
Quantum Proofs, Semester A 2024

Homework # 1 Solutions January 4, 2024

Rather than complete solutions, I indicate the main ideas for questions that created difficul-
ties. A complete solution, earning full points, would have more details in the calculations
and so would probably run an additional 2-3 pages in total. (When describing a circuit,
some of you drew a picture, which is perfectly appropriate. You are always welcome to
include a picture of hand-drawn circuit; which can be attached on a separate page if it is
more convenient.)

Please read the document and check your understanding of the answer. If you feel that your
solution was correct, but I mistakenly did not award you all points, please talk to me. If my
sketch is not detailed enough and you would like to see a full solution, please ask me as well.

Problems:

1. (3 points) The Trace Power Method and the Complexity of QMA

(a) Let A be a D×D positive semidefinite matrix. Show that the following inequality
holds:

λtmax ≤ Tr(At) ≤ Dλtmax

where λmax is the largest eigenvalue of A.

(b) Let C be a QMA verifier circuit with q input qubits and one output qubit. Let
n = |C| be the size of C. Determine an operator A, depending on C, and an
integer t such that computing Tr(At) would allow you to determine whether C
satisfies the YES case (there is a quantum proof accepted by C with probability
at least 2

3
) or the NO case (no quantum proof is accepted by C with probability

larger than 1
3
).

The first two questions were solved correctly by almost everyone. A possible way
of defining A is as

A = (I⊗ ⟨0|A)U(I⊗ |1⟩⟨1|O)U †(I⊗ |0⟩A) , (1)

where we have labeled the single-qubit output register as “O” and the m-qubit
ancilla register as “A”. Then A is a 2q × 2q-dimensional matrix, which is positive
definite as the conjugation of a projection, I⊗|1⟩⟨1|O which is positive semidefinite,
by a unitary, U , and a rectangular matrix, I⊗ ⟨0|A.

(c) Use your answer from part (b) to argue that there is a polynomial-space algorithm
that can decide any language in QMA, i.e. show the inclusion QMA ⊆ PSPACE.
Describe the algorithm in high-level language and explain carefully why it only
requires a polynomial (in its input length, i.e. |C|) amount of space.

This part could be done with various levels of care. Here is the main idea. Note
that U has a decomposition U = GT · · ·G1 as a product of one- or two-qubit gates
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G1, . . . , GT . Now, we can write

Tr(At) = Tr(A · · ·A)

=
∑

x1∈{0,1}q
⟨x1|A · · ·A|x1⟩

=
∑

x1,...,xt∈{0,1}q
⟨x1|A|x2⟩⟨x2|A|x3⟩ · · · ⟨xt|A|x1⟩ .

This is simply because the trace can be computed by summing diagonal coeffi-
cients in any basis; and because I =

∑
x |x⟩⟨x|. Now if we write out the formula

defining A (1) and again introduce resolutions of the identity at each step, we
obtain an expression that looks like

Tr(At) =
∑
x1,...

⟨x1| · · · |xj⟩⟨xj|Gk|xj+1⟩⟨xj+1|Gk−1|xj+2⟩⟨xj+2| · · · |x1⟩ ,

where the point is that we introduced resolutions of I between any two elementary
gates. Finally, one needs to observe that the right-hand side can be evaluated in
PSPACE, using a counter for each of the polynomially variables xj, and such
that each term in the sum can be computed in polynomial space by multiplying
the appropriate matrix coefficients. (Most terms of the form ⟨xj|Gk|xj+1⟩ will be
equal to 0, because if xj and xj+1 differ on a bit on which Gk acts as identity, we
get zero; nevertheless, the important point is that any such term can be easily
computed given a 4× 4 matrix representation for the 2-qubit gate Gk.)

2. (4 points) Non-identity check
Consider the following promise problem (a, b)-non-identity check (NIC for short). The
input is a description of a quantum unitary circuit U on m qubits. In the YES case,
it is promised that there is an m-qubit state |ψ⟩ such that ∥|ψ⟩ − U |ψ⟩∥ ≥ a. In the
NO case, it is promised that for all m-qubit states |ϕ⟩, ∥|ϕ⟩ − U |ϕ⟩∥ ≤ b.

(a) By giving an explicit verification procedure, show that for any 0 ≤ b < a ≤
√
2

such that b− a > 1/poly(n), the problem (a, b)-NIC is in QMA.

