
Quantum Proofs, Semester A 2024

Homework # 3 due: 5pm, February 1st, 2024

Ground rules:

Homework is due through Moodle. If you are having issues with this, email the
instructor (thomas.vidick@weizmann.ac.il) or drop your work in my mailbox at
the top of the central stairs in Ziskind. Solutions can be latexed or handwritten. In
the latter case, please make sure that your handwriting is legible. Special care should be
taken in writing up a precise solution. If I am not able to follow the logic in your argument,
if there is a small gap or an uncovered case, you will lose points.

You are encouraged to collaborate with your classmates on homework problems,
but each person must write up the final solutions individually. You should note on
your homework specifically which problems were a collaborative effort and with whom. You
may not search online for solutions, but if you do use research papers or other sources in
your solutions, you must cite them.

Late homework will not be accepted or graded.

The first problem asks you to practice with the notion of a semidefinite program, and work
through some simple examples where “classical” problems in quantum information can be
expressed as the optimum of a semidefinite program. Each question has a very short solution.
If you are not already familiar with semidefinite programs, I can recommend checking the
lecture notes by Lovasz (see link on course webpage) for a good presentation.
The second problem gives an alternate proof of error amplification for QIP. It introduces a
very useful norm on quantum channels, the diamond norm. This norm is frequently used
outside of the study of QIP, to compare quantum channels. In that problem, questions (a)
and (b) can be accepted on faith at first; the more interesting parts are (c)–(f). This problem
requires more algebraic manipulations than the two others.
The last problem has a very long description, but it has a short solution! In that problem, I am
asking you to take time to understand a new definition for a complexity class ( competing-
prover games) and then apply your understanding to show that this class is contained in
a class we know well (the class QIP). Once you understand the problem statement, each
question (except for the optional (b)) has a quite short solution.

Any changes since the first posting will be marked in blue.
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Problems:

1. (4 points) Practice with semidefinite programs

Recall that a semidefinite program is said in primal normal form if it is written as

sup B •X
s.t. Ai •X = ai , ∀ i = 1, . . . ,m

X ≥ 0 ,

where we used the shorthand notation X • Y = Tr(X†Y ), B,A1, . . . , Am are complex
Hermitian matrices of the same size as X, and a1, . . . , am real numbers.

(a) Suppose given a complex Hermitian matrix A ∈ Cd×d. Write a semidefinite
program, in primal normal form, whose optimum is the largest eigenvalue of A.

For the next questions, you no longer need to write the semidefinite program in normal
form. In practice, this means that you may have multiple matrix variables X, Y, Z,
etc., on which you can impose any number of linear or positive-definite inequalities
(including such as Y ≤ I, etc.).

(b) Can you do the same with ∥A∥1, the sum of the singular values of A?

(c) Deduce a semidefinite program whose optimum is the trace distance ∥σ0−σ1∥tr =
1
2
∥σ0−σ1∥1 between two density matrices σ0 and σ1 (given explicitly, as matrices).

(d) Suppose given an ensemble {(pi, ρi) : i ∈ I}, where: I is a finite index set; for
each i, pi ∈ [0, 1] such that

∑
i∈I pi = 1; and for each i, ρi is a density matrix on

n qubits, specified explicitly (in matrix form, as for the previous question). Write
the maximum success probability of the adversary in the following game, played
against a trusted challenger, as the optimum of a semidefinite program:

i. The challenger selects i ∈ I according to the distribution (pi). They prepare
the quantum state ρi and send it to the adversary.

ii. The adversary performs a measurement and returns to the challenger an index
i′ ∈ I.

iii. The challenger declares that the adversary has won if and only if i′ = i.

2. The diamond norm and error amplification

In this problem, T denotes a “super-operator,” which in general is any linear map
T : L(N ) → L(M). Here, N and M are (finite-dimensional) Hilbert spaces and L(N )
and L(M) are the space of linear operators on N and M respectively. Said in other
words, N = CdN for some integer dN and L(N ) = CdN×dN , the space of dN × dN
matrices. So, T is a linear map that sends dN × dN matrices to dM × dM matrices. (If
T is additionally completely positive and trace preserving, then it is a channel; but for
the time being we allow general linear T .)

