ϕ−t(E) = E for all
t satisfies µ(E) = 0 or µ(Ω \ E) = 0. A point is called generic for a flow, if it

satisfies definition 1.1 with
∫ N

0
h(ϕsω)ds replacing

∑N
k=1 h(T

kω) (h = f, g).

1.3. Measure Rigidity. Let T be a Borel map on a Borel subset Ω of
a second countable locally compact metric space Ω0. We are interested in the
following problems:

1. Find all locally finite T–ergodic invariant measures;

2. Describe their generic points;

3. If there are many measures, find an ergodic theoretic property which
singles out just one (up to scaling).

If one or more of these questions can be answered, then we speak (somewhat
unorthodoxly) of “measurable rigidity”. The strongest form of measure rigidity
is unique ergodicity:

Definition 1.2. T is uniquely ergodic (u.e.) if (1) T admits one locally finite
invariant measure up to scaling; and (2) every point is generic for this measure.1

It is useful to weaken this as follows. Let δy denote the point mass at y. A point
ω is called exceptional for a map T (resp. a flow ϕ) if the measure

∑
n>0 δTn(ω)

(resp.
∫∞

0
δϕs(ω)ds) is locally finite.

Definition 1.3. T is uniquely ergodic in the broad sense if (1) up to scal-
ing, T admits one locally finite ergodic invariant measure not supported on a

1Usually unique ergodicity is only defined for continuous maps on compact metric spaces.
In this case the unique invariant measure is finite, and (1) implies (2).
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single orbit; and (2) every non–exceptional non–periodic point is generic for
this measure.

See theorems 2.3 and 2.5 for examples.
Interestingly enough, in the non–compact case there is a large collection

of “natural” examples which exhibit a different, more subtle, form of measure
rigidity. For these dynamical systems:

• There are no finite invariant measures at all, except perhaps measures
supported on periodic orbits;

• There are infinitely many locally finite ergodic invariant measures, all of
which can be specified;

• In some cases we know what are the generic points of these measures;

• In some cases we are able show that exactly one of these measures up to
scaling admits a generalized law of large numbers (cf. §10).

The purpose of this paper is to describe these examples.

2. Horocycle Flows

2.1. Definition. Let M be a complete, connected, orientable hyperbolic
surface. Let T 1M be its unit tangent bundle. The geodesic flow is the flow
g : T 1M → T 1M which moves a unit tangent vector, at unit speed, along its
geodesic. The Horocycle of a vector ω ∈ T 1M is the set

Hor(ω) := {ω′ ∈ T 1M : dist(gsω, gsω′) −−−→
s→∞

0}. (2.1)

We shall soon see that this is a smooth curve in T 1M . The horocycle flow of
M is the flow h : T 1M → T 1M which moves ω ∈ T 1M at unit speed along
Hor(ω) in the positive direction.2

It is useful to consider the case when M = H := {x+ iy : x, y ∈ R, y > 0},
equipped with the metric

√
dx2 + dy2/y. Poincaré’s Theorem ([Kat], chapter

1), says that the orientation preserving isometries of H are Möbius transforma-
tions z 7→ az+b

cz+d where a, b, c, d are real. We denote the collection of these maps

by Möb(H). Möb(H) acts transitively on T 1H: for every ω1, ω2 ∈ T 1H there
exists ϕ ∈ Möb(H) s.t. ϕ∗(ω1) = ω2. Schwarz’s Lemma says that ϕ is unique.

Let ω0 denote the unit tangent vector based at i and pointing north. It is
easy to see that the geodesic flow moves ω0 along the vertical ray it determines.
Since every ω ∈ T 1H can be mapped by an element of Möb(H) to ω0, and since

2Sometimes h is called the stable horocycle flow. The unstable horocycle flow is defined in
the same way, except that one takes the limit s → −∞ in (2.1).
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isometries map geodesics to geodesics, every geodesic is either a circular arc
perpendicular to ∂H := {z : Im z = 0}, or a vertical line.

One can check in a similar way that Hor(ω0) consists of the unit tangent
vectors based on the line Im z = 1 and pointing north. Since the hyperbolic
metric agrees with the euclidean metric on the line Im z = 1,

ht(ω0) = (ψt)∗ω0, where ψt : z 7→ z + t.

For general vectors ω ∈ T 1H, let ϕω be the unique element of Möb(H) s.t.
ω = (ϕω)∗ω0, then Hor(ω) = (ϕω)∗[Hor(ω0)] and

ht(ω) = (ϕω ◦ ψt)∗ω0. (2.2)

The Möbius transformation ϕω maps the line Im z = 1 onto a circle C which
is tangent to ∂H (possibly at ∞). Hor(ω) consists of the unit tangent vectors
based at C, perperndicular to C, and pointing in the direction of the tangency
point.

There is a useful algebraic description of h. The elements of Möb(H) are
parametrized by the elements of

PSL(2,R) :=

{(
a b
c d

)
: a, b, c, d ∈ R, ad− bc = 1

}
/

{
±
(

1 0
0 1

)}
.

We see that the map ω 7→ coefficient matrix of ϕω is bijection T 1H →
PSL(2,R). Applying this identification to (2.2), we obtain a conjugacy between
the horocycle flow on T 1H and the matrix flow h : PSL(2,R) → PSL(2,R)

ht :

(
a b
c d

)
7→
(
a b
c d

)(
1 t
0 1

)
.

This extends to other hyperbolic surfaces. The Killing–Hopf Theorem says
that any complete orientable connected hyperbolic surfaceM is isometric to an
orbit space Γ \H, where Γ is a discrete subgroup of Möb(H) without elements
of finite order (“torsion free”). Γ is called a uniform lattice if Γ \H is compact,
a lattice if Γ\H has finite area, and geometrically finite if Γ\H has finite genus.
Every uniform lattice is a lattice, and every lattice is geometrically finite [Kat].

The identifications T 1H ' Möb(H) ' PSL(2,R) turn the horocycle flow on
T 1M into the matrix flow h : Γ \ PSL(2,R) → Γ \ PSL(2,R)

ht : Γ

(
a b
c d

)
7→ Γ

(
a b
c d

)(
1 t
0 1

)
.

Let m0 denote the Riemannian volume measure on T 1M . We can use the
algebraic representation of h to relatem0 to the Haar measure of PSL(2,R), and
to deduce its h–invariance. It is enough to treat the case M = H, the general
case follows from the representation M = Γ \ H. The identification ω 7→the
coefficient matrix of ϕω conjugates the action of Möb(H) on T 1H to the action
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of PSL(2,R) on itself by multiplication on the left. Isometries preserve volume,
so m0 must be mapped to the left Haar measure on PSL(2,R). PSL(2,R) is
unimodular: its left Haar measure is invariant under multiplication on the right.
Since h acts by multiplication on the right, m0 is h–invariant.

Theorem 2.1 (Kaimanovich). m0 is h–ergodic iff every bounded harmonic
function on M is constant (“Liouville property”).

This is in [Kai] (see also [Su], part II).

2.2. Horocycle flows on hyperbolic surfaces with finite
genus. Henceforth, unless stated otherwise, a “hyperbolic surface” means
Γ \H, where Γ is a discrete torsion free subgroup of Möb(H).