We need to design a verification circuit. The verification circuit uses a single
ancilla qubit initialized in state |0⟩, and m proof qubits, where recall that m is
the number of qubits that U acts on. The verification circuit can be expressed as
V = (I⊗XA)(I⊗HA)CTLAU(I⊗HA). Here, CTLAU designates the application
of U , controlled on the ancilla qubit; and XA and HA denote application of a
single-qubit X and H gates on qubit A respectively. The output qubit is the
qubit in A. For any proof state |ψ⟩, the probability that the output qubit of
V |ψ⟩|0⟩A is 1 is calculated to equal

1

4

∥∥|ψ⟩ − U |ψ⟩
∥∥2
.
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From there, completeness and soundness parameters can be determined to equal
1
4
a2 and 1

4
b2 respectively.

(b) Show that there are 0 ≤ b < a ≤
√
2 such that b − a > 1/poly(n) for which

the problem (a, b)-NIC is QMA-hard. [Hint: given a unitary QMA verification
circuit V , define a unitary U that, informally, executes V , saves the “answer”,
and “resets” the workspace used by V .]

We use the hint, but it should be completed by introducing a similar “trick” to
deal with ancilla qubits. Let V be a (unitary) QMA verification circuit with q
proof qubits, labeled Q, and m ancilla qubits, labeled A. We also let O denote
the output qubit. Let’s assume that this circuit has been amplified, so that c is
exponentially close to 1, and s exponentially close to 0.

Consider the following (q + m + 1)-qubit unitary, where the additional qubit is
labeled B:

UAQB = V † · CORB · V · CARB .

Here, CARB applies a small rotation, of some angle θ (say θ = π/8), on qubit B,
controlled on A not being in state |0⟩A; and CORB applies the same rotation on
qubit B, controlled on qubit O being in state |0⟩O. V and V † both act as identity
on B.

We can verify that for |ψ⟩ a proof that is accepted by V with high probability,
UAQB|ψ⟩Q|0⟩A|0⟩B ≈ |ψ⟩Q|0⟩A|0⟩B, up to exponentially small corrections. This is
because neither of the controlled-operators is “triggered” by this input state, and
so the whole circuit acts (more or less) as the identity.

The soundness case is more difficult. Suppose that V rejects all states with
probability exponentially close to 1. We decompose an arbitrary state |ψ⟩QAB on
which UAQB can act as

|ψ⟩QAB = |ψ0⟩QB|0⟩A + |ψ1⟩QB|ϕ⟩A ,

where |ϕ⟩A is orthogonal to the all-0 state. States of the form |ψ1⟩QB|ϕ⟩A have
their qubit B rotated by the first CARB, and nothing in the remaining circuit will
bring them back close to their original state. States of the form |ψ0⟩QB|0⟩A have
their qubit B rotated by the second CORB, because they are very close to having
their O qubit set to 1 after application of V , by the soundness assumption.

3. (3 points) Small witnesses
Consider a promise problem L = (Ly, Ln) ∈ QMA and a QMA verification circuit
C = Cx for L that operates on quantum proofs on q = q(n) qubits (where n = |x|).

(a) Show (using a result from class) that there is a QMA verification circuit for L with
proof states of q(n) qubits, completeness c ≥ 1 − δ and soundness s ≤ δ where
δ = 1

3
2−q(n).

This is a direct application of sequential soundness amplification.
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(b) Suppose we execute the verification circuit from (a) on a uniformly random q(n)-
qubit computational basis state. Show that if x ∈ Ly then the acceptance proba-
bility is at least 2

3
2−q(n), while if x ∈ Ln then it is at most 1

3
2−q(n).

Everyone solved this correctly; noting that in the case x ∈ Ly we in fact have a
slightly better bound of 2−q(1 − 1

3
2−q). This part uses that running the verifi-

cation circuit on a uniformly random basis state is equivalent to running it on a
uniformly random state from any orthonormal basis — such as a basis that con-
tains an optimal proof state as one of its elements. (Indeed, the density matrix
that represents either mixture is the totally mixed state, i.e. the (scaled) identity
matrix.)

(c) Use (b) to show that QMA with proof states restricted to q(n) = O(log n) qubits
equals BQP.

Containment of BQP is clear. For the reverse inclusion, we note that a BQP
algorithm can easily prepare the totally mixed state on q qubits, for example by
preparing q EPR pair in parallel and acting on one half of each pair. Using that
q = O(log n), the gap between the two cases in the previous question is inverse
polynomial, which can be amplified by sequential repetition of the BQP algorithm.
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