2



A natural norm on the space of such linear maps T is the operator norm induced by
the 1 norm, i.e.

|||T |||1 := sup
X ̸=0

∥T (X)∥1
∥X∥1

. (1)

Here, ∥X∥1 = Tr
√
XX† is the 1 norm of the matrix X, which is the sum of the singular

values. The norm |||·|||1 has the following inconvenient:

(a) Let T : L(C2) → L(C2) be defined by T : |i⟩⟨j| 7→ |j⟩⟨i| for all i, j ∈ {0, 1}, and
extended by linearity to all 2 × 2 matrices. (So, T is the transpose map!) Show
that |||T |||1 ≤ 1, but |||T ⊗ I2|||1 ≥ 2, where I2 is the identity map on 2×2 matrices.

The previous question shows that |||·|||1, when used on super-operators, does not “sta-
bilize”. This property is not welcome when discussing quantum channels, as we would
not want that the “norm” of a channel tensored with the identity is bigger than the
norm of the channel itself. So instead, we define

|||T |||⋄ := sup
d≥1

∣∣∣∣∣∣T ⊗ IL(Cd)

∣∣∣∣∣∣
1
,

where |||·|||1 is as defined in (1), and IL(Cd) denotes the identity super-operator from
L(Cd) to itself.

(b) Show that for any superoperators R, S it holds that |||RS|||⋄ ≤ |||R|||⋄|||S|||⋄. (You
may use that the same inequality holds for the norm ∥ · ∥1, without reproving this
fact.)

In the remainder of this problem we use the norm |||·|||⋄ to characterize the maximum
acceptance probability of a QIP(3) verifier, and give an alternate proof of error ampli-
fication.

In the following fix a QIP(3) verifier V = (V1, V2) in purified form. Here, V1 is a unitary
that acts on the message Y received from the prover, and the verifier’s private space
Z. It produces a message sent back to the prover, which for convenience we assume
lies on the same space Y , and a residual memory state. So, V1 is a unitary on Z ⊗ Y .
Similarly, V2 is the unitary on Z⊗Y applied by the verifier upon receipt of the prover’s
second message. After V2 has been applied, the verifier measures using a measurement
(Πacc,Πrej) that we assume acts on the entire space Z ⊗ Y . Finally, let Πinit denote
the projection on the space where all verifier’s qubits (the register Z) are initialized to
0.

Let W1 = V1Πinit and W2 = V †
2 Πacc. Let T : L(Z ⊗ Y) → L(Y) be the superoperator

defined as T (X) = TrZ(W1XW
†
2 ).

(c) Show that ω(V ) = max{|⟨|ϕ|W †
2UW1|ψ⟩|2}, where the maximum is taken over

all states |ψ⟩, |ϕ⟩ ∈ Z ⊗ Y⊗W and unitaries U on Y ⊗W , with W the prover’s
private space.
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(d) For a fixed space H, show that the maximum of ∥T ⊗ IL(H)(Y )∥1 over all Y such
that ∥Y ∥1 = 1 is attained at a Y of the form Y = |ψ⟩⟨ϕ|, for normalized vectors
|ψ⟩, |ϕ⟩.

(e) Deduce from the previous questions that ω(V ) = |||T |||2⋄.
(f) Suppose that V ′ is another verifier, not necessarily identical to V . Let V ⊗ V ′

denote the verifier that runs V and V ′ in parallel and accepts if and only if both
accept. Use the previous questions to show that ω(V ⊗ V ′) ≤ ω(V )ω(V ′).

3. Competing-prover games

In this problem we consider a variant of the model of quantum interactive proofs
studied in class, in which there are two provers: the “YES-prover” and the “NO-
prover.” Formally, a (short) competing-prover game is an interactive game where:

(i) At the first step, the YES-prover sends a quantum message, in register Y1, to the
verifier.

(ii) The verifier applies an arbitrary unitary on Y1, his private space Z, and another
message register X2. The verifier sends X2 to the NO-prover.