Recall the following chain of inclusions for hyperbolic surfaces [Kat]: com-
pact ⊂ finite area ⊂ finite genus. The study of measure rigidity for horocycle
flows starts with the following fundamental result [F1]:

Theorem 2.2 (Furstenberg). If M is compact, then h : T 1M → T 1M is
uniquely ergodic. The invariant measure is, up to scaling, m0.

A non–compact hyperbolic surface of finite area has “cusps” (Fig. 1a): pieces
which are isometric to C := 〈z 7→ z + 1〉 \ {z ∈ H : Im z ≥ a} (where a > 0).
Cusps contain periodic horocycles. In fact any unit tangent vector ω ∈ T 1C
which points north is h–periodic, and the Lebesgue measure on its orbit is
a finite invariant measure. It follows that the horocycle flow is not uniquely
ergodic. But it is uniquely ergodic in the broad sense:

Theorem 2.3 (Dani–Smillie). Suppose M is a hyperbolic surface of finite area.

1. The ergodic invariant Radon measures are up to scaling the volume mea-
sure m0, and the measures supported on periodic horocycles.

2. Every ω ∈ T 1M whose horocycle is not periodic is generic for m0.

Part 1 is in [Da], part 2 is in [DS].
We see that in the finite area case all invariant measures are finite. For

infinite area surfaces there are no finite invariant measures at all, other than
measures supported on periodic horocycles (Ratner [Rat1]). We discuss the
finite genus case. To avoid trivial exceptions we always assume that the area is
infinite, and we only consider non–elementary surfaces, i.e. surfaces M = Γ \H
for which Γ is not generated by a single element.

Such surfaces have “funnels”. These are subsets which are isometric to F :=
〈z 7→ λz〉 \ {z ∈ H : Re z ≥ 0}, where λ > 1 (Fig. 1a). Funnels contain
exceptional orbits: if the geodesic of ω ∈ T 1F tends to some p ∈ {z ∈ ∂H :
Re z > 0}, then

∫∞

0
δhtωdt is a Radon measure. The Radon property is because

the horocycle eventually enters one fundamental domain of 〈z 7→ λz〉 and stays
there without accumulating anywhere.
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The set of exceptional ω’s constructed above is an h invariant set of positive
volume. Its complement also has positive volume. It follows that m0 is not
ergodic.

There does exist an h–ergodic invariant Radon measure µ which gives any
single orbit measure zero [Bu]. We describe it.

It is convenient to work in the unit disc model D := {z ∈ C : |z| < 1}
together with the metric 2

√
dx2 + dy2/(1 − x2 − y2). The map ϑ : H → D,

ϑ(z) = i−z
i+z is an isometry from H to D. It can be used to represent M in the

form ΓD \Möb(D), where ΓD = ϑΓϑ−1. We abuse notation and write Γ = ΓD.
T 1(D) can be identified with ∂D× R× R via (eiθ, s, t) ↔ (ht ◦ gs)(ω(eiθ)),

where h is the horocycle flow, g is the geodesic flow, and ω(eiθ) is the element of
T 1(D) based at the origin, and pointing at eiθ. (These are “KAN–coordinates”
for T 1(D) ∼= T 1H ∼= PSL(2,R).) In these coordinates, Γ acts by

ϕ∗ : (eiθ, s, t) 7→ (ϕ(eiθ), s− log |ϕ′(eiθ)|, t+ a(ϕ, eiθ, s)) (ϕ ∈ Γ) (2.3)

where a(ϕ, eiθ, s) is some function which does not depend on t. The horocycle
flow is just the linear translation on the t–coordinate.

We continue to assume that M = Γ \ D is non–elementary, and let Λ(Γ)
denote the limit set of Γ, equal by definition to ∂D ∩ {Γz} for some (hence all
[Kat]) z ∈ D. Let δ(Γ) denote the critical exponent of Γ, equal by definition to
the infimum of all δ s.t.

∑
ϕ∈Γ exp[−δ dist(z, ϕ(z))] < ∞. The following is in

[Pat]:

Theorem 2.4 (Patterson). There exists a probability measure ν on Λ(Γ) ⊆ ∂D
such that dν◦ϕ

dν = |ϕ′|δ(Γ) for all ϕ ∈ Γ.

One can now use (2.3) to verify by direct calculation that

dµ(eiθ, s, t) := eδ(Γ)sdν(eiθ)dsdt (2.4)

is a Γ–invariant h–invariant measure on T 1D. Γ–invariance means that µ de-
scends to an h–invariant Radon measure on T 1M . We call the resulting measure
the Burger measure. It is an infinite Radon measure. The following theorem im-
plies, through the ergodic decomposition, that it is ergodic.

Theorem 2.5 (Burger – Roblin). Suppose M = Γ \ H is a non–elementary
hyperbolic surface with finite genus and infinite area. The h–ergodic invariant
Radon measures are up to scaling

1. The Burger measure;

2. Infinite measures carried by horocycles of unit tangent vectors whose for-
ward geodesics escape to infinity through a funnel;

3. Finite measures carried by periodic horocycles whose forward geodesics
escape to infinity through a cusp.
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-1 0 1 2

(a) (c)

(b)

(d) (e)

Figure 1. (a) A cusp, a funnel, and a handle; (b) A “pair of pants”; (c) A Z–cover with
its Z–coordinates; (d) An F2–cover of a compact surface; (e) A pants decomposition
of a tame surface

The theorem was proved by Burger under the additional assumption that
δ(Γ) > 1

2 and that M has no cusps [Bu]. The general case was done by Roblin
[Ro], who also discusses extensions to variable negative curvature.

Theorem 2.6 (Schapira). Suppose M is a hyperbolic surface of finite genus
and infinite area, and let ω ∈ T 1M . Either ω is h–periodic, or ω is exceptional,
or ω is generic for the Burger measure.

For a characterization of the generic ω ∈ T 1M in terms of the endpoints of
their geodesics, see [Scha1], [Scha2]. For other equidistribution results which
involve Burger’s measure, see [Oh].

Together, theorems 2.5 and 2.6 say that the horocycle flow on a complete
connected orientable hyperbolic surface of finite genus is uniquely ergodic in
the broad sense.

2.3. Invariant measures in infinite genus. Horocycle flows on
hyperbolic surfaces of infinite genus are not always uniquely ergodic in the
broad sense, as was first discovered by Babillot and Ledrappier.

Their examples are Zd–covers of compact hyperbolic surfaces [BL] (Fig. 1c).
These are the surfaces of the form M = Γ\H, where Γ is a normal subgroup of
a uniform lattice Γ0 s.t. Γ0/Γ ' Zd. Topologically, M is a regular cover of the
compact surface M0 = Γ0 \D, with covering map p(Γg) = Γ0g. The covering
group

Cov(p) := {D :M →M : D is a homeomorphism s.t. p ◦D = p}

is isomorphic to Zd.
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The elements of Cov(p) are called “deck transformations”. They are isome-
tries, and they take the form Γz 7→ Γg0z (g0 ∈ Γ0). We parametrize the deck
transformations by Dξ (ξ ∈ Zd) in such a way that Dξ+η = Dξ ◦Dη. The deck

transformations act on T 1M by their differentials. Abusing notation, we denote
this action again by Dξ.

