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In Chapter 1 we saw that open quantum systems could interact with an environment and that
this coupling could turn pure states into mixed states. This process will detrimentally impact any
quantum computation, because it can lessen or destroy the interference effects that are vital to
distinguishing a quantum computer from a classical computer. The problem of overcoming this
effect is called the decoherence problem. Historically, the problem of overcoming decoherence
was thought to be a major obstacle towards building a quantum computer. However, it was dis-
covered that, under suitable conditions, the decoherence problem could be overcome. The main
idea behind how this can be achieved is through the theory of quantum error correction (QEC).
In this chapter we give an introduction into the way in which the decoherence problem can be
overcome via the method of QEC. It is important to note that the scope of the introduction is
not comprehensive, and focuses only on the basics of QEC without reference to the notion of
fault-tolerant quantum computation, which is covered in Chapter 5. Quantum error correction
should be thought of as a (major) tool in this larger theory of fault-tolerant quantum computing.

2.1 Error correction
When we are stumped about what to do in the quantum world, it is often useful to look to the
classical world to see if there is an equivalent problem, and if so, how that problem is dealt with.
Thinking this way, one realizes that the decoherence problem has an analogy in the classical
world: classical noise. While this statement is not at all obvious, we will see that actually the
analogy holds by thinking about decoherence and classical noise from a particular perspective.

Consider the following situation. We have a bit that we send from Seattle to New York over
a phone line. This phone line, however, is noisy. With probability 1 − p nothing happens to our
bit, but with probability p the bit is flipped: 0 is turned into 1 and 1 is turned into 0. This setup is
an example of classical communication over a communication channel. This particular channel
is called a binary symmetric channel. We call the operation of flipping the bit an error. Later the
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term error will take on a more specific meaning in the theory of fault tolerance. If we use this
channel once, then the probability that we will receive a wrong bit is p. If p is sufficiently close
to 1

2 this poses quite a problem as we want the information encoded in our bit to arrive safely
at its destination. Thus we are naturally led to the question: is there a way to use this channel in
such a way that we can decrease this probability? The answer to this question is yes, and the way
to do this is actually rather simple.

The solution is to just use the channel multiple times. In other words, we use redundancy.
Thus, if we want to send a 0, we use the encoding 0 → 000 and 1 → 111 and send each of
these bits through the channel. Of course there will still be errors on the information. Assuming
that the channel’s noise acts independently (note this assumption!), with probability (1− p)3 no
errors occur on the bits, with probability 3(1−p)2p one error occurs on the bits, with probability
3(1−p)p2 two errors occur on the bits, and with probability p3 three errors occur on the bits. Now
assume that p is small for intuition’s sake (we will calculate what small means in a second). No-
tice that the three probabilities we have listed above will then be in decreasing order. In particular,
the probability of no or one error will be greater than there being two or three errors. But if a sin-
gle error occurs on our bit, we can detect this and correct it. In particular if, on the other end of the
channel, we decode the bit strings by {000, 001, 010, 100} → 0 and {111, 110, 101, 011} → 1,
then in the case of no error or one bit-flip we will have correctly transmitted the bit. We can thus
calculate the probability that this procedure – encoding, sending the bits individually through the
channel, and decoding – fails. It is given by 3(1 − p)p2 + p3 = 3p2 − 2p3. Now if this is less
than p, the failure probability with no encoding, we have decreased the probability of failing to
transmit our bit. Indeed, this occurs when 3p2 − 2p3 ≤ p and hence when p < 1

2 . Thus, if the
probability of flipping our bit is less than 1

2 , then we will have decreased our failing (from p

to 3p2 − 2p3). This method of encoding information is known as a redundancy error-correcting
code. The classical theory of error-correcting codes is devoted to expanding on this basic obser-
vation, that redundancy can be used to protect classical information. We will delve into some
of the details of classical error-correcting codes in Section 2.7. The main take-home point at
this juncture is that it is possible to use classical error correction to lessen the chance of errors
destroying classical information.

2.1.1 Obstacles to quantum error correction

If classical error correction can be used to protect against noise in a noisy classical channel, a
natural question to ask is whether a similar tactic can be used to protect quantum information.
When we first encounter classical error correction and think about porting it over to the quantum
world, there are some interesting reasons to believe that it will be impossible to make this transi-
tion. We list these here, since they are rather interesting (although claims that these were major
blockades to discovering quantum error correcting are probably a bit exaggerated).

No cloning The no-cloning theorem [WZ82] states that there is no machine that can perform the
operation |ψ〉 → |ψ〉 ⊗ |ψ〉 for all |ψ〉. Thus, a naive attempt to simply clone quantum
information in the same way that we copy information in a redundancy code fails.

Measurement When we measure a quantum system, our description of the quantum system
changes. Another way this is stated is that measurement disturbs the state of a quantum
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system. In error correction, we read out classical information in order to correctly re-
cover our classical information. How do we perform measurements on quantum systems
that do not destroy the quantum information we are trying to protect?

Quantum noise Quantum noise has a continuous set of parameters to describe it. So we might
think that this will cause a problem, since in classical theory we could interpret the noise
as probabilities of deterministic evolutions occurring, but in quantum theory we do not
have such an interpretation (at least not yet.) Of course this feels like a little bit of a red
herring, since classical noise also has continuous parameters (say the probabilities of
the erring procedures) to describe it.

For these reasons we might expect that an equivalent to classical error correction in the
quantum world does not exist. One of the surprising discoveries of the mid-nineties was that this
is not true: protection of quantum information using QEC is possible.

2.2 From reversible classical error correction to simple quantum error correction

So where to begin in figuring out how to protect quantum information? Well, one place to begin
is to try to understand how to perform the classical error correction we described above using
classical reversible circuits, since reversible classical computation is the closest classical theory
to quantum theory.

To this end let us work through using the classical three-bit redundancy code to protect
classical information. The first part of our procedure is to encode our classical bit. Suppose that
we represent our three bits by three wires. Then it is easy to check that an encoding procedure
for taking a bit in the first wire to the encoded 000 and 111 configurations is

b • • b

0 �������	 b

0 �������	 b

(2.1)

where the gates diagrammed are CNOT gates, which act in the computational basis as
CX|x〉|y〉 = |x〉|y + x〉, where the addition is done modulo 2, and where time flows from
left to right. Next we send each of these bits through the bit-flip channel. Each of these bits is
sent independently. We denote this by the gate M on these bits:

b • • M

0 �������	 M

0 �������	 M

(2.2)

Now we need to describe the procedure for diagnosing an error and fixing this error. Consider
what the two CNOTs do in our encoding circuit. They take 000 → 000, 001 → 001, 010 → 010,
011 → 011, 100 → 111, 101 → 110, 110 → 101, and 111 → 100. Notice that, except in the
case where the last two bits are 11, after this procedure the first bit has been restored to its proper
value, given that only zero or one bit-flip has occurred on our three bits. And when the last two
bits are 11, then we need to flip the first bit to perform the proper correction. This implies that
the decoding and fixing procedure can be done by the two CNOTs, followed by a Toffoli gate
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(which acts as C2(X)|x〉|y〉|z〉 = |x〉|y〉|z + xy〉). In other words,

b • • M • • �������	

0 �������	 M �������	 •

0 �������	 M �������	 •

(2.3)

It is easy to check that if only one or no error occurs where the M gates are, then the output of
the first bit will be b (and in the other cases the bit will be flipped). This is exactly the procedure
we described in the previous section and we have done it using completely reversible circuit
elements (except for the Ms, of course.)

2.2.1 When in Rome do as the classical coders would do

Now that we have a classical reversible circuit for our simple error-correcting procedure, we
can see what happens when we use this circuit on quantum information instead of classical
information. One thing we need to do is to choose the appropriate noise channel for our code (we
will come back to more general noise eventually). A natural choice is the bit-flip channel that
had the Kraus operator

E0 =
√

1 − pI, E1 =
√
pX. (2.4)

The circuit we want to evaluate is now

|ψ〉 • • E • • �������	

|0〉 �������	 E �������	 •

|0〉 �������	 E �������	 •

(2.5)

where |ψ〉 is now an arbitrary quantum state α|0〉+β|1〉, which we wish to protect. So what does
this circuit do to our quantum data? Well, after the first two CNOTs, we can see that the state is
given by

α|000〉 + β|111〉. (2.6)

Notice that we have done something like redundancy here: but we have not copied the state, we
have just “copied” it in the computational basis.

Next what happens? Recall that we can interpret E as a bit-flip error X happening with
probability p and nothing happening with probability 1−p. It is useful to use this interpretation to
say that with probability (1−p)3 no error occurred on all three qubits, with probability (1−p)2p
a single error occurred on the first qubit, etc. So what happens if no error occurs on our system
(the Kraus operator I ⊗ I ⊗ I happens on our system)? Then we just need to run those two
CNOTs on our state

(CX)13(CX)12(α|000〉 + β|111〉) = α|000〉 + β|100〉 = (α|0〉 + β|1〉)|00〉. (2.7)

The Toffoli then does nothing to this state and we see that our quantum information has survived.
But this is not too surprising since no error occurred. What about when a single bit-flip error
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occurs? Let us say an error occurs on the second qubit. Then our state is α|010〉 + β|101〉. The
effect of the CNOTs is then

(CX)13(CX)12(α|010〉 + β|101〉) = α|010〉 + β|110〉 = (α|0〉 + β|1〉)|10〉. (2.8)

Again, the Toffoli will do nothing to this state. And we see that our quantum information has
survived its encounter with the bit-flip error! One can go through the other cases of a single
bit-flip error. In the case where the bit-flip error is on the first qubit, the Toffoli is essential in
correcting the error, but in the case where it is on the third qubit, then the Toffoli does nothing.
But in all three cases the quantum information is restored!