(iii) The NO-prover performs some action on X2 and its private registerW2. It returns
a message register Y2 to the verifier.

(iv) The verifier now has (Y1, Z, Y2). It performs a measurement to make its decision.

Initially, the registers (Y1,W1) (for the YES-prover), (Z,X2) (for the verifier), and W2

(for the NO-prover) are all initialized to |0⟩. Note that the two provers do not interact
directly, only with the verifier. (They also do not share any entanglement.)

We say that a promise problem L = (Ly, Ln) is in the class CPGc,s if there is a
polynomial-time mapping from instances z ∈ {0, 1}∗ to descriptions of verifiers Vz
for short competing-prover games of the form above such that

� If z ∈ Ly then there is a YES-prover such that for any action of the NO-prover,
Vz accepts with probability at least c; and

� If z ∈ Ln then there is a NO-prover such that for any action of the YES-prover,
Vz accepts with probability at most s.

The goal of this problem is to show that CPGc,s contains QIP, for some choice of c
and s which you will determine at the end of the problem. Our starting point is the
QIP-complete problem “close images” (CI) seen in class. To recall, an instance of CI
is a pair of (circuit implementations of) quantum channels Φ0 and Φ1, each mapping
n to m qubits, such that either there exists ρ0, ρ1 such that Φ0(ρ0) = Φ1(ρ1) (yes-
instance), or for any ρ0, ρ1, F (Φ0(ρ0),Φ1(ρ1))

2 ≤ ε (no-instance). Here, ε is a small
parameter which we consider fixed; in practice you can assume that ε is any small
enough constant.

We suggest a CPG protocol for the instance z = (Φ0,Φ1) of CI as follows:
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� The verifier receives two n-qubit quantum registers, R0 and R1, from the YES-
prover. (So, what is called Y1 above is now Y1 = R0R1.)

� The verifier chooses i ∈ {0, 1} uniformly at random and applies Φi to the state in
register Ri. Let the output be in the m-qubit register Z. The verifier sends Z to
the prover.

� The prover responds with a bit b ∈ {0, 1}. The verifier accepts iff b ̸= i.

(a) Describe a strategy for the YES-prover in the case that (Φ0,Φ1) is a yes-instance
of CI. What is the maximum probability that the verifier accepts (over all actions
of the NO-prover)? (You do not need to show that the strategy you describe is
optimal. But it should be intuitively clear that this strategy is in the YES-prover’s
best interest, assuming they want the verifier to accept with the highest possible
probability.)

To analyze no-instances of CI, first define two convex sets Ai = {Φi(ρ) : ρ ∈ D(C2n)},
for i ∈ {0, 1}. Here D(C2n) is the convex set of all density matrices on n qubits (which
we identify with the n input qubits to Φi). Define the distance between A0 and A1 as

dA0,A1 := inf
ρ0∈A0,ρ1∈A1

∥ρ0 − ρ1∥1 .

(b) (This question is optional. You may assume its outcome without showing it.)
Show that for any two convex subsets B0, B1 of the space of density matrices
D(H) on some finite-dimensional Hilbert space H, there is a (not necessarily
projective) measurement {P0, P1} on H such that, for any σ0 ∈ B0 and σ1 ∈ B1,

1

2
Tr(P0σ0) +

1

2
Tr(P1σ1) ≥ 1

2
+

1

4
dB0,B1 .

This shows that if ρ ∈ {ρ0, ρ1} is chosen uniformly at random, measuring it
with {P0, P1} will correctly identify ρ with good probability. [The content of the
question is in the fact that {P0, P1} depends on the sets B0 and B1, but then it
works for any σ0 and σ1 chosen from those sets. For the proof, use that disjoint
convex sets have a separating hyperplane.]

(c) Show that if (Φ0,Φ1) is a no-instance of CI then dA0,A1 ≥ 2(1−
√
ε). [Hint: you

may use the relation F (ρ, σ) ≥ 1 − 1
2
∥ρ − σ∥tr, which is valid for any density

matrices ρ, σ.]

(d) Use (b) to deduce that in this case, there is a strategy for the NO-prover such
that the verifier accepts with probability at most

√
ε/2.
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