Theorem 2.7 (Babillot & Ledrappier). For each a ∈ Rd there exists up to
scaling a unique h–ergodic invariant Radon measure ma s.t. ma◦Dξ = e〈a,ξ〉ma

(ξ ∈ Zd).

The parameter a = 0 corresponds to m0, the measure induced by the Haar
measure. The measures ma with a 6= 0 are singular. Each is infinite, globally
supported, and quasi–invariant under the geodesic flow g : T 1M → T 1M : ∃c(a)
s.t.ma◦gs = ec(a)sm. For a related result on nilpotent regular covers of compact
hyperbolic surfaces, see Babillot [Ba].

Theorem 2.8 (S.). Every h–ergodic invariant Radon measure is proportional
to ma for some a.

See [Sa2]. Notice that although there is more than one non–trivial ergodic
invariant Radon measure, the collection of these measures is still small enough
to be completely described.

Babillot noticed a striking similarity between the list {ma : a ∈ Rd}, and
the list of minimal positive eigenfunctions of the Laplacian on M [Ba]. Some
definitions:

• The hyperbolic Laplacian of H is a second order differential operator on
C2(H) s.t. ∆H(f ◦ ϕ) = (∆Hf) ◦ ϕ for all ϕ ∈ Möb(H). This determines

∆H up to a constant. With a particular choice of constant, ∆H = y2( ∂2

∂x2 +
∂2

∂y2 ).

• The hyperbolic laplacian of M = Γ\H is (∆Mf)(Γz) := (∆Hf̃)(z) where

f̃(z) := f(Γz). The definition is proper, because of the commutation
relation between ∆H and Möb(H).

• The positive λ–eigenfunctions of ∆M are the positive F ∈ C2(M) for
which ∆MF = λF . (We allow infinite L2 norm.) We say that F is min-
imal, if ∆MG = λG, 0 ≤ G ≤ F ⇒ ∃c s.t. G = cF . The minimal
positive λ–eigenfunctions are the extremal rays of the cone of positive
λ–eigenfunctions.

The minimal positive eigenfunctions of the Laplacian on a Zd–cover of a com-
pact hyperbolic surface can be parametrized, up to scaling, by {Fa : a ∈ Rd},
where Fa ◦ Dξ = e〈a,ξ〉Fa (ξ ∈ Zd) (see [LP] and references therein). The
similarity with the list of ergodic invariant Radon measures is obvious.

Motivated by this observation and Sullivan’s work on the geodesic flow,
Babillot proposed a method for getting invariant Radon measures out of positive
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eigenfunctions, and conjectured that at least in some cases her method provides
a bijection between the two collections. We describe Babillot’s construction.

Again, it is convenient to represent M = Γ\D, where Γ is a discrete torsion
free subgroup of Möb(D). The hyperbolic laplacian on D is ∆Df := [∆H(f ◦
ϑ)] ◦ϑ−1, where ϑ : H → D is the isometry z 7→ i−z

i+z . The reader can check that

∆D commutes with Möb(D), and that ∆D = 1
4 (1− |z|2)2( ∂2

∂x2 + ∂2

∂y2 ).
Any positive eigenfunction of ∆M lifts to a Γ–invariant positive eigenfunc-

tion of ∆D. Any positive eigenfunction of ∆D can be represented in the form

F (z) =

∫

∂D

P (eiθ, z)αdνF (e
iθ),

where ν is a finite positive measure on ∂D, P (eiθ, z) = (1 − |z|2)/|eiθ − z|2 is
Poisson’s kernel, and α ≥ 1/2 (Karpelevich [Kar], see also [GJT]). If δ(Γ) ≥ 1

2 ,
then this representation is unique, and the Γ–invariance of F translates to the
following condition on ν:

dνF ◦ ϕ
dνF

= |ϕ′|α for all ϕ ∈ Γ.

Comparing this with (2.3), we see that the measure

dmF = eαsdνF (e
iθ)dsdt (2.5)

is a Γ–invariant, h–invariant measure on T 1(D). Its restriction to a fundamental
domain of Γ induces an h–invariant measure on M = Γ \ D.

Thus a positive eigenfunction F gives rise to a horocycle invariant Radon
measure mF . Babillot has conjectured – in the case of infinite regular covers of
compact surfaces with nilpotent covering group – that every invariant Radon
measure arises this way, and that minimal eigenfunctions F lead to ergodic
invariant Radon measures mF [Ba].

Babillot’s conjecture was proved for all infinite regular covers in [LS2] (see
[L] for a related result in higher dimension), and later for all tame surfaces
[Sa1]. To explain what these are, we recall some definitions and facts [Hub]:

• A hyperbolic surface with boundary is called a pair of pants, if it is home-
omorphic to a sphere minus three disjoint open discs or points (Fig. 1b).

• Every pair of pants has three boundary components of lengths 0 ≤ `i <∞
(i = 1, 2, 3), where ` = 0 corresponds to a cusp. Two pairs of pants with
the same triplet of lengths are isometric.

• The norm of a pair of pants Y is the sum of the lengths of its boundary
components, and is denoted by ‖Y ‖.

• A discrete subgroup Γ ⊂ Möb(D) is called a fuchsian group. A fuchsian
group is said to be of the first kind if its limit set Λ(Γ) equals ∂D.
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• A torsion free fuchsian group Γ is of the first kind iff Γ\D can be parti-
tioned into a countable collection of pants {Yi} which meet at boundary
components of the same length (see e.g. [Hub]).

We call {Yi} a pants decomposition of M .

Definition 2.1. The surface Γ \ D is called tame, if it admits a pants decom-
position {Yi} such that sup ‖Yi‖ <∞.

It can be shown that in this case δ(Γ) ≥ 1
2 [Sa1].

Any regular cover of a compact hyperbolic surface is tame, because it admits
an infinite pants decomposition whose components fall into finitely many isom-
etry classes. There are many other examples: if one glues a finite or countable
collection of pants of bounded norm one to another in such a way that every
boundary component is glued to some other boundary component of the same
length and orientation, then the result is a tame complete hyperbolic surface
(Fig. 1e).

We need a couple more definitions to state the result.

• A horocycle ergodic invariant Radon measure is called trivial if it is sup-
ported on a single horocycle made of unit tangent vectors whose forward
geodesics tend to a cusp.

• A Möbius function ϕ ∈ Möb(D) is called parabolic if it has exactly one
fixed point on ∂D. A positive eigenfunction is called trivial, if it is of the
form

F (z) :=
∑

g∈Γ/stabΓ(eiθ)

P (g(eiθ), z)α

where P (·, ·) is Poisson’s kernel, eiθ is a fixed point of some parabolic
element of Γ, and stabΓ(e

iθ) = {g ∈ Γ : g(eiθ) = eiθ}.
The following theorem is proved in [Sa1], under slightly weaker assumptions.