One can go through and check what happens for the cases where two or three bit-flip errors
occur. What one finds out is that in these cases the resulting state in the first qubit is β|0〉+α|1〉.
Thus, if we look at the effect of this full circuit, it will perform the evolution

ρ⊗ |00〉〈00| → (1 − p)3ρ⊗ |00〉〈00| + (1 − p)2pρ⊗ |01〉〈01|
+ (1 − p)2pρ⊗ |10〉〈10| + (1 − p)2pρ⊗ |11〉〈11|
+ (1 − p)p2XρX ⊗ |01〉〈01| + (1 − p)p2XρX ⊗ |10〉〈10|
+ (1 − p)p2XρX ⊗ |11〉〈11| + p3XρX ⊗ |00〉〈00|. (2.9)

Tracing over the second and third qubits, this amounts to the evolution

ρ→ [(1 − p)3 + 3p(1 − p)2]ρ+ [3p2(1 − p) + p3]XρX. (2.10)

If we compare this with the evolution that would have occurred given no encoding,

ρ→ (1 − p)ρ+ pXρX, (2.11)

we see that if p < 1
2 , then our encoding acts to preserve the state better than if we had not

encoded the state.
Actually, how do we know that we have preserved the state better? What measure should

we use to deduce this and why would this be a good measure? In particular, we might note that
quantum errors will affect different states in different ways. The answer is given in terms of the
fidelity discussed in Section 1.2.6.

2.2.2 Fidelity of classical error correction in the quantum model
What happens to the fidelity of the two cases we had above, one in which no error correction
was performed and one in which error correction was performed? In the first case the fidelity,
assuming we start in a pure state, is

F1 =
[〈ψ| [(1− p)|ψ〉〈ψ| + pX|ψ〉〈ψ|X] |ψ〉] 1

2 =
[
(1− p) + p|〈ψ|X|ψ〉|2] 1

2 . (2.12)

This is minimized (remember we want high fidelity) when 〈ψ|X|ψ〉 = 0 and so

F1 ≥
√

1 − p . (2.13)

Similarly, if we perform error correction using the three qubit scheme we obtain

F3 =
[〈ψ| [((1 − p)3 + 3p(1 − p)2)|ψ〉〈ψ| + (3p2(1 − p) + p3)X|ψ〉〈ψ|X] |ψ〉] 1

2

=
[
(1 − p)3 + 3p(1 − p)2 + (3p2(1 − p) + p3)|〈ψ|X|ψ〉|2] 1

2 , (2.14)
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which is again bounded by

F3 ≥
√

(1 − p)3 + 3p(1 − p)2 . (2.15)

The fidelity is greater using error correction when p < 1
2 . So our naive analysis was not so much

the dunce after all.

2.2.3 Morals

What lessons should we draw from our first success in QEC? One observation is that instead
of copying the quantum information we encoded the quantum information into a subspace. In
particular, we have encoded into the subspace spanned by {|000〉, |111〉}, i.e., we have encoded
our quantum information as α|000〉 + β|111〉. This is our way of getting around the no-cloning
theorem.

The second problem we brought up was measurement. Somehow we have made a measure-
ment such that we could fix our quantum data (if needed) using the Toffoli gate. Let us examine
what happens to our subspace basis elements, |000〉 and |111〉, under the errors that we could
correct. Notice that they enact the evolution

|000〉
|111〉

I⊗I⊗I︷︸︸︷−→ |000〉
|111〉

|000〉
|111〉

X⊗I⊗I︷︸︸︷−→ |100〉
|011〉

|000〉
|111〉

I⊗X⊗I︷︸︸︷−→ |010〉
|101〉

|000〉
|111〉

I⊗I⊗X︷︸︸︷−→ |001〉
|110〉 . (2.16)

Now think about what this is doing. These error processes are mapping the subspace where
we encoded the information into different orthogonal subspaces for each of the different errors.
Further, when this map is performed, the orthogonality between the basis elements is not changed
(i.e., |000〉 and |111〉 are orthogonal before and after the error occurs). Now this second fact is
nice, because it means that the quantum information has not been distorted in an irreversible
fashion. And the first fact is nice because, if we can measure which subspace our error has taken
us to, then we will be able to fix the error by applying the appropriate operation to reverse the
error operation. In particular, consider the operators S1 = Z⊗Z⊗I and S2 = Z⊗I⊗Z. These
operators square to identity and so have eigenvalues +1 and −1. In fact, we can see that these
eigenvalues do not distinguish between states within a subspace, but do distinguish which of the
four subspaces our state is in. That is to say, for example, that |000〉 and |111〉 have eigenvalues
+1 for both S1 and S2. Further, the subspace that occurs if a single bit-flip occurs on our first
qubit, |100〉 and |011〉, has eigenvalues −1 for S1 and −1 for S2. We can similarly calculate the
other cases:
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Basis states of subspace S1 S2 Error

{|000〉, |111〉} +1 +1 I ⊗ I ⊗ I

{|100〉, |011〉} −1 −1 X ⊗ I ⊗ I

{|010〉, |101〉} −1 +1 I ⊗X ⊗ I

{|001〉, |110〉} +1 −1 I ⊗ I ⊗X

Thus we see that, if we could perform a measurement that projects onto the +1 and −1
eigenstates of S1 and S2, then we could use the results of this measurement to diagnose which
subspace the error has taken us to and apply the appropriate X operator to recover the origi-
nal subspace. So is it possible to measure S1 and S2? Well, we have already done it, but in a
destructive way, in our circuit.

Consider the following circuit:

•
�������	


�
���

(2.17)

What does this circuit do? Well, if the input to this circuit is α|00〉+β|11〉, then the measurement
outcome will be |0〉 and if the circuit is α|01〉 + β|10〉, then the measurement outcome is |1〉.
Associating |0〉 with +1 and |1〉 with −1, we thus see that this is equivalent to measuring the
eigenvalue of the operator Z ⊗ Z. Notice, however, that this is a destructive measurement, i.e.,
it does not leave the subspace intact after the measurement. In the circuit we have constructed
above, then, the CNOTs after the errors have occurred would have measured the operators S1

and S2. This is enough to diagnose which error has occurred. Since this also does decoding of
our encoded quantum information, only in the case where the error occurred on the first qubit
do we need to do anything; and this is the case where the measurement outcomes are both |1〉
and so we use the Toffoli to correct this error. This suggests that a different way to implement
this error-correcting circuit is to measure the second and third qubits. Since measurements com-
mute through control gates turning them into classical control operations, we could thus have
performed the following circuit:

|ψ〉 • • E • • X

|0〉 �������	 E �������	

�
��� •

|0〉 �������	 E �������	

�
��� •

(2.18)

What do we learn from the above analysis? We learn that QEC avoids the fact that measur-
ing disturbs a quantum system by performing measurements that project onto subspaces. These
measurements do not disturb the information encoded into the subspaces since the measurements
yield degenerate values outcomes for any state in this subspace. This technique, of performing
measurements that do not fully project onto a basis, is essential to being able to perform quantum
error correction.
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2.2.4 Dealing with phase-flips

The third problem we brought up was the fact that quantum errors form a continuous set. For
now, however, let us just move on to a different error model. In particular, let us consider, instead
of a bit-flip model, a phase-flip model. In this model, the Kraus operators are given by

A0 =
√

1 − pI, A1 =
√
pZ. (2.19)

The effect of Z on a quantum state is to change the phase between |0〉 and |1〉. So how are we
going to correct this error? It changes a phase, not an amplitude! Well, we use the fact that phase
changes are amplitude changes in a different basis. The basis where this occurs is the so-called
plus minus basis: |±〉 = 1√

2
(|0〉 ± |1〉). In particular, the gate that transforms this basis into the

computational basis is the Hadamard gate, W ; and note that WZW † = X . This suggests that
just prior to sending our information through the quantum channel that causes phase errors and
just after receiving the quantum information we should apply Hadamard gates. Hence we are led
to the circuit:

|ψ〉 • • W E W • • X

|0〉 �������	 W E W �������	

�
��� •

|0〉 �������	 W E W �������	

�
��� •

(2.20)

Now, will this work? Certainly it will work, this is just a basis change and the fidelities will be
identical to the bit-flip analysis. What does this circuit do? Instead of encoding into the sub-
space spanned by |000〉 and |111〉, this code encodes into a subspace spanned by |+++〉 and
|−−−〉, where |±〉 = 1√

2
(|0〉 ± |1〉). Thus we see that, by expanding our notion of encoding

beyond encoding into something simple like the repeated computational basis states, we can deal
with a totally different type of error, one that does not really have a classical analogy in the
computational basis.

We are just putting off the question of what happens when we have arbitrary errors, of
course; but notice something here. The phase-flip error model is equivalent, via a change in
Kraus operators, to the phase damping model that has Kraus operators:

B0 =
[√

1 − q 0
0

√
1 − q

]
, B1 =

[√
q 0

0 0

]
, B2 =

[
0 0
0

√
q

]
. (2.21)

When p
2 = q, these were the same superoperator. We can express the above Kraus operators as

B0 =
√

1 − qI, B1 =
√
q

2
(I + Z), B2 =

√
q

2
(I − Z). (2.22)

Surely, since this is the same superoperator, our analysis of the error-correcting procedure will
be identical and we will be able to increase the probability of successfully correcting this model
given q ≤ 1

4 . But the Bi operators are sums of I and Z errors. Thus, a code designed to correct
single Z errors seems to be working on superoperators that have Kraus operators which are sums
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of identity and Z errors. Why is this so? Well, we have some encoded information |ψ〉. Then
a Kraus operator that is the sum of terms which we can correct occurs (plus terms we cannot
correct). Then we perform the measurement to distinguish which subspace our error has taken
us to. But, at this point, the Kraus operators that are sums of errors get projected onto one of the
error subspaces. Thus, in effect, the fact that the error is a sum of errors gets erased when we
do this projection. We will return to this fact later, but this is an important point. While quantum
errors may be a continuous set, the error-correcting procedure can, in effect, digitize the errors
and deal with them as if they formed a discrete set.

