
Quantum Proofs, Semester A 2024

Homework # 5 Solutions March 18th, 2024

Please read the document and check your understanding of the answer. If you feel that your
solution was correct, but I mistakenly did not award you all points, please talk to me. If my
sketch is not detailed enough and you would like to see a full solution, please ask me as well.

Problem:

1. Universal embezzlement

For any integer n ≥ 1 let

|Γn〉 =
1√
Cn

n∑
j=1

1√
j
|j〉A|j〉B ,

where Cn is the appropriate normalization constant such that ‖|Γn〉‖ = 1. Let |ϕ〉 =∑m
i=1 αi|ui〉A′ |vi〉B′ be an arbitrary (normalized) state, where {|ui〉} and {|vi〉} are

orthonormal families. Finally, let

|ωn〉 =
( m∑

i=1

αi|i〉A′ |i〉B′

)
⊗ |Γn〉AB ∈ Cnm×nm .

Let ω1 ≥ · · · ≥ ωmn be the Schmidt coefficients of |ωn〉, ordered in non-increasing
order.

(a) For fixed i and t, let N t
i be the number of Schmidt coefficients of |ωn〉 of the form

αi/
√
jCn that are strictly greater than 1/

√
tCn. Show that N t

i < α2
i t. Deduce

that
∑m

i=1N
t
i < t.

(b) Show that the n largest Schmidt coefficients of |ωn〉 are smaller than the corre-
sponding ones of |Γn〉, i.e. that ωj ≤ 1/

√
jCn for all j.

(c) Let |ω̃n〉 ∈ Cnm×nm have the same Schmidt coefficients as |ωn〉, arranged in non-
increasing order. So, |ω̃n〉 =

∑nm
j=1 ωj|j〉|j〉. Further, write |Γn〉 for the same state

as before, but embedded in Cnm×nm (i.e., the Schmidt coefficients are zero on
vectors |j〉 for j > n). Deduce from the previous question that

∣∣〈Γn|ω̃n〉
∣∣ ≥ n∑

j=1

ω2
j ≥ 1− log(m)

log(n)
.

(Both inequalities need proof.)
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The first inequality is easier. We have

∣∣〈Γn|ω̃n〉
∣∣ ≥ n∑

j=1

ωj
1√
jCn

≥
n∑

j=1

ω2
j ,

by the previous question. For the second inequality, assume m ≤ n as otherwise
the bound is trivial. Since

∑n
j=1 ω

2
j sums the n largest coefficients this sum is at

least as large than the sum of any n squares of coefficients from ωi. We choose
ωij = αi/

√
jCn, for i ∈ {1, . . . , n} and j ∈ {1, . . . , bn/mc}. This gives

n∑
j=1

ω2
j ≥

n∑
i=1

α2
j

n/m∑
j=1

1

jCn

=
1

Cn

n/m∑
j=1

1

j

≥ 1− log(m)

log(n)
,

where the second line uses that |ϕ〉 is normalized, and the last one is by standard
comparison bounds for Harmonic series.

(d) Let ε > 0. Describe a protocol that, given as input the state |Γn〉 (for some
n = n(ε) to be determined), performs local operations on A and B only and
generates a state |ψn〉 such that F(|ψn〉〈ψn|, |ϕ〉〈ϕ| ⊗ |Γn〉〈Γn|) ≥ 1− ε.
For simplicity, let us make sure to choose n such that n/m is an integer. Order
pairs (i, j) in decreasing order of weights αi/

√
j, i.e. the first pair has the largest

αi/
√
j, etc. Locally, party A sends basis vector |t〉, for t ∈ {1, . . . , n}, to basis

vector |ui〉|j〉, where (i, j) is the t-th pair in the above ordering. (So, |1〉 is sent
to |ui〉|j〉 for (i, j) that has the largest αi/

√
j, etc.) Party B does the same, but

with |vi〉 instead of |ui〉. Now, the reverse transformation is designed to exactly
map |ω̃n〉 to |ωn〉. The conclusion then follows from part (c). Here, the fidelity is
the squared overlap and so to get fidelity 1− ε it is enough to choose n such that
log(n) ≥ 2 log(m)/ε, i.e. n ≥ m2/ε.

(e) Deduce a lower bound, depending on d ≥ 1, on the success probability that one
can achieve in the coherent state exchange game by using an entangled state of
dimension d (for each player, so d2 in total).

The coherent state exchange game is the game seen in class, where the players
have to coherently exchange |0〉|0〉 for itself, and |φ〉 = 1√

2
(|1〉|1〉 + |2〉|2〉) for

|1〉|1〉. To achieve this we can
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i. Start with the state |Γn〉;
ii. Upon receiving a question, control on the question qubit to do the following:

if the qubit is |0〉, do nothing. If it is not |0〉, then

A. First apply the transformation from the previous question in reverse, to
“erase” |φ〉;

B. Then apply the transformation in the forward direction, to make |1〉|1〉
“appear”.

Using the previous question to estimate the fidelity with which the desired opera-
tion is implemented in steps ii.A and ii.B, the overall success probability will scale
as 1−O(log(m)/ log(n)) where n = d andm = 2, i.e. the success is 1−O(1/ log(d)).

3. Tsirelson’s theorem

The goal of this exercise is to show that given an XOR game G and a vector solution
to SDP(G) it is always possible to find a quantum strategy that achieves exactly the
same value. We start with some warm-ups.

(a) For D ≥ 1 let |φD〉 = D−1/2
∑D

i=1 |i〉|i〉. For any D ×D matrices A,B, compute
〈φD|A⊗B|φD〉.

(b) Suppose that A and B† anticommute, i.e. AB† = −B†A. Show that TrAB† = 0.