Theorem 2.9 (S.). If Γ \ D is tame, then the following map is a bijection
between the non-trivial positive minimal eigenfunctions of the Laplacian on Γ\D
and the non-trivial horocycle ergodic invariant Radon measures on T 1(Γ \ D):
[
F (Γz) =

∫

∂D

P (eiθ, z)αdν(eiθ)

]
↔
[
The restriction of dm = eαsdν(eiθ)dsdt
to a fundamental domain of Γ

]
.

We illustrate the result by examples [LS2]:

1. Furstenberg’s Theorem: All positive eigenfunctions on a compact surface
are constant. The constant function maps tom0. Consequently all ergodic
invariant Radon measures are proportional to m0.

2. Dani’s Theorem: The minimal positive eigenfunctions on a hyperbolic
surface of finite area are either constant, or trivial (Eisenstein series as-
sociated to cusps). So the ergodic invariant Radon measures are m0 and
trivial measures.
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3. Periodic surfaces of polynomial growth: These are regular covers of com-
pact hyperbolic surfaces with the property that the area of concentric balls
of radius R is O(Rδ) for some δ as R → ∞ (e.g. Zd–covers). Using Gro-
mov’s characterization of virtually nilpotent groups, it can be shown that
the group of deck transformations contains a nilpotent normal subgroup
N of finite index. The minimal positive eigenfunctions form a family

{cFϕ : c > 0, ϕ : N → R a homomorphism},
where Fϕ ◦D = eϕ(D)Fϕ for all D ∈ N ([LP],[CG], see also [LS2]). Con-
sequently the ergodic invariant Radon measures of the horocycle flow are

{cmϕ : c > 0, ϕ : N → R a homomorphism},
where mϕ ◦D = eϕ(D)mϕ for all D ∈ N .

There are periodic surfaces of exponential growth for which there are locally
finite ergodic invariant measures which are not quasi–invariant with respect to
some deck transformations, see [LS2].

Question 1. Does there exist an example of a (necessarily non–tame) surface
Γ \ D with an h–ergodic invariant Radon measure which is not carried by a
single orbit, and is not quasi invariant under the geodesic flow?

Question 2. What can be said about the infinite locally finite ergodic invariant
measures for general unipotent flows on a homogenous space Γ \ G when Γ is
not a lattice? (The finite invariant measures are known [Rat1].)

2.4. Generic points. At present, the generic points for horocycle flows
on surfaces of infinite genus are only understood in the case of Zd–covers of
compact surfaces.

SupposeM covers a compact surfaceM0 in such a way that the group of deck
transformations can be put in the form {Dξ : ξ ∈ Zd}, where Dξ+η = Dξ ◦Dη.

Choose some connected fundamental domain M̃0 for the action of the group of
deck transformations on T 1M . Define the Zd–coordinate of ω ∈ T 1M to be the
unique ξ(ω) ∈ Zd such that ω ∈ Dξ(ω)[M̃0] (Fig. 1c).

There is an analogy between the paths of the geodesic flow and the paths
of a random walk on Zd. Define the asymptotic drift of a vector ω ∈ T 1M to
be the following limit, if it exists:

Ξ(ω) := lim
T→∞

1

T
ξ(gTω), where g is the geodesic flow.

Since g moves at unit speed, ‖Ξ(ω)‖ is uniformly bounded. Let

C := closed convex hull of {Ξ(ω) : ω ∈ T 1M s.t. Ξ(ω) exists} ⊂ Rd.

In the previous section we parametrized the ergodic invariant Radon mea-
sures of h by the way they transform under the deck transformations. One can
also parametrize them by the almost sure value of Ξ(·):
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Theorem 2.10. Let M be a Zd–cover of a compact hyperbolic surface.

1. For every Ξ ∈ int(C) there exists an h–ergodic invariant Radon measure
mΞ such that Ξ(·) = Ξ mξ–a.e., and this measure is unique up to scaling.

2. The volume measure m0 is proportional to m0.

3. Every h–ergodic invariant Radon measure is proportional to mΞ for some
Ξ ∈ int(C).

See [BL], and theorem 2.8.

Theorem 2.11 (S. & Schapira). A vector ω ∈ T 1M is generic for some horo-
cycle ergodic invariant Radon measure m iff Ξ(ω) exists and Ξ(ω) ∈ int(C). In
this case m = cmΞ(ω) for some c > 0. In particular, ω is generic for m0 iff
Ξ(ω) = 0.

Using the hyperbolicity of the geodesic flow and a standard specification
argument, it is easy to construct vectors ω for which the limit Ξ(ω) does not
exist. It is not difficult to arrange for ω to have a dense (horocycle) forward
orbit. Thus there are abundantly many non-exceptional ω ∈ T 1M which are
not generic for any Radon measure. This is yet another way in which h fails to
be u.e. in the broad sense.

Question 1.What are the generic points for horocycle flows on nilpotent covers
of compact hyperbolic surfaces?

Question 2. Suppose M = Γ \ D is Liouville (cf. theorem 2.1). Is it true that
ω ∈ T 1M is generic for m0 whenever 1

T logF (base point of gs(ω)) −−−−→
T→∞

0 for

all positive minimal eigenfunctions F? This is the case for compact surfaces,
surfaces of finite area, and Zd–covers of compact surfaces.

2.5. Conditional unique ergodicity. We continue to consider the
special case of Zd–covers of compact hyperbolic surfaces.

We saw that there are infinitely many ergodic invariant measures. It turns
out that up to scaling, only one of them – the volume measure – is non patho-
logical from the ergodic theoretic point of view, in the sense that it admits a
generalized law of large numbers in the sense of Aaronson [A2].

We explain what this means. Suppose ϕ is an ergodic measure preserving
flow on a non–atomic measure space (Ω,B, µ), and fix some measurable set E
of finite measure. We think of t as of “time” and of E as of an “event”. The
times when E “happened” are encoded by the function

xE,ω(t) := 1E(ϕ
t(ω)) =

{
1 ϕt(ω) ∈ E;

0 ϕt(ω) 6∈ E.
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A generalized law of large numbers is a procedure for reconstructing µ(E) from
xE,ω : [0,∞) → {0, 1}:
Definition 2.2 (Aaronson). A generalized law of large numbers (GLLN) is a

function L : {0, 1}R+ → [0,∞), L = L[x(·)], such that for every E ∈ B of finite
measure, L[xE,ω(·)] = µ(E) for µ–a.e. ω.

For example, if the underlying measure space is a probability space, then
the ergodic theorem says that the following function is a GLLN:

L[x(t)] :=

{
lim

T→∞

1
T

∫ T

0
x(t)dt the integral and limit exist

0 otherwise.

It is obvious how to change L to make it work when 0 < µ(Ω) < ∞. But if
µ(Ω) = ∞, then it is not clear how to proceed, because the ergodic theorem

says that in this case lim
T→∞

1
T

∫ T

0
1E(ϕ

t(ω))dt = 0 for every E of finite measure.