2.2.5 The Shor code

So far we have dealt with two models of errors, bit-flip errors and phase-flip errors. We have also
seen that if a code corrects an error then it will be able to correct Kraus operator errors that have
a sum of these errors. Thus, we expect that if we can design a quantum error-correcting code
(QECC) that can correct a single X , Y , or Z error, then this can correct an arbitrary error on a
single qubit. Indeed, Peter Shor designed [S95] just such a code (Steane independently arrived
at the idea of QECC in [S96c]). How does this code work? Well we have already seen that if we
encode into the subspace spanned by |000〉 and |111〉, then we can correct a single bit-flip error.
What do single phase-flip errors do to this code? Well, notice that ZII|000〉 = IZI|000〉 =
IIZ|000〉 = |000〉 but ZII|111〉 = IZI|111〉 = IIZ|111〉 = −|111〉. Thus we see that, unlike
bit-flip errors, single phase-flip errors on this code act to distort the information encoded into
the subspace. But also notice that these single phase-flip errors act like phase-flip errors on the
encoded basis |000〉, |111〉. But we have seen how to deal with phase-flip errors. Suppose we
define the states

|p〉 =
1√
2
(|000〉 + |111〉), (2.23a)

|m〉 =
1√
2
(|000〉 − |111〉). (2.23b)

Then a single phase-flip error on these two states sends |p〉 to |m〉 and vice versa, i.e., it looks
like a bit-flip on these qubits. We can thus deal with these single phase-flip errors by using a
bit-flip code. In particular, we define the two nine-qubit states:

|0L〉 = |ppp〉 =
1

2
√

2
(|000〉 + |111〉) ⊗ (|000〉 + |111〉) ⊗ (|000〉 + |111〉), (2.24a)

|1L〉 = |mmm〉 =
1

2
√

2
(|000〉 − |111〉) ⊗ (|000〉 − |111〉) ⊗ (|000〉 − |111〉). (2.24b)

Suppose we encode a qubit of quantum information into the subspace spanned by these two
states. Now single phase-flip errors can be fixed by diagnosing what subspace the |ppp〉 and
|mmm〉 subspace has been sent to. Further single bit-flip errors can be dealt with from within
each |p〉 and |m〉 state: these states are encoded states in our original bit-flip code. Putting this
together, we see that we should be able to use this error-correcting code to correct bit-flips and
phase-flips. Actually it can do more, and indeed it can handle a single Y error as well.
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To see this let us construct the circuit for encoding into this code and then performing the
decoding and correction.

|ψ〉 • • W • • E • • X W • • X

|0〉 �������	 E �������	

�
��� •

|0〉 �������	 E �������	

�
��� •

|0〉 �������	 W • • E • • X W �������	

�
��� •

|0〉 �������	 E �������	

�
��� •

|0〉 �������	 E �������	

�
��� •

|0〉 �������	 W • • E • • X W �������	

�
��� •

|0〉 �������	 E �������	

�
��� •

|0〉 �������	 E �������	

�
��� •

(2.25)

Now, first of all, isn’t this beautiful! Notice the three blocks of three in this code. Also notice how
these blocks, when there is either no error or a single X error in the superoperators,1 produce a
channel on the outer three wires (just after the first triple of W s and before the second triple of
W s) which is the identity (because these are designed to correct just that error). But what about if
a single Z error occurs. As we noted above, this means that on the encoded quantum information
this acts like a Z error on the |p〉, |m〉 states. Since only a Z error occurs, we are not taken out of
the |p〉 and |m〉 subspace by this error, and so the effect of the error correction in an inner block
will be to produce a state that has a single-qubit Z error on the outer wire. Now we see how the
code corrects this single Z error: this is just the phase-flip error-correcting code!

But what happens if, say, a single Y = iXZ error occurs? First notice that the global phase
i doesn’t really matter. So we can assume that the error is XZ. Now the Z error acting on the
encoded state acts within the encoded space as a Z error. Thus, imagine performing this error,
and then running the bit-flip code. The bit-flip code will correct the X error, but the end result
will be that a Z error has occurred on the encoded information. But then the Z error will be
corrected by the outer code. Thus we see that a single Y error will be corrected by this code.

So what have we in Shor’s code? We have a code that can correct any single-qubit error from
the set {X,Y, Z}. But, as we have argued above, this means that any single-qubit error that is a
sum of these errors will also be corrected (we will make this argument rigorous in Section 2.6).
So if a single arbitrary error occurs on our qubit, Shor’s code will correct it. We call this a QECC
that can correct a single-qubit error.

What have we learned? We have learned that it is possible to circumvent the objections we
raised early: cloning, measurement, and continuous sets of errors, and to enact error correction

1 Of course, in general our superoperators will each contain error terms, but we will simply talk about the case where
there is one such error since this is, to first order, the most important error, assuming that the errors are “weak enough.”
Yes, this is all rather vague right now, but we need to make progress without getting bogged down in the details.
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on quantum information. What does this mean for practical implementations of a quantum com-
puter? Well, it means that more sophisticated versions of QEC might be able to make a very
robust computer out of many noisy components. There are many issues that we need to discuss
in this theory, and the full story of how to build such a quantum computer is the subject of fault-
tolerant quantum computation. A main aim in the next section will be to obtain an understanding
of the theory of QEC.

2.3 The quantum error-correcting criterion
Above we have seen the simplest example of a QECC that is truely quantum in nature, Shor’s
code. The basic idea there was that we encode quantum information into a subspace of the Hilbert
space of many quantum systems. This is the principle idea of a quantum error correcting code.
In particular, this is an example of a subspace QECC where the information is encoded into a
subspace of the larger Hilbert space of the system in question. Later we will encounter a variation
on this idea known as subsystem QECCs. Give that a QECC is nothing less than a subspace, an
important question to ask is under what conditions does a subspace act as a QECC.

Suppose that we have a quantum system that evolves according to some error process that
we represent by the superoperator E . We assume that this superoperator is given by some Krauss
operator sum representation

E [·] =
∑
k

Ek[·]E†
k. (2.26)

In general, our codes will not be able to reverse the effect of all errors on our system: the goal of
QEC is to make the probability of error so small that it is effectively zero, not to eliminate the
possibility of error completely (although philosophers will argue about the difference between
the two). It is therefore useful to assume that the Kraus operators in the expansion for E are made
up of some errors Ei, i ∈ S, which we wish to correct. This will be a good assumption because
the real error process will contain these terms, which we will then be certain we have fixed, plus
the errors that we might not fix. We will return to this point later. Thus, with this assumption,
we may think about E as having Kraus operators, some of which are errors Ei that we wish to
correct and some of which are not. Note that this assumption is not necessary, but is simply a
convenience for the short term. Define F as the operator,

F [·] =
∑
i∈S

Ei[·]E†
i . (2.27)

Notice that F will not necessarily preserve the trace of a density matrix. This will not stop us
from considering reversing its operation.

So given F with some Kraus operators Ei we can ask, under what conditions is it possible
to design a quantum code and recovery operations R such that

R ◦F [ρC ] ∝ ρC , (2.28)

for ρC with support over the code subspace, HC ⊆ H ? Why do we use ∝ here instead of =?
Well, because E is not trace-preserving. This means that there may be processes occurring in the
full D that occur with some probability and we do not need to preserve ρ on these errors.

Let us call a basis for the code subspace |φi〉. HC = span{|φi〉}. We will show that a
necessary and sufficient condition for the recovery operations to preserve the subspace is given
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by the Knill–Laflamme quantum error-correcting code criterion [KL97]:

〈φi|E†
kEl|φj〉 = Cklδij , (2.29)

where Ckl is a Hermitian matrix, sometimes called the code matrix. It tells us when our encoding
into a subspace can protect us from quantum errors Ek. As such, it is a very important criterion
for the theory of QEC. Lets show that this is a necessary and sufficient condition.

2.3.1 Sufficiency
Let us begin by showing that if this criterion is satisfied, we can construct a recovery operation
R with the desired properties.

The first thing to do is to change the error operators. Instead of discussing the error operators
Ek, define a new set of error operators Fm =

∑
k umkEk, where ulk are the elements of a unitary

matrix u. It is a simple exercise to show that this means that Fl represents the same superoperator.
Now we see that, since the Ei satisfy the error-correcting criterion,

〈φi|F †
mFn|φj〉 =

∑
k,l

〈φi|u∗mkE†
kunlEl|φj〉 =

∑
k,l

u∗mkCklunlδij . (2.30)

Since Ckl is Hermitian, it is always possible to choose u = {uij} such that it diagonalizes this
matrix,

〈φi|F †
mFn|φj〉 = dmδm,nδi,j , (2.31)

with dm ∈ R. Now define the following operators for dk �= 0:

Rk =
1√
dk

∑
i

|φi〉〈φi|F †
k , (2.32)

and if dk = 0 then let Rk = 0. Here
∑
i |φi〉〈φi| is the projector onto the code subspace. We

want to show that a recovery superoperator with Rk as its Kraus operators will correctly recover
our erred quantum information:∑
k

Rk
∑
l

(
FlρCF

†
l

)
R†
k =

∑
k|dk �=0

1√
dk

∑
i

|φi〉〈φi|F †
k

∑
l

(
FlρCF

†
l

) 1√
dk

∑
j

Fk|φj〉〈φj |.

(2.33)

If we can show that for ρC = |φm〉〈φn| this produces something proportional to ρC , then we will
have shown that the recovery correctly restores information in the subspace (since by linearity
this will work for the entire density matrix). Substituting this ρC in, we obtain∑

k|dk �=0

1
dk

∑
i

|φi〉〈φi|F †
k

∑
l

(
Fl|φm〉〈φn|F †

l

)∑
j

Fk|φj〉〈φj |. (2.34)

Using the quantum error-correcting criterion, this becomes∑
k|dk �=0

1
dk

∑
ilj

|φi〉dkδlkδimdkδlkδjn〈φj | =
∑
k

dk|φm〉〈φn| =

(∑
k

dk

)
ρC . (2.35)

Thus we see that, indeed, the recovery produces a state proportional to ρC . Notice that if E is
trace-preserving, then

∑
k dk = 1 and then we recover exactly ρC , as desired.
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We need to check that Rk forms a valid superoperator. Check,

R =
∑
k

R†
kRk

=
∑

k|dk �=0

1
dk

∑
i,j

Fk|φi〉〈φi||φj〉〈φj |F †
k =

∑
k|dk �=0

1
dk

∑
i

Fk|φi〉〈φi|F †
k . (2.36)

Notice, using the quantum error-correcting criterion, that this operator is a projector:

R2 =
∑

k|dk �=0

1
dk

∑
i

Fk|φi〉〈φi|F †
k

∑
k′|dk′ �=0

1
dk′

∑
i′
Fk′ |φi′〉〈φi′ |F †

k′

=
∑

k|dk �=0

1
dk

∑
i

Fk|φi〉
∑

k′|dk′ �=0

1
dk′

∑
i′
dkδk,k′δi,i′〈φi′ |F †

k′

=
∑

k|dk �=0

1
dk

∑
i

Fk|φi〉〈φi|F †
k = R. (2.37)

Thus, if we add one extra (if necessary) projector to theRks that has support on the space orthog-
onal to this projector, I −∑

k R
†
kRk, then we will obtain a complete set of Kraus operators that

satisfy the proper normalization condition for the Kraus operators. Thus, we have seen that we
have a valid recovery operator that does the proper recovery and that this valid recovery operator,
with the addition of possibly one extra Kraus operator, is indeed a valid superoperator.