(c) Show that for any integer d ≥ 1 there exists aD and Hermitian matrices C1, . . . , Cd ∈
CD×D that square to identity and pairwise anti-commute. [Hint: use tensor prod-
ucts of Pauli matrices.]

Let D = 2dd/2e. We introduce the following matrices, for i = 1, . . . , dd/2e, where
X, Y, Z are the single-qubit Paulis:

C1 = X ⊗ I ⊗ · · · ⊗ I
C2 = Z ⊗ I ⊗ · · · ⊗ I
C3 = Y ⊗X ⊗ I ⊗ · · · ⊗ I
C4 = Y ⊗ Z ⊗ I ⊗ · · · ⊗ I

...
...

C2i−1 = Y ⊗ · · · ⊗ Y ⊗X ⊗ I ⊗ · · · ⊗ I
C2i = Y ⊗ · · · ⊗ Y ⊗ Z ⊗ I ⊗ · · · ⊗ I

Using the Pauli anti-commutation matrices, the Cj satisfy the desired constraints.

(d) For any vector u∈ Rd, consider u 7→ C(u) :=
∑

i uiCi. What can you say about
C(u)? Compute 〈φD|C(u)⊗ C(v)|φD〉.
A simple calculation reveals that this equals u·v, if C(u) = C(u)T . This is not the
case for the construction above. To avoid this issue can either use more dimensions
to construct Cj’s that do not use the Pauli Y , or replace 〈φD|C(u)⊗C(v)|φD〉 in
the question with 〈φD|C(u)⊗ C(v)T |φD〉.
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Recall that to an XOR game G with question distribution π on {1, . . . , n}×{1, . . . ,m}
and decision predicate V (a, b|s, t) = a⊕ b⊕ cst we associate the semidefinite program

SDP(G) = sup
∑
s,t

π(s, t)(−1)cstxs · yt

s.t. xs, yt ∈ Rn+m , ∀ s, t
‖xs‖ ≤ 1 , ∀ s = 1, . . . , n

‖yt‖ ≤ 1 , ∀ t = 1, . . . ,m .

(e) Show that there is a quantum strategy for G whose success bias is β∗(G) =
SDP(G).

Everyone solved this last question correctly, by combining the previous questions and
work done in class.

4. An upper bound on XOR games

Show that for any c, s such that 0 ≤ s < c ≤ 1, ⊕MIP∗c,s(2) ⊆ QIPc,s(2).

This exercise was a little harder. First we follow the hint, which specifies the first step
for the verifier. Next we need to specify the prover’s actions. Let |ψ〉AB be a bipartite
entangled state, and As and Bt observables, that constitute a strategy for the players
in the original XOR game. The prover in the QIP(2) game applies the transformation1

|0〉|s〉|ψ〉 7→ |0〉|s〉As ⊗ IB|ψ〉 ,
|0〉|t〉|ψ〉 7→ |0〉|s〉IA ⊗Bt|ψ〉 .

One can verify that this is unitary. At the last step, the verifier measures in a basis
that contains the vector |γst〉 = 1√

2
(|0〉|0〉|s〉+ (−1)cst |1〉|1〉|t〉), where cst is the correct

parity for the answers, and accepts if and only if |γst〉 is obtained as outcome.

We first verify completeness, i.e. that the strategy for the prover described above has
the same success probability as the two-prover strategy in the XOR game. Let

|ψst〉 =
1√
2

(
|0〉|0〉|s〉(As ⊗ IB)|ψ〉+ |1〉|1〉|t〉(IA ⊗Bt)|ψ〉 .

Then the player’s success probability, conditioned on questions s, t having been sent,
is

〈ψst|
(
|γst〉〈γst| ⊗ I

)
|ψst〉 =

1

4

∥∥∥(As ⊗ IB)|ψ〉+ (IA ⊗Bt)|ψ〉
∥∥∥2

=
1

2
+

1

2
〈ψ|As ⊗Bt|ψ〉 ,

1For intuition, consider that in the case of a classical strategy, the entangled state is |ψ〉 = (1) (i.e. the
state is 1-dimensional, and the observables are As = (−1)a(s) and Bt = (−1)b(t), where a(s), b(t) ∈ {0, 1}
are the answers that the classical prover would have sent back to question s, t respectively.
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which is exactly the two players’ success probability in the XOR game, conditioned on
questions s, t having been sent.

We now give the idea for showing soundness. For this, we need to model the actions
of an arbitrary prover in the QIP(2) protocol. Such a prover starts in an ancilla
state |0〉anc and applies a unitary U on the 2-qubit question register & the ancilla
register. Let |xs〉 = (〈0|〈s| ⊗ I)U(|0〉|s〉|0〉anc). Note that |xs〉 is a sub-normalized
quantum state, of dimension the dimension of the ancilla register. Similarly, let |yt〉 =
(〈1|〈t| ⊗ I)U(|0〉|s〉|0〉anc). Let

|ψ′st〉 =
1√
2

(
|0〉|0〉|s〉+ |1〉|1〉|t〉

)
|0〉anc .

Then, the prover’s success probability is

〈ψ|U †
(
|γst〉〈γst| ⊗ I

)
U |ψ〉 =

1

4

∥∥|xs〉+ |yt〉
∥∥2

≤ 1

2
+

1

2
<
(
〈xs|yt〉

)
.

Here, the first equality requires a bit of spelling things out, and we omitted details. The
last line is an inequality because ‖|xs〉‖, ‖|yt〉‖ ≤ 1. Using the preceding calculation, it
is then straightforward to show that the provers’ maximum success probability cannot
exceed the SDP value of the XOR game. As shown in the previous exercise, the SDP
value is the same as the quantum value; which concludes the soundness proof.
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