It is natural to ask whether it is possible to find a(T ) = o(T ) so that for

every E ∈ B, lim
T→∞

1
a(T )

∫ T

0
1E(ϕ

t(ω))dt = µ(E). This is never possible [A1]:

Theorem 2.12 (Aaronson). Let ϕ be an ergodic measure preserving flow on
an infinite σ–finite non–atomic measure space (Ω,B, µ). Suppose f ∈ L1, f >

0. There is no a(T ) > 0 s.t. 1
a(T )

∫ T

0
f(ϕt(ω))dt converges a.e. to a constant

c 6= 0,∞.

It is still possibile that there exists a(T ) > 0 s.t. 1
a(T )

∫ T

0
f(ϕt(ω))dt oscil-

lates without converging to zero or infinity. One can hope for a summability
method which forces convergence to

∫
fdµ. Such “second order ergodic theo-

rems” are considered in [ADF]. Here is such a theorem [LS3]:

Theorem 2.13 (Ledrappier–S.). There exists a(T ) > 0 s.t. for all f ∈ L1(m0)

lim
N→∞

1

ln lnN

∫ N

3

1

T lnT

(
1

a(T )

∫ T

0

f ◦ hsds
)
dT =

∫
fdm0 m0-a.e.

The corresponding GLLN is L[x(t)] := lim
N→∞

1
ln lnN

∫ N

3
1

T lnT

(
1

a(T )

∫ T

0
x(s)ds

)
dT

when the limit make sense, and L[x(t)] := 0 otherwise.

We decribe a(T ). Recall the definitions of M̃0 and of the Zd–coordinate

ξ from §9. We pick ω ∈ M̃0 randomly according to the uniform distribu-
tion on M̃0, m0( · |M̃0), and consider the random variables ω 7→ ξ(gT (ω)).
It follows from the work of Ratner [Rat2] and Katsuda & Sunada [KS] that
ξ(gT (ω))/

√
T converges in distribution to a non–degenerate multivariate Gaus-

sian random variable N on Rd. If Cov(N) is the covariance matrix of N , and
σ := d

√
| detCov(N)|, then

a(T ) =
m0(M̃0)

(4πσ)d/2
T

(lnT )d/2
.
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Theorem 2.13 also holds for Zd–covers of non–compact surfaces of finite
area, but with different a(T ) [LS1].

There are no similar results for any of the other h–ergodic invariant Radon
measures. The reason is tied to the following property:

Definition 2.3 (Aaronson). An ergodic invariant measure m for a flow ϕ (or
a map T ) is called squashable, if there is a measurable map Q which commutes
with ϕ (or T ) such that m ◦Q−1 = cm with c 6= 0, 1.

Squashable measures do not admit GLLN’s: Suppose there were a GLLN
L[·]. Choose a measurable set E of positive finite measure, and some ω s.t.
L[1A(h

tv)] = m(A) for A = E,Q−1E and v = ω,Q(ω). We have

m(E) = L[1E(h
sQω)] = L[1E(Qh

sω)] = L[1Q−1E(h
sω)] = m(Q−1E) = cm(E),

whence c = 1, a contradiction. Thus no GLLN can exist.
Any locally finite h–ergodic invariant Radon measure m which is not pro-

portional to m0 is squashable, because by theorem 2.8 such a measure satisfies
m◦Dξ = e〈a,ξ〉m for some vector a 6= 0 and all deck transformations Dξ, and all
deck transformations commute with h, being isometries. As a result we obtain
the following “conditional unique ergodicity” result [LS2]:

Theorem 2.14 (Ledrappier – S.). The horocycle flow on a Zd–cover of a
compact hyperbolic surface has, up to scaling, exactly one ergodic invariant
Radon measure which admits a GLLN: the volume measure m0.

3. Non-Compact Group Extensions of Uniquely

Ergodic Transformations

3.1. Group extensions. Suppose T : Ω → Ω is a bimeasurable bijection
on a standard measurable space (Ω,B). Let G be a locally compact second
countable topological group with left Haar measure mG, with mG(G) = 1
when G is compact. Fix a Borel function ϕ : Ω → G.

Definition 3.1. The skew–product with base T : Ω → Ω, and cocycle ϕ : Ω →
G is the map Tϕ : Ω×G→ Ω×G given by Tϕ : (ω, g) 7→

(
T (ω), gϕ(ω)

)
. Such

maps are called group extensions.

In the cases considered below, T is a homeomorphism of a topological space
Ω which is either a compact metric space, or a compact metric space Ω0 minus
a countable collection of points. With such examples in mind, we call a measure
m on Ω×G locally finite, if m(Ω×K) <∞ for all compact K ⊂ Ω.

If µ is a T–invariant probability measure, then m0 := µ ×mG is a locally
finite Tϕ–invariant measure, although it is not always ergodic (e.g. when ϕ can
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be put in the form ϕ = u(u ◦ T )−1 with u Borel). The basic measure rigidity
result for compact group extensions is [P], [F2]:

Theorem 3.1 (Furstenberg – Parry). Let T be a uniquely ergodic homeo-
morphism of a compact metric space Ω, G be a compact Abelian group, and
ϕ : Ω → G be continuous. Tϕ is uniquely ergodic iff m0 is Tϕ–ergodic.

If G is not compact, then there could be other measures: let α : G → R be
a measurable homomorphism, and suppose there is a probability measure να
on Ω s.t. dνα◦T

dνα
= exp[α ◦ ϕ], then the measure

dmα(ω, g) = e−α(g)dνα(ω)dmG(g) (3.1)

is a locally finite invariant measure for Tϕ, as can be verified by direct calcula-
tion. Such measures are called Maharam measures. Some remarks:

1. If G = R and α = id, then ϕ = log dν◦T
dν and Tϕ is called the Radon-

Nikodym extension of T . Tϕ preserves mα, even when T does not preserve
ν. This was Maharam’s original motivation [M].

2. Suppose α ≡ 0, then ν0 is T–invariant andm0 = ν0×mG. If G is compact,
then this is the only possibility, because all measurable homomorphisms
α : G→ R are trivial.

3. Maharam measures mα with α 6≡ 0 do not admit GLLN’s, because they
are squashable: if Qh : (ω, g) 7→ (ω, hg) and h 6∈ kerα, then Qh ◦ Tϕ =
Tϕ ◦Qh and mα ◦Qh = cmα where c = e−α(h) 6= 1.

There is an obvious generalization of Maharam’s construction to skew–
produts over group actions. Burger’s measure (2.4) and the measures arising
from Babillot’s bijection (2.5) are Maharam measures for the skew–product
action (2.3).

The following questions arise naturally [ANSS]: Given a u.e. T , a cocycle
ϕ : Ω → G, and a measurable homomorphism α : G → R, does the Maharam
measure mα exist, and is it unique? Is it ergodic? Is every locally finite ergodic
invariant measure proportional to a Maharam measure?

The following statement comes close to saying that every locally finite er-
godic invariant measure is “Maharam like”, after suitable change of coordinates
[Rau].

Theorem 3.2 (Raugi). If m is a locally finite Tϕ–ergodic invariant measure on
Ω×G, then there are a closed subgroup H ⊂ G and Borel function u : Ω → G
s.t.

