
Quantum Proofs, Semester A 2024

Homework # 3 Solutions February 5th, 2024

Please read the document and check your understanding of the answer. If you feel that your
solution was correct, but I mistakenly did not award you all points, please talk to me. If my
sketch is not detailed enough and you would like to see a full solution, please ask me as well.

Problems:

1. Practice with semidefinite programs

Recall that a semidefinite program is said in primal normal form if it is written as

sup B •X
s.t. Ai •X = ai , ∀ i = 1, . . . ,m

X ≥ 0 ,

where we used the shorthand notation X • Y = Tr(X†Y ), B,A1, . . . , Am are complex
Hermitian matrices of the same size as X, and a1, . . . , am real numbers.

(a) Suppose given a complex Hermitian matrix A ∈ Cd×d. Write a semidefinite
program, in primal normal form, whose optimum is the largest eigenvalue of A.

sup A •X
s.t. Tr(X) = 1

X ≥ 0 .

(b) Can you do the same with ∥A∥1, the sum of the singular values of A?

The simplest way to write this is using two inequalities on X:

sup A •X
s.t. X ≥ −I

X ≤ I .

The fact that the constraints do not have a single positive semidefinite constraint
confused some of you. Here, there are various ways to get around this. One
possibility is to rewrite the program in a new variable

Z =

(
I−X 0

0 X + I

)
(1)

as follows
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sup
1

2

(
A 0
0 −A

)
• Z

s.t. Fi,j • Z = fi,j , ∀ i, j = 1, . . . , d

Z ≥ 0 ,

where the constraint matrices Fi,j are designed to force the form (1). In fact,
because the objective only looks at the diagonal blocks we only need to care

about them. So, let Fi,j =

(
Eij 0
0 Eij

)
, where Eij is all 0’s except for a single 1

in position (i, j), and fi,j = 2δij with δij the Kronecker symbol.

(c) Deduce a semidefinite program whose optimum is the trace distance ∥σ0−σ1∥tr =
1
2
∥σ0−σ1∥1 between two density matrices σ0 and σ1 (given explicitly, as matrices).

We apply the previous question to A = σ0 − σ1.

(d) Suppose given an ensemble {(pi, ρi) : i ∈ I}, where: I is a finite index set; for
each i, pi ∈ [0, 1] such that

∑
i∈I pi = 1; and for each i, ρi is a density matrix on

n qubits, specified explicitly (in matrix form, as for the previous question). Write
the maximum success probability of the adversary in the following game, played
against a trusted challenger, as the optimum of a semidefinite program:

i. The challenger selects i ∈ I according to the distribution (pi). They prepare
the quantum state ρi and send it to the adversary.

ii. The adversary performs a measurement and returns to the challenger an index
i′ ∈ I.

iii. The challenger declares that the adversary has won if and only if i′ = i.

sup
∑
i

pi Pi • ρi

s.t.
∑
i

Pi = I

Pi ≥ 0 , ∀i .

Note that the constraint
∑

i Pi = I is in fact
∑

iEjk • Pi = δjk for all j, k ∈
{1, . . . , d}, which is a collection of linear constraints. Here again, the program
can be written in standard form by introducing a new variable X which has
(P1, . . . , P|I|, I−

∑
i Pi) in its diagonal blocks.

2. The diamond norm and error amplification

In this problem, T denotes a “super-operator,” which in general is any linear map
T : L(N ) → L(M). Here, N and M are (finite-dimensional) Hilbert spaces and L(N )
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and L(M) are the space of linear operators on N and M respectively. Said in other
words, N = CdN for some integer dN and L(N ) = CdN×dN , the space of dN × dN
matrices. So, T is a linear map that sends dN × dN matrices to dM × dM matrices. (If
T is additionally completely positive and trace preserving, then it is a channel; but for
the time being we allow general linear T .)

A natural norm on the space of such linear maps T is the operator norm induced by
the 1 norm, i.e.

|||T |||1 := sup
X ̸=0

∥T (X)∥1
∥X∥1

. (2)

Here, ∥X∥1 = Tr
√
XX† is the 1 norm of the matrix X, which is the sum of the singular

values. The norm |||·|||1 has the following inconvenient:

(a) Let T : L(C2) → L(C2) be defined by T : |i⟩⟨j| 7→ |j⟩⟨i| for all i, j ∈ {0, 1}, and
extended by linearity to all 2 × 2 matrices. (So, T is the transpose map!) Show
that |||T |||1 ≤ 1, but |||T ⊗ I2|||1 ≥ 2, where I2 is the identity map on 2×2 matrices.

This question was generally solved correctly. For the example, a possible choice
was to apply T to an EPR pair.