2.3.2 Necessity

Let us show the necessity of the quantum error-correcting criterion. Errors followed by recovery
produces the following evolution on an encoded state:

∑
k

Rk

(∑
i

EiρCE
†
i

)
R†
k = cρC . (2.38)

We want to show that this implies the error-correcting criterion. Note that ρC by itself is equiva-
lent to a superoperator in which no evolution has taken place. Express the above as∑

k,l

(RkEi)ρC(E†
iR

†
k) = cIρCI. (2.39)

Now let PC be a projector onto the code subspace, PC =
∑
i |φi〉〈φi|. Then the above criterion

is that, for all ρ, ∑
k,l

(RkEiPC)ρ(PCE
†
iR

†
k) = cPCρPC . (2.40)

Invoke now the unitary degree of freedom of the Kraus operator sum representation. This says
that there must exist a unitary transform on the superoperators on the left-hand side of the equa-
tion such that one obtains only the single superoperator on the right-hand side of the equation.
This means that there must exist an orthogonal set of vectors with coefficients uki such that

RkEiPC = ukicPC . (2.41)
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Taking the conjugate transpose of this equation and setting i = j yields

PCE
†
jR

†
k = u∗kjc

∗PC . (2.42)

Multiplying this equation on the left of the original equation yields

PCE
†
jR

†
kR

†
kEiPC = u∗kjuki|c|2PC . (2.43)

Summing this equation and using the fact that R must be a trace-preserving operator,

PCE
†
iEjPC =

∑
k

u∗kjuki|c|2PC . (2.44)

Defining Cij =
∑
k u

∗
kjuki|c|2, this is just

PCE
†
iEjPC = CijPC , (2.45)

where we see that Cij is Hermitian. Taking matrix elements of this equation and relabeling i
and j as k and l then yields the quantum error-correcting criterion, Eq. (2.29). Thus we have
established the necessity and sufficiency of the quantum error-correcting criterion.

2.4 The distance of a quantum error-correcting code
The general theory of QECCs is designed to deal with an arbitrary set of errors {Ei} and an
arbitrary size of the subspace into which we encode. However, in many cases we will spe-
cialize to the case where the information is encoded across qubits, and further where we con-
sider {Ei} to be made up of tensor products of Pauli operators of weight less than some fixed
length t. Consider an operator P on n qubits that is made up of a tensor product of Pauli op-
erators {I,X, Y, Z}. The number of nonidentity (i.e., not I) terms in this operator is called the
weight of P . Thus, the situation we are concerned with is where the set of correctable errors is
Et = {P | weight of P is less than t}. In the case where we have a QECC on n qubits, where
we encode k qubits into the code, and the maximum number of errors the code can correct is t,
then we call this a [[n, k, d]] code, where d = 2t+1 is the distance of the code. The distance of a
code is the smallest weight operator that can be used to enact a transformation on the information
encoded into the code.

2.5 Content of the quantum error-correcting criterion and
the quantum Hamming bound

What is the content of the quantum error-correcting criterion, 〈φi|E†
kEl|φj〉=Cklδij , Eq. (2.29)?

First look at the δij . This implies that codewords after being changed by the error El are orthog-
onal to the codewords after being changed by the error Ek. If l = k this implies that information
in codewords is not distorted by the effect of error Ek: they may be rotated, but the inner product
between all codewords will be the same before as after (up to a full normalization factor). In our
example of QECCs for the bit-flip code, we saw that each possible error could act to take the
error to an orthogonal subspace. If every such error acts this way for a code, then the code is said
to be nondegenerate. In this case, Ckl will be diagonal. Some codes, however, do not possess
this property: there are multiple errors that can produce the same syndrome, but the recovery
procedure works in spite of this.

https://doi.org/10.1017/CBO9781139034807.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139034807.004


60 Dave Bacon

For nondegenerate codes there is a nice bound on the size of the codes. Suppose that we wish
to encode k qubits into n bare qubits in a QECC that corrects errors on t or fewer qubits, (i.e., a
[[n, k, 2t + 1]] code). In order for a nondegenerate QECC to correct all of these errors, for each
error there must be an orthogonal subspace. There are

(
n
j

)
places where j errors can occur. And

in each of these places there are three different nontrivial Pauli errors. Thus, the total number of
errors for such a code we have described is

t∑
j=0

(
n

j

)
3j . (2.46)

For each of these errors, there must be a subspace as big as the size of the encoded space, 2k, and
these subspaces must be orthogonal. Thus, each subspace must fit into the full space of n qubits.
We then obtain the bound

t∑
j=0

(
n

j

)
3j2k ≤ 2n. (2.47)

This is called the quantum Hamming bound. Suppose that we want a code that corrects t = 1
error and encodes k = 1 qubit. Then we obtain the inequality (1 + 3n)2 ≤ 2n. This inequality
cannot be satisfied for n ≤ 4. Thus, for nondegenerate codes, the smallest code that can correct
a single error and encodes a single qubit has n = 5. Indeed, we will find that just such a code
exists (such codes that saturate this bound are called perfect codes).

2.6 Digitizing quantum noise

Suppose that we have an error-correcting code that corrects a set of errors {Ek}. What other
errors will this code correct? It turns out that this code will correct any linear combination of
these errors. To see this, work with the errors that satisfy the diagonal error-correcting criterion,
as in the sufficiency construction above (the Fls). Now suppose that the actual Fls are written
as a sum over the Fls we can correct: Gl =

∑
p flpFp. Then, using the recovery operation we

defined in the sufficiency proof, we obtain that the action of recovery after the error is

∑
k

Rk
∑
l

(
GlρCG

†
l

)
R†
k

=
∑

k|dk �=0

1√
dk

∑
i

|φi〉〈φi|F †
k

∑
l

(
GlρCG

†
l

) 1√
dk

∑
j

Fk|φj〉〈φj |. (2.48)

We wish to show that if we operate on ρC = |φm〉〈φn| we will again obtain something propor-
tional to ρC . Thus we obtain

∑
k|dk �=0

1
dk

∑
i

|φi〉〈φi|F †
k

∑
l

(
Gl|φm〉〈φn|G†

l

)∑
j

Fk|φj〉〈φj |. (2.49)
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Substituting our expression for Gl as a sum over Fk yields

∑
k|dk �=0

1
dk

∑
i

|φi〉〈φi|F †
k

∑
l

(∑
p

flpFp|φm〉〈φn|
∑
q

f∗lqF
†
q

)∑
j

Fk|φj〉〈φj |. (2.50)

Using the quantum error-correcting criterion, we see that this becomes∑
k|dk �=0

1
dk

∑
iljpq

|φi〉dkδpkδimdkδqkflpf∗lqδjn〈φj | =
∑
kl

dkflkf
∗
lk|φm〉〈φn|

=

(∑
kl

dkflkf
∗
lk

)
ρC . (2.51)

So, even for this linear sum of errors, we correctly restore the coded subspace.
What have we done? We have shown that even though we have designed a code to correctEk

operators, it can in fact correct any linear sum of these operators. This is great! Why? Because,
for example, if we want to correct a superoperator that has one qubit that has been arbitrarily
erred (and only one qubit), then we need only consider a code that corrects X , Y , and Z errors,
since every single-qubit error operator can be written as a sum of these errors (plus identity,
which we, by default almost always include in our possible errors). This is what is known as
making the errors discrete or digital. This discovery, that a code that was designed to correct a
discrete set of errors can also correct a continuous set of errors, is one of the most important
discoveries in all of quantum computing. The reason for this property is that quantum theory is
linear. This linearity has a lot to do with why we can treat amplitudes like fancy probabilities
and indeed, when we view quantum theory this way, we are not quite as surprised as if we
thought about the components of a wave function as being some parameters with a reality all
their own.

2.7 Classical linear codes

Above we have seen one of the most basic QECCs, the Shor code. The Shor code is a [[9,1,3]]
QECC. In order to discuss further QECCs, it is useful to understand a class of traditional classical
codes known as classical linear codes (of course they were known just as linear codes until
quantum computing came along). In this section we will discuss classical binary linear codes, a
subset of classical linear codes.

A classical binary code is a method for encoding k bits into n bits. In other words, for every
one of the 2k combinations of the k bits, a different n-bit vector is used to encode these k bits (so,
obviously k ≤ n). A classical binary code is called linear if the set of binary strings used in the
code forms a closed linear subspace C of Fn2 . Recall that F2 is the finite field with two elements,
which we can call 0 and 1. Since F2 is a field we can add and multiply these numbers using the
normal rules of arithmetic with the only modification that addition is done modulo 2. We can then
create a linear vector space of dimension n, Fn2 , by considering ordered sets of n elements of
F2: these are just binary vectors. In the linear vector space we can now add two elements, which
corresponds to the process of bit-wise addition modulo 2 of the elements of the two elements. To
be clear, an example of the addition of two vectors over F 5

2 is 01100 + 01010 = 00110. Using
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these simple definitions, a closed linear subspace C of Fn2 is a set of vectors such that if the
codeword v1 is in C and v2 is in C, then v1 + v2 is in C.

Since a classical linear binary code forms a closed linear subspace, we may express any
codeword in a complete basis, {wi}ki=1, for this subspace:

v =
k∑
i=1

aiwi, (2.52)

for v ∈ C, where ai ∈ {0, 1}. From this expression we can explicitly see how to encode into
such a code: if we let the ai denote the k-bit binary string we wish to encode, then we see that,
given a basis {wi}ki=1, we can encode by simply taking the appropriate linear combination of
the basis vectors. Of course there are different choices of basis vectors, and while these lead to
different explicit schemes for encoding, the codes in different bases are essentially the same.

Given the basis expansion in Eq. (2.52) it is natural to define the generator matrix. This is a
matrix with a set of basis vectors for the rows of the matrix:

G =

⎛⎜⎜⎜⎝
w1

w2

...
wk

⎞⎟⎟⎟⎠ . (2.53)

Thus, the generator matrix for a k-bit linear code encoding into n bits is a k by n dimensional
matrix. With the generator matrix one can immediately see how to encode a binary k-bit vector
by simply taking the appropriate left multiplication. If a is the k-bit vector (a in F k2 ), then the
encoding procedure is simply the matrix multiplication aTG.