1. if ϕ̃(x) := u(x)ϕ(x)u(Tx)−1, then ϕ̃(x) ∈ H for m a.e. (x, g) ∈ Ω×G;

2. if ϑ : (x, g) 7→ (x, gu(x)−1), then m ◦ ϑ−1 is a Tϕ̃–ergodic invariant mea-
sure supported on Ω × H, and there exists a measurable homomorphism
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α : H → R and a σ–finite measure να on Ω s.t. dνα◦T
dνα

= exp[α ◦ ϕ̃] and

dm ◦ ϑ−1(ω, h) = e−α(h)dνα(ω)dmH(h). (3.2)

3. But in general να and m ◦ ϑ−1 need not be locally finite.

The case G = Rn × Zm was done in [Sa2].
The significance of part (3) is that there is an abundance of infinite σ–finite

solutions to the equation dνα◦T/dνα = exp[α◦ϕ̃]. The challenge is to determine
which of them has the property that m = (e−α(h)dνα(ω)dmH(h)) ◦ ϑ is locally
finite. In some cases, and using additional structure, one can show that H = G
or that u is essentially bounded (i.e. u(ω) ∈ K a.e. for some K compact). In
such cases m is locally finite iff να is finite. We discuss two examples below.

3.2. Cylinder Transformations. The first example we consider is a
group extension of the irrational rotation Tθ : T → T, Tθ : ω 7→ (ω + θ)mod 1,
where θ is a fixed irrational number and T := R/Z. The cocycle is

ϕ : T → Z , ϕ(ω) :=

{
1 0 ≤ ω < 1

2

−1 1
2 ≤ ω < 1.

Let Tθ,ϕ := (Tθ)ϕ, then Tθ,ϕ : (ω, n) 7→ ((θ + α)mod 1, n+ ϕ(ω)). Note that ϕ
and Tθ,ϕ are not continuous.

The original motivation was the theory of random walks [AK]. The iterates
of a G–extension Tϕ are given in general by

Tn
ϕ (ω, g) =

(
Tn(ω), gϕ(ω)ϕ(Tω) · · ·ϕ(Tn−1ω)

)
. (3.3)

The second coordinate is a random walk on G started at g. The function ϕ
controls the jumps, and the map T : Ω → Ω is the driving noise. For example,
if Ω = {0, 1}N, T is the left shift (Tω)i = ωi+1 together with the Bernoulli
( 12 ,

1
2 )–measure, and ϕ : Ω → Z is the function ϕ(ω) = (−1)ω0 , then the second

coordinate in (3.3) is the simple random walk on Z (started at g). The interest
in the cylinder transformation Tθ,ϕ is that the random walk it generates is
driven by a map with entropy zero. Another reason Tϕ is interesting is that it
appears as the Poincaré section for the linear flow on the staircase surface, see
below.

The measure m0 := mT × mZ (Lebesgue times counting measure) is an
invariant Radon measure for Tθ,ϕ. This measure is ergodic [CK], see also [Sch1].
Nakada showed that Maharam’s construction yields additional locally finite
ergodic invariant measures [N1], [N2]:

Theorem 3.3 (Nakada). For every θ 6∈ Q and α ∈ R there is a unique
probability measure ν s.t. dν◦Tθ

dν = exp(αϕ). The measure dmα(ω, n) :=

e−αϕ(ω)dν(ω)dmZ(n) is a conservative ergodic invariant Radon measure for
Tθ,ϕ.
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Theorem 3.4 (Aaronson, Nakada, S., & Solomyak). Suppose θ 6∈ Q, then
every ergodic invariant Radon measure for Tθ,ϕ is proportional to mα for some
α ∈ R.

For more complicated step functions ϕ, see [ANSS] and [C].

If α 6= 0, then mα is squashable, and therefore does not admit a GLLN.
Aaronson & Keane have shown in [AK] that m0 is not squashable. In fact it
admits a GLLN. This is a particular case of the following general result [A1]:

Theorem 3.5 (Aaronson). Let T : Ω → Ω be a translation on a compact metric
group Ω, and suppose ϕ : Ω → Zd is measurable. Let m0 be the product of the
Haar measures on Ω and Zd. If m0 is ergodic, then m0 admits a GLLN.

Corollary 3.1. Suppose θ is irrational, then up to scaling, Tθ,ϕ has exactly
one ergodic invariant Radon measure with a GLLN: m0.

The GLLN presented in theorem 2.13 is finitely observable in the sense that
the knowledge of {1E(ϕtω)}0≤t≤T for finite T yields an approximation to m(E)
which tends a.s. to m(E) as T → ∞. The GLLN provided by the existing proof
of theorem 3.5 does not seem to be finitely observable.

If we assume more on θ, then we can exhibit a finitely observable GLLN,
using the theory of rational ergodicity [A1], [A3].

Definition 3.2 (Aaronson). A conservative ergodic measure preserving map τ
on a σ–finite measure space (Ω,B,m) is called rationally ergodic, if there are
M > 0 and a set A ∈ B with finite positive measure s.t. for all n ≥ 1,



∫

A

(
n−1∑

k=0

1A ◦ τk
)2

dm



1/2

≤M

[∫

A

(
n−1∑

k=0

1A ◦ τk
)
dm

]
. (3.4)

(The other direction to Cauchy–Schwarz.)

Rationally ergodic maps admit GLLN’s. To describe them, we use the fol-
lowing notation for Cesàro convergence: CLim

k→∞
xk := lim

N→∞

1
N

∑N
k=1 xk.

Theorem 3.6 (Aaronson). Let τ be a rationally ergodic map on the space
(Ω,B,m), fix some A of finite positive measure which satisfies (3.4), and set

an :=
1

m(A)2

∫

A

n−1∑

k=1

1A ◦ τkdm.

There are nk ↑ ∞ s.t. for every f ∈ L1, CLim
k→∞

[
1

ank

∑nk−1
j=0 f ◦ τ j

]
=

∫
fdm a.e.
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The sequence an is called the return sequence of τ . It is unique up to asymptotic
equivalence, see [A1].

Aaronson & Keane proved in [AK] that if θ is an irrational quadratic surd,
then m0 is rationally ergodic with return sequence an � n/

√
log n (an � bn

means C−1 ≤ an/bn ≤ C for some C > 0 and all n large enough). It follows
that

Theorem 3.7. Suppose θ is an irrational root of a quadratic polynomial with
integer coefficients, then Tθ,ϕ has, up to scaling, a unique ergodic invariant
Radon measure with a GLLN: m0. This GLLN takes the form

L[x(n)] :=




CLim
k→∞

[
1

ank

∑nk−1
j=0 x(j)

]
the limit exists

0 otherwise

for some sequences nk ↑ ∞ and an � n/
√
log n.

Question 1. What are the generic points for m0?

We finish our discussion of Tϕ with the following nice construction due to
Hubert and Weiss [HW]. Let {Rk}k∈Z be the sequence of tagged rectangles
Rk := [0, 2]× [0, 1]×{k} minus the points with integer coordinates. We denote
the left and right vertical sides of Rk by lk and rk, and the top and bottom
horizontal sides by tk, bk. For each k,

• glue lk to rk by the map (x, y; k) 7→ (x+ 2, y; k);

• glue the left half of tk to the right half of bk−1 by the map (x, y; k) 7→
(x+ 1, y − 1; k − 1);

• glue the right half of tk to the left half of bk+1 by the map (x, y; k) 7→
(x− 1, y − 1; k + 1).