You may notice that while the projection on an EPR pair has a single eigenvalue
1, its partial transpose has a negative eigenvalue. If a bipartite density matrix is
such that, by transposing one of the two systems, one obtains a matrix that is
no longer positive, the corresponding state must be entangled. There are some
states that are entangled and yet have positive partial transpose, so this is not a
perfect test for entanglement (indeed, checking if a density matrix corresponds to
a separable state is an NP-hard problem, even allowing for approximations).

The previous question shows that |||·|||1, when used on super-operators, does not “sta-
bilize”. This property is not welcome when discussing quantum channels, as we would
not want that the “norm” of a channel tensored with the identity is bigger than the
norm of the channel itself. So instead, we define

|||T |||⋄ := sup
d≥1

∣∣∣∣∣∣T ⊗ IL(Cd)

∣∣∣∣∣∣
1
,

where |||·|||1 is as defined in (2), and IL(Cd) denotes the identity super-operator from
L(Cd) to itself.

(b) Show that for any superoperators R, S it holds that |||RS|||⋄ ≤ |||R|||⋄|||S|||⋄. (You
may use that the same inequality holds for the norm ∥ · ∥1, without reproving this
fact.)

This question was solved correctly by everyone.

3



In the remainder of this problem we use the norm |||·|||⋄ to characterize the maximum
acceptance probability of a QIP(3) verifier, and give an alternate proof of error ampli-
fication.

In the following fix a QIP(3) verifier V = (V1, V2) in purified form. Here, V1 is a unitary
that acts on the message Y received from the prover, and the verifier’s private space
Z. It produces a message sent back to the prover, which for convenience we assume
lies on the same space Y , and a residual memory state. So, V1 is a unitary on Z ⊗ Y .
Similarly, V2 is the unitary on Z⊗Y applied by the verifier upon receipt of the prover’s
second message. After V2 has been applied, the verifier measures using a measurement
(Πacc,Πrej) that we assume acts on the entire space Z ⊗ Y . Finally, let Πinit denote
the projection on the space where all verifier’s qubits (the register Z) are initialized to
0.

Let W1 = V1Πinit and W2 = V †
2 Πacc. Let T : L(Z ⊗ Y) → L(Y) be the superoperator

defined as T (X) = TrZ(W1XW
†
2 ).

(c) Show that ω(V ) = max{|⟨|ϕ|W †
2UW1|ψ⟩|2}, where the maximum is taken over

all states |ψ⟩, |ϕ⟩ ∈ Z ⊗ Y⊗W and unitaries U on Y ⊗W , with W the prover’s
private space.

This question was also generally solved correctly.

(d) For a fixed space H, show that the maximum of ∥T ⊗ IL(H)(Y )∥1 over all Y such
that ∥Y ∥1 = 1 is attained at a Y of the form Y = |ψ⟩⟨ϕ|, for normalized vectors
|ψ⟩, |ϕ⟩.
Here the main observation is that any Y such that ∥Y ∥1 = 1 has a decomposition
Y =

∑
i piYi where (pi) is a probability distribution and Yi has rank one for each

i, i.e. Yi = |ψi⟩⟨ϕi|. (This is by the SVD.) Moreover, ∥T ⊗ IL(H)(Y )∥1 is a convex
function of Y — this is by linearity of T and convexity of ∥ · ∥1. Therefore,

∥T ⊗ IL(H)(Y )∥1 ≤
∑
i

pi∥T ⊗ IL(H)(Yi)∥1

≤ max
i

∥T ⊗ IL(H)(Yi)∥1 .

(e) Deduce from the previous questions that ω(V ) = |||T |||2⋄.
For any fixed H, by the previous question

sup
Y

∥T ⊗ IL(H)(Y )∥1 = sup
|ψ⟩,|ϕ⟩

∥T ⊗ IL(H)(|ψ⟩⟨ϕ|)∥1

= sup
|ψ⟩,|ϕ⟩,U

∣∣Tr(U · T ⊗ IL(H)(|ψ⟩⟨ϕ|)
)∣∣

= sup
|ψ⟩,|ϕ⟩,U

∣∣Tr((IZ ⊗ U) ·W1|ψ⟩⟨ϕ|W †
2

)∣∣
= sup

|ψ⟩,|ϕ⟩,U
|⟨ϕ|W †

2UW1|ψ⟩| ,
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which solves the question. Here the main step is the second equality, which uses
∥X∥1 = supU |Tr(UX)|, where the supremum is taken over all unitaries. The
third line uses the definition of T and the last line cyclicity of the trace.

(f) Suppose that V ′ is another verifier, not necessarily identical to V . Let V ⊗ V ′

denote the verifier that runs V and V ′ in parallel and accepts if and only if both
accept. Use the previous questions to show that ω(V ⊗ V ′) ≤ ω(V )ω(V ′).

This was solved correctly.

3. Competing-prover games

This problem didn’t create particular difficulties. (If anyone is interested in more
background, the problem is adapted from the paper “Quantum Interactive Proofs with
Competing Provers” by Gutoski and Watrous.)
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