An example of a generator matrix is the matrix for the seven-bit Hamming code. In this case
the generator matrix is

G =

⎡⎢⎢⎣
1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1
1 1 1 0 0 0 0

⎤⎥⎥⎦ . (2.54)

To encode 0110 using this matrix we left multiply by the row vector (0, 1, 1, 0) and obtain the
result (0, 1, 1, 1, 1, 0, 0). Thus 011 is encoded as 0111100 using this generator matrix.

The generator matrix is a nice way to specify a linear subspace, but what about the error-
correcting properties of such codes? In order to discuss error correction on classical binary linear
codes, it is useful to define the parity check matrix. The parity check matrix, H , is defined such
that its null space is the code C. In other words, the check matrix is a n − k set of constraints
such that

Hv = 0, (2.55)

for all v ∈ C. H is an n − k by n matrix. Here 0 is a k-dimensional column vector made of
zeros. Note that these dimensions arise because H has rows made up of the maximal number of
linearly independent vectors that are orthogonal to the subspace C.

What use is the parity check matrix? Well, as one can guess from its name, it is used to check
whether an error has occurred on information encoded into the binary code and to (hopefully)
correct this error. Classical errors are simply bit-flips, so any error on a codeword v can be

https://doi.org/10.1017/CBO9781139034807.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139034807.004


Introduction to quantum error correction 63

represented by addition over Fn2 . Thus, if e is an n-bit binary vector with 1s where the bit-flips
occur, then the result of this error on the codeword is v + e. If we apply H to this resulting erred
codeword, we obtain H(v+ e) = He, since v is in C. He is an n− k-bit binary string which we
call the syndrome.

Suppose that we wish to correct a set of errors S = {ei}. If for every error ei there is
a unique syndrome Hei, then we can correct this set of errors. Suppose that w = v + ei is
the error ei acting on codeword v. Error correction is then simply performed by calculating the
syndrome Hw = Hei. Since Hei uniquely identifies the error ei, we can apply to w the bit-
flips corresponding to ei. In other words, we can perform the error-correction procedure w + ei,
which since x + x = 0 over Fn2 , is equal to w + e1 = v + e1 + e1 = v. Thus, we see that Hw
denotes the syndrome of what error has occurred. Contrariwise, if there are two errors, e1 �= e2,
that have the same syndrome, then if the error was e1 we might apply e2 to fix the error, resulting
in w+e1 +e2. Since e1 +e2 does equal 0, this will result in an error on the encoded information.

For the seven-bit code described in Eq. (2.54), the parity check matrix is

H =

⎡⎣1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 1 1 1 0

⎤⎦ . (2.56)

One can check that all single-bit errors give different syndromes using this parity check matrix.
To see this, note that single-bit-flip errors correspond to errors e with one 1 and six 0s. When
applying H to these vectors one obtains as an output a three-bit syndrome made up of one of
the columns of H . Since all of these columns are different, we see that each such error yields a
distinct syndrome.

Finally we introduce the equivalent notion of the parameters of classical linear binary code
as we did for a QECC. In particular, we say a code is an [n, k, d] code if it encodes k bits into
n bits and the distance of the code is d. The distance of a code is the weight (number of 1s in
the vector describing the error) of the smallest error that transforms one codeword into another.
A code with a distance of d can correct t = �d−1

2 � errors. (The picture you should have in mind
is that the codewords are separated by a distance d and thus in balls of radius t there must be
unique codewords that allow one to uniquely diagnose the error.)

One further concept we will find useful in QECCs is the notion of the dual of a classical
linear code. Recall that the generator matrix, G, for an [n, k, t] code C is a k × n matrix and
the parity check matrix, H , is an (n − k) × n matrix. One can then define the dual of C, de-
noted C⊥, by exchanging the role of the parity check and generator matrices. In particular, if we
define G⊥ = H and H⊥ = G, then this defines an [n, n− k, t′] classical linear binary code. The
requirement that the parity check matrix acting on a codeword yields 0 can be seen to be satisfied
by noting that this condition for the original code C is HGT = 0, and taking the transpose of
this equation yields the similar condition for the dual code, GHT = 0. The dual code is made
up of all the codewords that are orthogonal to the original codewords. Note that codewords in
Fn2 can be orthogonal to itself (if it is made up of an even number of 1s it will be orthogonal to
itself). Thus it is possible that a code C may contain as a subspace its dual code C⊥. Further, it
may even be possible, if n = 2k, that C = C⊥. Such a code is called a self-dual code and will
be used in the constructions described in the next section.
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2.8 Calderbank, Shor, and Steane codes
We previously saw how Shor’s nine-qubit QECC could be used to protect against bit-flip errors
as well as against phase-flip errors. Remarkably, this code also protected against a combined
bit-flip and phase-flip error and hence, by linearity, any combination of these errors. Here we
will describe a similar set of codes that independently treat bit-flip and phase-flip errors. These
codes are constructed from classical linear binary codes and are known as Calderbank, Shor, and
Steane (CSS for short) codes [CS96, S96d].

Suppose we have an [n, k, d] classical binary linear code C with generator matrix G and
parity check matrix H . One could naturally define a QECC that can correct for bit-flips on this
code, but it is unclear how this could be used to construct a code that deals with phase-flips.
Consider, however, a state that is an equal superposition over the codewords in C:

|ψ〉 =
1√
2k

∑
v∈C

|v〉. (2.57)

To understand how phase-flips act on this state, we apply a Hadamard transform to every qubit
(such that the role of phase-flips and bit-flips is exchanged):

W⊗n|ψ〉 =
1√

2k+n
∑
v∈C

∑
w∈Fn

2

(−1)vw|w〉, (2.58)

where vw = v1w1 + v2w2 + · · · + vnwn mod 2. It is easy to verify that∑
v∈C

(−1)vw =
{

2k if w ∈ C⊥

0 otherwise
, (2.59)

and thus

W⊗n|ψ〉 =
1√

2n−k
∑
w∈C⊥

|w〉. (2.60)

This should give you an idea: since the Hadamard exchanged bit-flips and phase-flips, if the code
C⊥ corrects bit-flip errors, then we could protect |ψ〉 from phase-flip errors using this protection.
Of course, at this point |ψ〉 is just a single state, not a QECC of any nontrivial dimension, but
this is the basic idea of how CSS codes work.

Suppose that C1 is an [n, k1, d1] classical binary linear error-correcting code and C2 is a
subcode of C1 that is a [n, k2, d2] code (k2 is less than k1). Because C2 is a subcode of C1 we
can define the different cosets of C2 in C1. In particular, consider the set Cw = {v+w|v ∈ C2}.
These sets form a partition of C2 into different cosets. In other words, it is possible to pick a set
of k1 − k2 vectors such that each Cw is a unique set of vectors in C1. We call these vectors coset
representatives. Given this, we can now define the CSS codeword states. In particular, we define

|v〉 =
1√
2k2

∑
w∈C2

|w + v〉, (2.61)

where v is a coset representative. Note that each of these states contains a superposition over
codewords contained in C1 and further, because the cosets do not overlap, these codewords are
orthonormal.

The first idea here is that we will use the code C1 to correct for bit-flip errors. Note that, as
we have seen with the Shor code, the fact that we have a superposition of codewords is not an
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obstacle to protecting such states from bit-flip errors. The second idea is that we can use C⊥
2 to

protect for phase-flip errors. To see how this works, apply the n-qubit Hadamard transform to
our codewords. A slight modification of our above calculation shows that

W⊗n|v〉 =
1√

2n−k2

∑
w∈C⊥

2

(−1)vw|w〉. (2.62)

Notice now that we have codewords that are superpositions over C⊥
2 . Thus, if C⊥

2 can correct t2
bit-flip errors, then we can use this correction (in the appropriately changed basis) to protect the
quantum information in the above code space against t2 phase-flip errors.

To summarize, if we have an [n, k1, d1] code and an [n, k2, d2] subcode whose dual is an
[n, n−k2, d3] code, the code described above is a QECC with parameters [[n, k1−k2, d]], where
d is the minimum of d1 and d3. These codes are the CSS codes.

The most famous example of a CSS code is the [[7, 1, 3]] Steane code. This code arises from
the Hamming code we have described in the previous section. In particular, let C1 be the [7, 4, 3]
Hamming code described in Section 2.7. Examining the parity check matrix for this code one
can easily see that the dual of C1 is contained in C1 (this is the code whose generator matrix
is the parity check matrix of C1). For the Steane code we choose C1 as the Hamming code and
C2 = C⊥

1 . The dual of C2 is therefore C1 again. Thus, since C1 has a distance of 3, the Steane
code has a distance of 3. Further, since C2 encodes one less bit than C1, the Steane code can
encode 1 qubit. Thus we see, as claimed, that the Steane code is a [[7, 1, 3]] QECC.

2.9 Stabilizer quantum error-correcting codes

CSS codes were among the first QECCs discovered. Following their discovery, a class of codes
that are more general than the CSS codes was discovered, which had the property of also unifying
other known QECCs [G96a, CRS+98]. These codes are known as stabilizer QECCs. The theory
of stabilizer QECCs is a tool of great use in quantum computing today, both within the theory of
QEC and elsewhere. It is, of course, important to remind oneself that this is not the only type of
QECC out there. In this section we describe the basis of stabilizer QECCs.

2.9.1 Anticommuting

Suppose that we have a set of states |ψi〉 that are +1 eigenstates of a Hermitian operator S,
S|ψi〉 = |ψi〉. Further suppose that T is an operator that anticommutes with S, ST = −TS (T
is not zero). Then it is easy to see that S(T |ψi〉) = −TS|ψi〉 = −(T |ψi〉). Thus, the states T |ψ〉
are −1 eigenstates of S. Since the main idea of QEC is to detect when an error has occurred on
a code space, such pairs of operators S and T can be used in such a manner: if we are in the
+1 eigenvalue subspace of S then an error of T on these subspace vectors will move to a −1
eigenvalue subspace of S: we can detect that this error has occurred.