The result is a surface of infinite area and infinite genus, which we denote
byM . Fix an angle β, and let ϕβ :M →M be the flow which moves each point
x at unit speed on the line with slope tanβ passing through x, while respecting
identifications (Fig. 2).

Theorem 3.8 (Hubert & Weiss). Suppose tanβ is irrational, and let Q :M →
M be the map Q(x, y; k) = (x, y; k + 1), then

1. For every α ∈ R there exists up to scaling exactly one ergodic invariant
Radon measure mα such that mα ◦Q = eαmα;

2. All ergodic invariant Radon measures are of this form.

The proof is done by first checking that the union of the horizontal sides of Rk

forms a Poincaré section with the properties that the roof function is constant,
and the Poincaré map is conjugate to some Tθ,ϕ with θ = θ(β) irrational [HW].
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Figure 2. The linear flow on the staircase surface

Imagining other translation surfaces, one is led to the following question:

Question 2. What can be said about the locally finite ergodic invariant mea-
sures for skew products over “typical” interval exchange transformations and
step function cocycles?

P. Hooper has recently obtained some very interesting related results [Hoo].

3.3. Hajian-Ito-Kakutani Maps. This example comes from the
world of symbolic dynamics. Recall that the horocycle flow parametrizes the
strong stable foliation of the geodesic flow: {ht(ω)}t∈R = {ω′ ∈ T 1M :
d(gsω′, gsω) −−−→

s→∞
0}. The HIK map parametrizes the symbolic dynamical

analogue of the stable foliation (tail relation) for a skew–product over a sub-
shift of finite type.

Let σ : Σ+
A → Σ+

A be a one–sided subshift of finite type. This means that
there is a finite set S = {0, . . . , N} and a matrix of zeroes and ones A = (tab)S×S

so that

Σ+
A := {(x0, x1, . . .) ∈ SN : ∀i ≥ 0, txixi+1

= 1},
and σ : (x0, x1, . . .) 7→ (x1, x2, . . .).

Endow Σ+
A with the metric d(x, y) := exp[−min{n ≥ 0 : xn 6= yn}]. This map

is expansive: if d(σnx, σny) < 1 for all n, then x = y. It is topologically mixing
iff there is an m s.t. all the entries of Am are positive.

Fix some continuous function f : Σ+
A → Rd. The system playing the role of

the geodesic flow is the (discrete time) map σf : Σ+
A × Rd → Σ+

A × Rd

σf : (x, ξ) 7→ (σ(x), ξ + f(x)).
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We metrize Σ+
A × Rd by d((x, ξ), (y, η)) := d(x, y) + ‖ξ − η‖. One can check,

using the expansivity of σ, that d(σn
f (x, ξ), σ

n
f (y, η)) −−−−→n→∞

0 iff

∃n s.t. σn(x) = σn(y) and ξ − η =

∞∑

k=0

[f(σky)− f(σkx)]. (∗)

(The sum always converges, in fact all terms with k ≥ n vanish.) If (x, ξ), (y, η)

satisfy (∗), then we write (x, ξ)
f∼ (y, η). This is an equivalence relation. For

an example how this equivalence relation appears as the symbolic dynamical
coding of “real” foliations, see [BM] and [PoS].

Our task is to construct a map whose orbits are the equivalence classes of
f∼. Such a map can be easily constructed using Vershik’s adic transformations
[V]. Here is the construction. Define � to be the reverse lexicographic order on
Σ+

A:

x � y ⇔ ∃n s.t.
(
xn ≤ yn and xn+k = yn+k for all k ≥ 1

)
.

Two points x, y are �–comparable iff ∃n s.t. σn(x) = σn(y). In this case we
write x ∼ y. If x ∼ y, then there are only finitely many points between x and
y (at most |S|n). It follows that for all x not equivalent to a �–maximal or
minimal point, the set {y : y ∼ x} has the same order structure as Z.

One can check that x is equivalent to a maximal (resp. minimal) point
iff σn(x) is maximal (resp. minimal) for some n. This leads to the following
definition:

Definition 3.3 (Vershik). Let Ω := Σ+
A \ {x : ∃n s.t.σn(x) is maximal or

minimal}. The adic transformation of Σ+
A is the map T : Ω → Ω, T (x) :=

min{y ∈ Ω : y � x}.

The point is that for every x ∈ Ω, {Tn(x) : n ∈ Z}={y : y ∼ x} for x ∈ Ω. To

get a map whose orbits are the equivalence classes of
f∼, we make the following

definition.

Definition 3.4 (Hajian–Ito–Kakutani). Let f : Σ+
A → Rd be a continuous

function. The HIK cocycle for f is

ϕ(x) :=

∞∑

k=0

[f(σkx)− f(σkTx)].

The HIK map is Tϕ : Ω× Rd → Ω× Rd, Tϕ : (x, ξ) 7→ (T (x), ξ + ϕ(x)).

A direct calculation shows that {Tn
ϕ (x, ξ)}n∈Z = {(y, η) : (y, η) f∼ (x, ξ)}, and

so {Tn
ϕ (x, ξ)}n∈Z = {(y, η) : d(σn

f (x, ξ), σ
n
f (y, η)) −−−−→n→∞

0}.
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Here is an example [HIK],[AW]. Suppose Σ+
A = SN. The unique maximal

point is (N,N,N, . . .), the unique minimal point is (0, 0, 0, . . .), and T is the
map

T : (N, . . . , N︸ ︷︷ ︸
n

, k, ∗) 7→ (0, . . . , 0︸ ︷︷ ︸
n

, k + 1, ∗) (k < N, n ≥ 0) (3.5)

Informally, T “adds one with carry to the right”. Formula (3.5) makes sense for
all points in SN \ {(1, 1, 1, . . .)}. If we define T (1, 1, 1, . . .) := (0, 0, 0, . . .), then
we obtain a homeomorphism of SN, widely known under the name the adding
machine.

Now fix some probability vector p
0
:= (p0, . . . , pN ) on S all of whose coor-

dinates are non–zero, let f : Σ+
A → R denote the function f(x) = − log px0

, and
define ϕ to be the HIK cocycle of f . A direct calculation shows that

ϕ = log

(
dν0 ◦ T
dν0

)
,

where ν0 is the Bernoulli measure of p
0
. This measure is in general not T–

invariant. But the measure e−tdν0(ω)dt is Tϕ–invariant. Similarly, given α ∈ R,
let p

α
denote the probability vector proportional to (pα0 , . . . , p

α
N ), and let να

denote the corresponding Bernoulli measure on Σ+
A = SN. Then log

(
dνα◦T
dνα

)
=

αϕ, so mα := e−αtdνα(ω)dt is Tϕ–invariant for every α ∈ R.

