
Quantum Proofs, Semester A 2024

Homework # 5 due: 5pm, March 4th, 2024

Ground rules:

Homework is due through Moodle. If you are having issues with this, email the
instructor (thomas.vidick@weizmann.ac.il) or drop your work in my mailbox at
the top of the central stairs in Ziskind. Solutions can be latexed or handwritten. In
the latter case, please make sure that your handwriting is legible. Special care should be
taken in writing up a precise solution. If I am not able to follow the logic in your argument,
if there is a small gap or an uncovered case, you will lose points.

You are encouraged to collaborate with your classmates on homework problems,
but each person must write up the final solutions individually. You should note on
your homework specifically which problems were a collaborative effort and with whom. You
may not search online for solutions, but if you do use research papers or other sources in
your solutions, you must cite them.

Late homework will not be accepted or graded.

The first two exercises depend on the lecture from February 20th, and the last two on the
lecture from February 27th. The first problem asks you to show that a single family of states
can act as embezzlers for any given state, provided that the given state is not too large. The
second problem is an example of a three-player XOR game; we see that, in contrast to two-
player XOR-games, with three players it is possible to have perfect quantum strategies when
no perfect classical strategy exists. The third exercise asks you to show Tsirelson’s theorem
mentioned in class. The last exercise proves a connection between two-player XOR interac-
tive proof systems and single-player two-message interactive proofs.

Any changes since the first posting will be marked in blue.

Problem:

1. (3 points) Universal embezzlement

For any integer n ≥ 1 let

|Γn⟩ =
1√
Cn

n∑
j=1

1√
j
|j⟩A|j⟩B ,

where Cn is the appropriate normalization constant such that ∥|Γn⟩∥ = 1. Let |φ⟩ =∑m
i=1 αi|ui⟩A′ |vi⟩B′ be an arbitrary (normalized) state, where {|ui⟩} and {|vi⟩} are
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orthonormal families. Finally, let

|ωn⟩ =
( m∑

i=1

αi|i⟩A′ |i⟩B′

)
⊗ |Γn⟩AB ∈ Cnm×nm .

Let ω1 ≥ · · · ≥ ωmn be the Schmidt coefficients of |ωn⟩, ordered in non-increasing
order.

(a) For fixed i and t, let N t
i be the number of Schmidt coefficients of |ωn⟩ of the form

αi/
√
jCn that are strictly greater than 1/

√
tCn. Show that N t

i < α2
i t. Deduce

that
∑m

i=1N
t
i < t.

(b) Show that the n largest Schmidt coefficients of |ωn⟩ are smaller than the corre-
sponding ones of |Γn⟩, i.e. that ωj ≤ 1/

√
jCn for all j.

(c) Let |ω̃n⟩ ∈ Cnm×nm have the same Schmidt coefficients as |ωn⟩, arranged in non-
increasing order. So, |ω̃n⟩ =

∑nm
j=1 ωj|j⟩|j⟩. Further, write |Γn⟩ for the same state

as before, but embedded in Cnm×nm (i.e., the Schmidt coefficients are zero on
vectors |j⟩ for j > n). Deduce from the previous question that

∣∣⟨Γn|ω̃n⟩
∣∣ ≥

n∑
j=1

ω2
j ≥ 1− log(m)

log(n)
.

(Both inequalities need proof.)

(d) Let ε > 0. Describe a protocol that, given as input the state |Γn⟩ (for some
n = n(ε) to be determined), performs local operations on A and B only and
generates a state |ψn⟩ such that F(|ψn⟩⟨ψn|, |φ⟩⟨φ| ⊗ |Γn⟩⟨Γn|) ≥ 1− ε.

(e) Deduce a lower bound, depending on d ≥ 1, on the success probability that one
can achieve in the coherent state exchange game by using an entangled state of
dimension d (for each player, so d2 in total).

2. (2 points) Mermin’s game

“Mermin’s game” is the following. Consider three space-like separated players: Alice,
Bob, and Charlie. Alice receives input bit x, Bob receives input bit y, and Charlie
receives input bit z. The input satisfies the promise that x ⊕ y ⊕ z = 0. The goal of
the players is to output bits a, b, c, respectively, such that a⊕ b⊕ c = OR(x, y, z). In
other words, the outputs should sum to 0(mod2) if x = y = z = 0, and should sum to
1(mod2) if x+ y + z = 2.

(a) Show that every classical randomized strategy has success probability at most 3/4
under the uniform distribution on the four allowed inputs x, y, z.

(b) Suppose the players share the following entangled 3-qubit state:

1

2

(
|000⟩ − |011⟩ − |101⟩ − |110⟩

)
.
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Suppose each player does the following: if his/her input bit is 1, applyH to his/her
qubit, otherwise do nothing. Describe the resulting 3-qubit superposition.

(c) Give a quantum strategy that wins the above game with probability 1 on every
input that satisfies the promise.

3. (4 points) Tsirelson’s theorem

The goal of this exercise is to show that given an XOR game G and a vector solution
to SDP(G) it is always possible to find a quantum strategy that achieves exactly the
same value. We start with some warm-ups.

(a) For D ≥ 1 let |ϕD⟩ = D−1/2
∑D

i=1 |i⟩|i⟩. For any D ×D matrices A,B, compute
⟨ϕD|A⊗B|ϕD⟩.

(b) Suppose that A and B† anticommute, i.e. AB† = −B†A. Show that TrAB† = 0.

(c) Show that for any integer d ≥ 1 there exists aD and Hermitian matrices C1, . . . , Cd ∈
CD×D that square to identity and pairwise anti-commute. [Hint: use tensor prod-
ucts of Pauli matrices.]

(d) For any vector u∈ Rd, consider u 7→ C(u) :=
∑

i uiCi. What can you say about
C(u)? Compute ⟨ϕD|C(u)⊗ C(v)|ϕD⟩.

Recall that to an XOR game G with question distribution π on {1, . . . , n}×{1, . . . ,m}
and decision predicate V (a, b|s, t) = a⊕ b⊕ cst we associate the semidefinite program

SDP(G) = sup
∑
s,t

π(s, t)(−1)cstxs · yt

s.t. xs, yt ∈ Rn+m , ∀ s, t
∥xs∥ ≤ 1 , ∀ s = 1, . . . , n

∥yt∥ ≤ 1 , ∀ t = 1, . . . ,m .

(e) Show that there is a quantum strategy for G whose success bias is β∗(G) =
SDP(G).

4. (4 points) An upper bound on XOR games

Show that for any c, s such that 0 ≤ s < c ≤ 1, ⊕MIP∗
c,s(2) ⊆ QIPc,s(2).

[Hint: Consider the following first step for the verifier: sample (s, t) ∼ π and prepare
the state |Φ⟩ = 1√

2
|0⟩|0⟩|s⟩+ |1⟩|1⟩|t⟩. Send the last two registers to the prover and ask

them to write their answer as a phase.
Complete this protocol and show that it achieves the desired completeness and soundness
guarantees.]

Since QIP(2) ⊆ QIP(3) ⊆ PSPACE ⊆ EXP, this refines the inclusion ⊕MIP∗(2) ⊆ EXP
seen in class.
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