In fact, we have already seen an example of this in the bit-flip code. Recall that we noted that
the code subspace for this code is spanned by |000〉 and |111〉 and that these two operators are
+1 eigenstates of both S1 = Z⊗Z⊗ I and S2 = Z⊗ I⊗Z. Further note that (X⊗ I⊗ I)S1 =
−S1(X ⊗ I ⊗ I) and (X ⊗ I ⊗ I)S2 = −S2(X ⊗ I ⊗ I). Thus, if we start out in the +1
eigenvalue subspace of both S1 and S2 (like the bit-flip code), then if a single bit-flip occurs on
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the first qubit, we will now have a state that is in the −1 eigenvalue subspace of both S1 and S2.
This at least fulfills our requirement that our errors should take us to orthogonal subspaces.

More generally, consider the following situation. Suppose that we have a set of operators Si
such that our code space is defined by Si|ψ〉 = |ψ〉 for |ψ〉 in the code subspace. Now suppose
that we have errors Ei such that the products E†

kEl always anticommute with at least one Si.
Recall that the quantum error-correcting criterion was

〈φi|E†
kEl|φj〉 = Cklδij .

Since the codewords are +1 eigenvalue eigenstates of Si, we find that

〈φi|E†
kEl|φj〉 = 〈φi|E†

kElSi|φj〉. (2.63)

Suppose that Si is one of the particular Sis that anticommute with E†
kEl. Then this is equal to

〈φi|E†
kEl|φj〉 = 〈φi|E†

kElSi|φj〉 = −〈φi|SiE†
kEl|φj〉. (2.64)

But, since Si acts as +1 on the code space, this is just

〈φi|E†
kEl|φj〉 = 〈φi|E†

kElSi|φj〉 = −〈φi|SiE†
kEl|φj〉 = −〈φi|E†

kEl|φj〉. (2.65)

This implies that

〈φi|E†
kEl|φj〉 = 0. (2.66)

Thus, we have shown that, given the Si and E†
kEl that properly anticommute with these Si, the

set of errors {Ek} satisfies the quantum error-correcting criterion and therefore the code space is
a valid QECC for these errors.

This trick, of defining the states as being the +1 eigenstates of some operators and then not-
ing that if the product of error terms anticommutes then this is a valid quantum error-correcting
code, is at the heart of the reason we use the stabilizer formalism. But what should we use for the
Sis? Well, you might already be guessing what to use, because you recall that the Pauli group
has nice commuting, anticommuting properties and eigenvalues that are ±1 (or ±i). Indeed, this
is what we will use.

2.9.2 The Pauli and stabilizer groups
2.9.2.1 Pauli group First recall the definition of a group. A group is a set of objects G along
with a binary operation of multiplication that satisfies (0) [closure] g1g2 ∈ G for all g1, g2 ∈ G ,
(1) [associativity] g1(g2g3) = (g1g2)g3 for all g1, g2, g3 ∈ G , (2) [identity] there exists an el-
ement e ∈ G such that for all g1 ∈ G , g1e = g1, (3) [inverse] for every g1 ∈ G there exists
an element g2 ∈ G such that g1g2 = e, which we call the inverse of g1, written g2 = g−1

1 . The
Pauli group is a particular group that satisfies these group axioms. Actually, people in quantum
computing are very sloppy, and when they refer to the Pauli group they are usually refering to a
particular representation of the Pauli group by unitary matrices. We will slip into this nomencla-
ture soon enough; having learned a bad habit it is hard to go back.

What is this representation of the Pauli group, Pn? Recall that the Pauli operators on a
single qubit are {I,X, Y, Z}. The representation of the Pauli group we will deal with is the
group formed by elements of the form ikP1 ⊗ P2 ⊗ · · · ⊗ Pn, where each Pi is an element
of {I,X, Y, Z} and k ∈ {0, 1, 2, 3}. From this representation, we see that the Pauli group is a

https://doi.org/10.1017/CBO9781139034807.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139034807.004


Introduction to quantum error correction 67

non-Abelian group, i.e., the elements of the group do not all commute with each other. Some
important properties of elements of the Pauli group:

(i) Elements of the Pauli group square to ±I: P 2 = ±I .
(ii) Elements of a the Pauli group either commute PQ = QP or anticommute PQ = −QP .

(iii) Elements of the Pauli group are unitary PP † = I .

2.9.2.2 Stabilizer group Define a stabilizer group S as a subgroup of Pn which has elements
that all commute with each other and which does not contain the element −I . An example of a
stabilizer group on three qubits is the group with elements S = {III, ZZI, ZIZ, IZZ}. Notice
that here we have dropped the tensor product between the elements, i.e., ZZI = Z ⊗Z ⊗ I . We
usually do not specify all of the elements of the stabilizer group. Instead we specify a minimal set
of generators. A set of generators of a group is a set of elements of the group such that multipli-
cation of these generators leads to the full group. A minimal set of such generators is a set of gen-
erators of minimal size that has this property. In the example of S = {III, ZZI, ZIZ, IZZ},
this group is generated by ZZI and ZIZ: (ZZI)(ZIZ) = IZZ and (ZZI)2 = III . We
write this fact as S = 〈ZZI, ZIZ〉. For a stabilizer S we write a set of minimal generators as
S1, S2, . . . , Sr.

Now, since −I is not in the stabilizer, all elements of our stabilizer must square to +I .
Operators that square to +I must have eigenvalues +1 or −1. Since S is Abelian, we can write
a generic element of the stabilizer as Sa1

1 Sa2
2 · · ·Sark . Since S2

i = I , ai ∈ {0, 1}. Further, for
each a ∈ Zr2 the element of the stabilizer so specified is unique. Suppose that this was not true,
that Sa1

1 Sa2
2 · · ·Sark = Sb11 S

b2
2 · · ·Sbrk for a �= b. Then Sa1+b1

1 Sa2+b2
2 · · ·Sar+br

k = I . But this is
only true if ai = bi.

2.9.3 Stabilizer subspace and error correction

Now, given a stabilizer group S , we can define a subspace on our n qubits. In particular we
define this subspace as all states |ψ〉 that satisfy S|ψ〉 = |ψ〉 for all stabilizer elements S ∈ S .
Actually, we do not need all of these equations to define the code space. All we need are the
equations for the generators of the stabilizer: Si|ψ〉 = |ψ〉. Let us call the subspace defined by
these equations HS . Such stabilizer subspaces are very nice. One reason that they are nice is
that instead of specifying the states of the subspace we can just specify the generators of the
stabilizer group. This is oftentimes much easier. Further, as we will see, it is easy to figure out
the error-correcting properties of stabilizer subspaces.

In particular, suppose we have a stabilizer subspace for a code generated by S1, S2, . . . , Sr.
Then, suppose the Pauli operator P anticommutes with one of these generators Si. Then, as
above, for {|ψi〉} a basis for HS ,

〈ψi|P |ψj〉 = 〈ψi|PSi|ψj〉 = −〈ψi|SiP |ψj〉, (2.67)

so

〈ψi|P |ψj〉 = 0. (2.68)

Thus, as above, if {Ea} is a set of Pauli group errors, if we consider the productsE†
aEb and these

anticommute with at least one of the generators of S , then we have satisfied the error-correcting
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criterion for these errors:

〈ψi|E†
bEa|ψj〉 = 0. (2.69)

If these elements are themselves elements of the stabilizer, E†
aEb ∈ S , then

〈ψi|E†
bEa|ψj〉 = 〈ψi|S|ψj〉 = δij . (2.70)

For an error set {Ea}, if all of the products E†
aEb either anticommute with generators of the

stabilizer S1, S2, . . . , Sr or are elements of the stabilizer, then we see that the Ea satisfy the
quantum error-correcting criterion.

In our example where S = 〈ZZI, ZIZ〉, we can consider the set of errors comparising
the identity operator and all single-qubit bit-flip errors, {III,XII, IXI, IIX}. Then the set
of products of these errors is {III,XII, IXI, IIX,XXI,XIX, IXX}. Of these, the first
III is in the stabilizer. All of the others, however, anticommute with either ZZI or ZIZ. For
example, (XXI)(ZIZ) = −(ZIZ)(XXI). How do we check whether two Pauli group ele-
ments commute or anticommute? Suppose these group elements are P1 ⊗ P2 ⊗ · · · ⊗ Pn and
Q1 ⊗Q2 ⊗ · · · ⊗Qn. Then we count the locations where Pi and Qi differ and neither Pi nor Qi
is I . If this number is even, then these two Pauli group elements commute, and if it is odd, then
they anticommute.

If a stabilizer group has a minimal number of generators, which are S1, S2, . . . , Sr, what
is the dimension of the stabilizer subspace? Take the first stabilizer generator. This stabilizer
generator squares to identity, so has ±1 eigenvalues. Further, this stabilizer generator has trace
zero. Why? All of the Pauli operators are trace 0 except I which has trace 2. Since the stabilizer
generator cannot be identity (unless the stabilizer consists solely of the identity, a case we will
disregard) it is a tensor product of terms, at least one of which must be a Pauli element not
equal to I . Then, since Tr[A ⊗ B] = Tr[A]Tr[B], this implies that Tr[P ] = 0, for all Pauli
group elements except ±I . Thus, if we take S1 it must have 2n−1 eigenvalues +1 and 2n−1

eigenvalues −1. So S1|ψ〉 = |ψ〉 splits the Hilbert space of our n qubits in half. What happens
when we impose S2|ψ〉 = |ψ〉? Note that 1

2 (I + S1) is the projector onto the +1 eigenvalue
eigenspace of S1. We can thus use 1

2 (I + S1)S2 to understand how much of this subspace has
eigenvalues of S2 that are +1. Note that Tr[12 (I + S1)S2] = 0. Thus, we see that for the 2n-
dimensional subspace that satisfies S1|ψ〉 = |ψ〉, a subspace of dimension 2n−2 satisfies S2|ψ〉 =
|ψ〉. Continuing inductively, we see that each Si|ψ〉 = |ψ〉 cuts the space of the previous S1|ψ〉 =
|ψ〉, . . . , Si−1|ψ〉 = |ψ〉 in half.

What does this mean? This means that the dimension of a stabilizer subspace for a stabilizer
with r generators is 2n−r. It is also useful to notice that the dimension of the subspace with a
fixed set of ±1 eigenvalues of the Si operators is also 2n−r. For our example of S1 = ZZI and
S2 = ZIZ, this implies that the stabilizer subspace is two-dimensional, which is correct.