These measures are not always ergodic. The simplest example of this is
when p = (b, . . . , b) where b = 1/|S|. In this case ϕ takes values in bZ, and the
function F (ω, ξ) = exp[2πiξ/b] is Tϕ–invariant. The ergodic components of mα

take the form e−αtdνα(ω)dmbZ+c where mbZ+c is the counting measure on the
coset bZ + c, and 0 ≤ c < b [AW],[HIK]. We call this phenomenon the lattice
phenomenon.

We now turn to the case of general HIK maps, assuming only that σ : Σ+
A →

Σ+
A is topologically mixing, and that f : Σ+

A → Rd has summable variations:

∞∑

n=1

varnf <∞, where varnf := sup{f(x)− f(y) : xi = yi (i = 0, . . . , n− 1)}.

We denote fn := f + f ◦ σ + · · ·+ f ◦ σn−1. Let Hf denote the smallest closed
subgroup of Rd which contains {fn(x)− fn(y) : σ

n(x) = x, σn(y) = y, n ∈ N} .
The following fact can be found in [Sa2] (see also [PaS])

Lemma 3.1. There exists a function uf : Σ+
A → Rd with summable variations

and a constant cf such that f̃ := f + uf − uf ◦ σ + cf takes values in Hf .

The group Hf is invariant under addition of coboundaries and constants, so
one cannot reduce the range of f further by means of a continuous coboundary.
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Let ϕ and ϕ̃ be the HIK cocycles of f and f̃ , respectively. Direct calculations
show that ϕ̃ = ϕ + uf − uf ◦ T and that the image of ϕ̃ is in Hf . The map
ϑ(ω, ξ) = (ω, ξ + uf (ω)) satisfies ϑ−1 ◦ Tϕ ◦ ϑ = Tϕ̃. We see that if Hf 6= Rd,
then Tϕ is conjugate to an HIK map exhibiting the lattice phenomenon.

We describe the invariant measures of Tϕ.

Theorem 3.9.

1. For every α ∈ Rd there is a unique probability measure να s.t. dνα◦T
dνα

=

e〈α,ϕ〉;

2. If Hf = Rd, then mα := e−〈α,t〉dνα(ω)dt is a Tϕ–ergodic invariant locally
finite measure;

3. If Hf = Rd, then every Tϕ–ergodic invariant locally finite measure is
proportional to mα for some α ∈ Rd.

Part 1 is in [PeS], see also [ANSS]. Part 2 is because σf is mα–exact [G] (see
[ANSS] for details). Part 3 was proved under the assumption that f is locally
constant in [ANSS] and in the general case in [Sa2].

Next we discuss the lattice case. For every c ∈ Rd/Hf , let mHf+c denote
the measure on the coset Hf + c induced by the Haar measure on Hf .

Theorem 3.10. Suppose Hf 6= Rd, let f̃ := f + uf − uf ◦ σ + cf where uf , cf
are given by lemma 3.1, and let ϕ̃ denote the HIK cocycle of f̃ .

1. The locally finite ergodic invariant measures for Tϕ̃ are the measures
proportional to mα,c := e−〈α,t〉dνα(ω)dmHf+c(t) for some α ∈ Rd and

c ∈ Rd/Hf .

2. The locally finite ergodic invariant measures for Tϕ are the measures
proportional to mα,c ◦ ϑ (α ∈ Rd, c ∈ Rd/Hf ), where ϑ : (ω, ξ) 7→
(ω, ξ + uf (ω)).

Theorem 3.10 was proved for f : Σ+
A → Zd s.t. Hf = Zd in [ANSS], and in the

general case in [Sa2].
These results show that the group H mentioned in theorem 3.2 is always

equal to Hf , and that the measurable function u there can be chosen to be
bounded (in fact with summable variations). Consequently the change of coor-
dinates ϑ preserves local finiteness, and the problems mentioned in part (3) of
that theorem do not arise. For examples of skew products where these problems
do arise, see [Sa2],[Rau].

Finally we consider the problem of GLLN’s. Here we need the stronger
assumption that f is Hölder continuous. Under this assumption it is proved in
[ANSS] thatm0 is rationally ergodic (cf. definition 3.2). Since all other measures
are squashable, we obtain
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Theorem 3.11. If Hf = Rd, then Tϕ has, up to scaling a unique locally finite
ergodic invariant measure with a GLLN: m0. The GLLN takes the form

L[x(n)] :=




CLim
k→∞

[
1

ank

∑nk−1
j=0 x(j)

]
the limit exists

0 otherwise

for some sequences nk ↑ ∞ and an � n/(log n)d/2.

For an interesting application to the study of the stable foliation for a pseudo–
Anosov diffeomorphism, see [PoS].

The generic points of certain HIK maps can be described. This is ongoing work
with J. Aaronson, and will be published elsewhere.

Acknowledgments

This work was partially supported by NSF grant DMS–0400687 and by the EU
starting Grant ErgodicNonCompact.

References

[A1] J. Aaronson: An introduction to infinite ergodic theory. Math. Surv. and
Monog. 50, American Math. Soc., Providence, RI, 1997. xii+284pp

[A2] J. Aaronson: The intrinsic normalizing constants of transformations preserv-
ing infinite measures, J. d’Analyse Math. 49 (1987), 239–270.

[A3] J. Aaronson: Rational ergodicity and a metric invariant for Markov shifts,
Israel J. Math. 27 (1977), 93–123.

[ADF] J. Aaronson, M. Denker, and A. Fisher: Second order ergodic theorems for
ergodic transformations of infinite measure spaces, Proc. AMS 114 (1992),
115–127.

[AK] J. Aaronson and M. Keane: The visits to zero of some deterministic random
walks, Proc. London Math. Soc. 44 (1982), 535–553.

[ANSS] J. Aaronson, H. Nakada, O. Sarig and R. Solomyak: Invariant measures and
asymptotics for some skew products, Israel J. Math. 128 (2002), 93–134. Cor-
rections: Israel J. Math. 138 (2003), 377–379.

[AW] J. Aaronson and B. Weiss: On the asymptotics of a one–parameter family of
infinite measure preserving transformations, Bol. Soc. Brasil. Mat. (N.S.) 29
(1998), 181–193.

[Ba] M. Babillot: On the classification of invariant measures for horospherical fo-
liations on nilpotent covers of negatively curved manifolds. In: Random walks
and geometry (V.A. Kaimanovich, Ed.) de Gruyter, Berlin (2004), 319–335.



Unique Ergodicity for Infinite Measures 25

[BL] M. Babillot, F. Ledrappier: Geodesic paths and horocycle flows on Abelian
covers. Lie groups and ergodic theory (Mumbai, 1996), 1–32, Tata Inst. Fund.
Res. Stud. Math. 14 (1998), Tata Inst. Fund. Res., Bombay.

[BM] R. Bowen and B. Marcus: Unique ergodicity of horocycle foliations, Israel J.
Math. 26 (1977), 43–67.

[Bu] M. Burger: Horocycle flow on geometrically finite surfaces, Duke Math. J. 61
(1990), 779–803.

[C] J.-P. Conze: Recurrence, ergodicity and invariant measures for cocycles over
rotations, Contemp. Math. 485 (2009), 45–70.

[CG] J.-P. Conze and Y. Guivarc’h: Propriété de droite fixe et fonctions propres
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