2.9.4 Logical operators for stabilizer codes

So, given a stabilizer group S generated by r elements, we now know that this specifies a
subspace of dimension 2n−r. This subspace can be used to encode k = n − r qubits. Is there a
nice way to talk about this subspace as k qubits? Indeed there is.
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The centralizer of the stabilizer group S in Pn is the set of operators P ∈ Pn that
satisfy PS = SP for all S ∈ S . Since our stabilizer group does not contain −I , it turns
out that the centralizer is equal to the normalizer. The normalizer N of S in Pn is the
set of operators P ∈ Pn such that PSP † ∈ S for all S ∈ S . Notice that the sta-
bilizer is automatically in the normalizer, since all of the elements of the stabilizer com-
mute with each other and are all unitary. An important set of operators are those that are
in the normalizer N but not in the stabilizer, N − S . Why are these elements important?
Because they represent logical Pauli operators on the k encoded qubits of our subsystem
code.

Let us see this for an example and then move on to understanding the logical opera-
tors in general. Our example is the stabilizer group generated by S1 = ZZI and S2 =
ZIZ. Then, elements of N − S are ik × {XXX,Y Y X, Y XY,XY Y,ZII, IZI, IIZ,
ZZZ, Y Y Y,XXY,XY X, Y XX}. Notice that if we take the group generated by the two opera-
torsXXX and ZII , each of these elements is equal to such a group member times an element of
the stabilizer group. What doesXXX do to our code space? Recall that the stabilizer subspace in
this example is spanned by |0L〉 = |000〉 and |1〉L = |111〉. Thus we see thatXXX|0L〉 = |1L〉,
XXX|1L〉 = |0L〉 and ZII|0L〉 = |0L〉, ZII|1L〉 = −|1L〉. In other words, XXX acts like
an encoded X operation on the subspace and ZII acts like an encoded Z operation on the sub-
space. Similarly, one can calculate that Y XX acts as Y on the code subspace. Also notice that
these operators preserve the code subspace. Now, since all the other elements of the normalizer
are either stabilizer elements or products of stabilizer elements, they will also preserve the code
subspace.

Following this example, we are motivated to define the group N /S . This is the normalizer
group quotient the stabilizer. We can write every element of N as RS, where S is a stabilizer el-
ement and R is not. Then, multiplication of these elements is like R1S1R2S2 = (R1R2)(S1S2).
This defines a multiplication rule for the Ris. This group is the group N /S . It is possible
to show that this group is equal to the Pauli group of size k = n − r. This means that it is
possible to generate this group by a set of Pauli operators X̄1, Z̄1, . . . , X̄k, Z̄k (along with a
phase ikI). These operators are the encoded Pauli operators on the subspace. (One thing to note
is that this choice of division into k different qubits is not unique. However, we will rarely
deal with the case where there is more than one encoded qubit, so this will not matter much
for us.)

Elements of N represent nontrivial operations on the encoded subspace. They are, then,
exactly the type of operators whose action we cannot detect on our QECC. Using this fact,
it is possible to give a very nice characterization of the quantum error-correcting criterion.
Suppose that we have a stabilizer S with normalizer N . Let Ea denote a set of Pauli er-
rors on the qubits. If E†

aEb /∈ N − S for all possible error pairs, then Ea is a set of cor-
rectable errors. Why is this so? Well, there are two cases. One is that E†

aEb is in S . Then
〈φi|E†

aEb|φj〉 = 〈φi|φj〉 = δij since E†
aEb acts trivially on the stabilizer subspace. The other

case is thatE†
aEb is not in the stabilizer and it is also not in the normalizer. This implies that there

must exist an element of the stabilizer S such that E†
aEbS �= SE†

aEb (recall the centralizer and
normalizer are the same for stabilizers). But all elements of the Pauli group either commute or
anticommute. This implies that E†

aEbS = −SE†
aEb. By our previous argument this implies that

〈φi|E†
aEb|φj〉 = 0.
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2.9.5 Examples of stabilizer codes

Here we present some examples of stabilizer codes.

2.9.5.1 Three-qubit bit-flip and phase-flip codes The example we have been dealing with,
which is generated by ZZI and ZIZ, is able to correct a single bit-flip. This code is called
the three-qubit bit-flip code. Its stabilizer and logical operators are

Element Operator

S1 ZZI

S2 ZIZ

X̄ XXX

Z̄ ZII

Similarly, we can construct the code that is designed to correct single phase flip errors. Recall
that this code was related to the bit-flip code by a Hadamard change of basis. This implies that
its stabilizer and logical operators are

Element Operator

S1 XXI

S2 XIX

X̄ XII

Z̄ ZZZ

Let us get on to codes that can correct single-qubit errors. We have already seen an example
of such a single-qubit error-correcting code, the Shor code. This is an example of a Shor [[9,1,3]]
quantum code. It turns out, since this code is really a concatenation of the bit-flip and phase-flip
codes, that the Shor code is also a stabilizer code. In fact, we see that in the Shor code we use
three bit-flip codes plus a single phase-flip code on the encoded information. From this it is easy
to deduce what the stabilizer of the Shor code is.

Element Operator

S1 ZZIIIIIII

S2 ZIZIIIIII

S3 IIIZZIIII

S4 IIIZIZIII

S5 IIIIIIZZI

S6 IIIIIIZIZ

S7 XXXXXXIII

S8 XXXIIIXXX

X̄ XXXXXXXXX

Z̄ ZZZZZZZZZ
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Notice that this is a degenerate code for single-qubit errors: operators like ZZIIIIIII act as
identity on the code space even though they are products of two single-qubit errors.

The nine-qubit code that Shor came up with is a rather large code (although it has a certain
beauty to it in its simplicity). What is the smallest code that can correct a single qubit error? This
code is the five-qubit QECC [BDS+96, LMP+96]. It is specified by

Element Operator

S1 XZZXI

S2 IXZZX

S3 XIXZZ

S4 ZXIXZ

X̄ XXXXX

Z̄ ZZZZZ

Notice that this code has stabilizer generators that are related to each other by a cyclic shift of the
qubits. This makes it rather easy to remember its stabilizer. The five-qubit code is notable in that
it is not an example of a CSS code. CSS codes have stabilizers that can be written as operators
that consist of allX or all Z (and I) operators in an appropriate chosen computational basis. This
complicates things for this code when we look at the issue of fault tolerance; so while this is a
nice code, it is not as nice as we would like. The five-qubit code is a [[5,1,3]] code. It is useful
to test your ability to spot when elements of the Pauli group commute or anticommute on the
five-qubit code, since it has nontrivial stabilizer elements.

The [[7,1,3]] Steane code that we discussed above can be written in stabilizer form as
follows:

Element Operator

S1 IIIXXXX

S2 IXXIIXX

S3 XIXIXIX

S4 IIIZZZZ

S5 IZZIIZZ

S6 ZIZIZIZ

X̄ XXXXXXX

Z̄ ZZZZZZZ

The Steane code is nice since it is a CSS code. We will use it in a lot of our examples since it has
some very useful properties and is easy to discuss, but not so big as to prevent us writing down
statements about it in explicit form.

2.9.6 Measurement of Pauli group projectors
Now that we have defined stabilizer codes, it is useful to discuss how to use them in practice.
One essential task we will need to perform is to make a projective measurement onto the +1
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and −1 eigenvalue eigenspaces of a general Pauli operator P that squares to identity, P 2 = I .
How do we do this? Well, we have already basically seen a trick for doing this. Consider the
following circuit:

P

|+〉 • W

�
���

(2.71)

What is the effect of this circuit? We can calculate that if our measurement obtains the result |0〉,
then the measurement operator we are measuring on the first qubit is

M0 = 〈0|BU |+〉B =
1
2
(I + P ), (2.72)

and if the measurement outcome is |1〉, then the measurement operator is

M1 = 〈1|BU |+〉B =
1
2
(I − P ). (2.73)

Thus, we see that this circuit can be used to make a projective measurement onto the +1 and
−1 eigenvalue eigenspaces of P . This is a very useful primitive for stabilizer codes. Notice that,
unlike in our introduction to error correction codes, here in order to make a measurement we
need to attach an ancilla qubit and will end up with the result of the measurement in this ancilla
qubit. Further note that the measurement is not destructive on the original qubit, in the sense that
while the measurement projects onto the subspaces, it leaves the resulting state in the appropriate
subspace.

2.9.7 Error recovery routine for stabilizer codes

Given a stabilizer code, how do we perform a procedure for QEC?
Suppose that we have a set of Pauli errors Ea that are correctible via the error-correcting

routine. Now we know that there must be a recovery routine for these errors. What is this recovery
routine?

The first possibility for an error Ea is that it is in the stabilizer. In this case there is no need
to perform QEC, since the effect of a stabilizer operator on our encoded quantum information
is identity Ea|ψ〉 = |ψ〉. So that case was easy! A second case is that Ea is not in the stabi-
lizer. Now we know that Ea, since it satisfies the error-correcting criterion, must take us to an
orthogonal subspace. What is this orthogonal subspace? Suppose that the stabilizer generators
are S1, . . . , Sr. Then if Ea is a correctable error not in the stabilizer, it will anticommute with
some of these generators Si. For these generators, the state Ea|ψ〉 will no longer be in the +1
eigenvalue subspace, but will be in the −1 eigenvalue eigenspace. To see this, simply note that
SiEa|ψ〉 = −EaSi|ψ〉 = −Ea|ψ〉 for |ψ〉 ∈ HS . Further, if Ea commutes with Si, then it does
not change the eigenvalue of Si. Thus, we see that the subspace the error sends us to is labeled
by the ±1 eigenvalues of the stabilizer operators. Thus, to perform QEC on a stabilizer code, it is
enough to make measurements that project onto the ±1 eigenvalue eigenspaces of the stabilizers.
From this information, one can deduce what the error was and then apply an appropriate recov-
ery operation. We call the values of the measured stabilizer generators the syndrome of the error.
Now, having diagnosed what the error is by measuring the syndrome, one then applies the appro-
priate Pauli operator to reverse the error. One interesting fact is that, for degenerate codes, there
are often multiple errors corresponding to a syndrome. In this case, however, one just reverses
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one of these errors and this guarantees that the net effect of this procedure is to either apply I or
a stabilizer element, which is the same as applying I to the code space.

Now, how do we perform a measurement onto the ±1 eigenvalue eigenspace of the Si op-
erators? We can measure them using the circuit described above for measuring Pauli operators.
Another important fact to note is that, since the stabilizer generators all commute with each
other, measurements that project onto their eigenstates can be simultaneously performed. Here,
for example, is the syndrome measurement circuit for the [[7,1,3]] code:

X Z

X Z

X X Z Z

X Z

X X Z Z

X X Z Z

X X X X Z Z

|+〉 • W

�
���

|+〉 • W

�
���

|+〉 • W

�
���

|+〉 • W

�
���

|+〉 • W

�
���

|+〉 • W

�
���

(2.74)

The top seven qubits are the encoded qubits. The bottom six qubits are the ancilla registers that
will hold the syndrome operators.

2.9.8 Preparation and measurement of stabilizer states

How do we prepare a stabilizer state? Well, this is rather easy. For example, suppose we just
prepare the |0n〉 state for our bare, unencoded qubits. Now, if we measure the syndrome and
apply the error correcting recovery procedure, we are guaranteed to be in the code subspace. Now
if, say, we have one encoded qubit, we can measure in the encoded |0〉, |1〉 basis by measuring
the eigenvalues of the Z̄ operator (using the tricks we learned above). If this outcome is +1 we
have prepared the encoded |0〉 state. If this outcome is −1 then we have prepared the encoded |1〉
state and application of the X̄ operator will then turn this into the |0〉 state. For multiple encoded
qubits a similar procedure can be enacted. Thus, we have seen how to prepare encoded stabilizer
states starting in, say, the encoded +1 eigenstates of the Z̄ operator. Similar procedures apply
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for preparation of eigenstates of the other encoded Pauli operators. Thus, we have seen how to
prepare these simple states.

What about more general states? Well, those will be harder. We will discuss some exam-
ples of these preparation procedures in Chapter 5, when we talk about fault-tolerant quantum
computation.

And a further note. We could also ask how to take a generic unencoded qubit and then
design a circuit for encoding into a stabilizer code. But this primitive – encoding into a code –
is not a very useful one for our purposes (building a quantum computer). Why? Well, because
we really never want to work with unencoded quantum computation. We always want to work
with encoded quantum information. Every once in a while you will come across an argument
against quantum computing that discusses a decoherence mechanism that always leads to errors
on a single qubit. Such arguments miss the point, simply because we never work with quantum
information in a single qubit: we always work with encoded quantum information. (The same is
true for computing with classical faulty elements: that this is true was first pointed out by John
von Neumann.)

Finally, we can ask how do we perform measurements on our stabilizer states. In particular,
suppose we have k qubits and we want to measure in the encoded computational basis. Then we
can do this by performing our Pauli measuring circuit for the encoded operators Z̄i. It is thus
simple to see how to measure encoded Pauli operators on our qubits.

So we have seen how to prepare computational basis states, and measure computational basis
states for our encoded information. The next obvious question is: how do we perform quantum
computation, i.e., unitary gates, on our encoded quantum information? We will take this up in
the next section.

2.9.9 Gates on stabilizer codes

How do we perform unitary transforms on quantum information encoded into a stabilizer code?
In some sense this question is trivial: just define unitary operations that carry out the desired
unitary on the encoded subspace. On the other hand, this observation is not very useful for reasons
that will become apparent when we talk about fault-tolerant quantum computation. Thus, here
we will discuss a particularly beautiful and useful set of gates that we can implement on our
stabilizer code.

Actually we have already seen some encoded operations on our code: the Pauli operators on
our code. These operations were enacted on our encoded quantum information by the application
of some Pauli group element. But in this section we will go beyond these simple gates.

2.9.9.1 The Clifford group Consider our Pauli group on n qubits, Pn. This is a subgroup of
the unitary group on n qubits, U(2n). An important group, and we will see why in a second, is
the Clifford group (in an abuse of mathematical nomenclature we will not even begin to try to
undo). The Clifford group is the normalizer of the Pauli group in the unitary group on n qubits.
In other words, it is the group of operators N that satisfy NPN† ∈ Pn for all P ∈ Pn. What is
an example of such an operation? Our good friend the Hadamard operator. In fact, we can easily
show that

WIW † = I, WXW † = Z, WYW † = −Y, WZW † = X. (2.75)
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Thus, a Hadamard on a single qubit is an operator in the normalizer of the Pauli group in U(2n).
Indeed, multiple Hadamards are also in this normalizer. What are other examples? Well, elements
of Pn themselves are obviously in the normalizer. Perhaps the first really interesting example be-
yond the Hadamard operator is the CNOT operation. The effect of the CNOT on Pauli operators
is so useful we will write the action down here:

• X •
�������	 �������	

= X

X

• •
�������	 X �������	

=
X

(2.76)

• Z •
�������	 �������	

= Z • •
�������	 Z �������	

= Z

Z

(2.77)

Note that we can deduce the action of conjugating a CNOT about Y operations by simply ap-
plying the X and Z conjugations in turn. Thus we see that the CNOT operation is indeed in the
Clifford group.

A great question to ask is, what is needed from the Clifford group on n qubits to generate
the entire group? In fact, the Clifford group on n qubits can be generated by W and the CNOT,
CX , and one extra gate,

S =
[
1 0
0 i

]
. (2.78)

Note that this gate acts as SXS† = Y , SY S† = −X , and SZS† = Z. A proof of this result can
be found in [G96a].

2.9.9.2 Clifford group gates on stabilizer codes Suppose that we have a stabilizer code gen-
erated by the stabilizer operators S1, . . . , Sr. We saw that elements of the normalizer of the
stabilizer group in the Pauli group were logical operators on our stabilizer code. What if we
now examine the normalizer of the stabilizer group, not just in the Pauli group, but now in the
full unitary group U(2n). These gates will certainly be in the Clifford group, since the stabilizer
group is made up of Pauli group operators. But now these operations might perform a nontrivial
operation on our encoded qubits.

Let us look at an example. Consider the seven qubit Steane code with generators specified
above. Next consider the operatorW⊗7. This operator when conjugated about stabilizer elements
will produce another stabilizer element for the Steane code. How do we see this? Recall that
WXW = Z and vice versa. Now notice that if we conjugate W⊗7 about one of the generators
that is made up completely of X operations, then we obtain a new operator that is made up
completely of Z operations. But now notice that there is a symmetry of the Steane code that
guarantees that, for the generators of the stabilizer made up completely of X operations, there is
an equivalent generator formed by replacing the X operations with Z operations. Thus we see
that, on the generators of the stabilizer code, conjugating byW⊗7 produces a stabilizer generator.
Since all stabilizer elements are made as products of stabilizer generators, this implies that the
stabilizer group is preserved under conjugation by W⊗7.

So now the question arises as to what W⊗7 does on our logical encoded qubit? Recall that
the logical operators on the Steane code are X̄ = X⊗7 and Z̄ = Z⊗7. We can then see that
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W⊗7X̄W⊗7 = Z̄ and W⊗7Z̄W⊗7 = X̄ . Thus, we see that W⊗7 acts in the same way on the
encoded quantum gates as a single W does on a single Pauli. In fact, this is enough to imply that
W⊗7 is exactly the Hadamard gate on our encoded quantum information.

More generally, then, we can consider elements of the Clifford group that, when conju-
gated about the stabilizer generators, produce elements of the stabilizer. Such elements act to
preserve the stabilizer subspace, since NSiN† = Sj , and therefore N |ψC〉 = NSi|ψC〉 =
NSiN

†N |ψC〉 = SjN |ψC〉. Thus, Sj(N |ψC〉) = N |ψC〉, so again N |ψC〉 is still stabilized
(further note that NSiN† preserves the group multiplication rule of the stabilizer and thus
NSiN

† if N is in the normalizer are again generators of the stabilizer group). Further, these
gates also act on the encoded qubits as elements of the Clifford group on these encoded qubits.

It is important to note that, when it comes to Clifford group elements, not all stabilizer codes
were created equal. In particular, implementing different Clifford group elements is often much
more difficult on some codes than on other codes. This fact is one reason for choosing different
stabilizer codes.

We have seen in this section how to perform some Clifford group elements on stabilizer
codes. Even if a code supports all Clifford group operations on our code this is not enough to per-
form universal quantum computation on the code. Universal quantum computation is discussed
much further in Chapter 5 on fault-tolerant quantum computation.

2.10 Conclusions
In this chapter we have defined the basics of QECCs. We have seen how it is possible to protect
quantum information by suitably encoding the quantum information across multiple indepen-
dently erred quantum systems. Since the origin of the destruction of quantum information by
decoherence is often the effect of a system becoming entangled with its environment, the QEC
procedure has been dubbed by John Preskill as “fighting entanglement with entanglement.” We
have shown that QECCs exist and derived the necessary and sufficient condition for such codes
to succeed in correcting a set of errors. A class of QECCs derived from self-dual classical codes,
the CSS codes, was described. A more general set of codes was then derived using the stabilizer
formalism. Stabilizer codes are the bread and butter of many ideas for QEC in the real world,
and are distinguished by the relatively easy formalism with which one can discuss these codes.
However, one should note that the theory of QEC contains many more important codes than just
stabilizer codes, and the development of “good” codes is an important ongoing endeavor (where
good depends on the color of the crystal through which you look, i.e., the problem you wish to
solve). Many of these codes will described in later chapters in this book.

2.11 History and further reading
Classical error correction has a long and important history, with a seminal piece of work being
Shannon’s paper founding the study of information theory [S48]. A good introduction to infor-
mation theory and error-correction is the book of Cover and Thomas [CT91]. Quantum error-
correcting codes were first discovered by Shor [S95] and Steane [S96c] in 1995 and 1996. Knill
and Laflamme were the first to derive the necessary and sufficient quantum error-correcting cri-
terion [KL97]. The five-qubit error-correcting code was discovered by Bennett et al. [BDS+96]
and Laflamme et al. [LMP+96] in 1996. Stabilizer codes and a closely related approach using
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codes over GF (4) were introduced by Gottesman [G96a] and by Calderbank et al. [CRS+98] .
Gottesman’s Ph.D. thesis on stabilizer codes is very readable and a good introduction to these
codes [G96a]. The quantum Hamming bound was introduced by Ekert and Macchiavello [EM96]
and shown to be achievable by Gottesman [G96a]. Gentle introductions to quantum computing,
which include the basics of QEC, include the classic textbook of Nielsen and Chuang [NC00]
and the more introductory books by Mermin [M07] and Loepp and Wootters [LW06].
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