
2 Quantum tools and a first protocol

This chapter covers our first cryptographic task: we will learn how to encrypt quantum
states! To prepare our entry into quantum communication and cryptography we first need
to learn a little more about quantum information. Before proceeding, make sure you are
comfortable with the notions introduced in Chapter 1. In this chapter we extend these
notions in several ways that will be essential to model interesting cryptographic scenarii.

2.1 Probability notation

We start by recalling standard notions of probability theory, and defining associated no-
tation which we use frequently. Consider a discrete random variable X taking values in
a finite set X . We often write |X| for the size of the set X over which X ranges. The
probability distribution of X is specified by a function PX(·) : X → [0, 1] such that for
any x ∈ X , PX(x) denotes the probability that X takes on a specific value x ∈ X . Recall
that for a probability distribution, the normalization condition

∑
x∈X PX(x) = 1 always

holds. When the distribution is clear from context we use the shorthands

px = Pr(X = x) = PX(x) .

for the probability that x occurs. If P is a distribution and X a random variable, we will
writeX ∼ P to indicate that the distribution ofX is P . We sometimes extend this notation
and write X ∼ Y where X,Y are random variables to indicate that they have the same
distribution.

Example 2.1.1. Let X = {1, 2, 3, 4, 5, 6} correspond to the faces of a six-sided die. If the
die is fair, i.e. all sides have equal probability of occurring, then PX(x) = 1/6 for all
x ∈ X . Using our shorthand notation this can also be written as px = 1/6. The size of the
range of X is |X| = 6. ■

A random variable X ranging over a set X can be correlated with another random
variable Y ranging over Y . This means that they have a joint distribution PXY (·, ·) :

X × Y → [0, 1] that is not necessarily a product. That is, PXY (x, y) ̸= PX(x)PY (y)

in general, where PX (resp. PY ) is the marginal distribution of X (resp. Y ), defined by
PX(x) =

∑
y∈Y PXY (x, y) (and similarly for Y ). This leads to the notion of conditional

probabilities PX|Y (x|y), where PX|Y (x|y) is the probability that X takes on the value x,
conditioned on the event that Y takes on the value y. Bayes’ rule relates this conditional
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45 Density matrices

probability to the joint probabilities.

PX|Y (x|y) =
PXY (x, y)

PY (y)
,

whenever PY (y) > 0.1 We use the following shorthands when it is clear which random
variable we refer to:

px|y = Pr(X = x|Y = y) = PX|Y (x|y) .

Example 2.1.2. Let Y ∈ Y = {“fair”, “unfair”} refer to the choice of either a fair or an
unfair die, each chosen with equal probability: PY (fair) = 1/2 and PY (unfair) = 1/2.
If X denotes the fair or unfair die, where the unfair die always rolls a “6” (that is, X =

{1, 2, 3, 4, 5, 6}, with PX(6) = 1 and PX(x) = 0 for x ̸= 6), then PX|Y (x|fair) = 1/6

for all x, but PX|Y (6|unfair) = 1 and PX|Y (x|unfair) = 0 for x ̸= 6. ■

Exercise 2.1.1 Compute explicitly the joint probability PXY (x, y) for the random
variables in Example 2.1.2.

Exercise 2.1.2 Suppose that Alice chooses between the fair or unfair die from Exam-
ple 2.1.2 with probability PY (fair) = PY (unfair) = 1/2, but does not reveal to us
which choice was wade. Imagine that we roll the (fair or unfair) die and obtain the
outcome X . Suppose that we see X = 3. Can we guess what die Alice used? That
is, what is the most likely value of Y , “fair” or “unfair”? Answer the same question
in case we observe that X = 6.

2.2 Density matrices

Week 1, Lecture 1.2,Lecture 1: The density matrix
The quantum generalization of probability distributions, i.e. probability distributions over
quantum states, are called density matrices. There are two main motivations for working
with density matrices. The first motivation is to model the kind of scenario described above.
Suppose for example that we build a device that prepares either a state |ψ1⟩, with some
probability p1, or a state |ψ2⟩, with probability p2. Wouldn’t it be nice to have a concise
mathematical way to describe the “average” quantum state returned by this device, without
having to resort to words as in the previous sentence? We will call such a state a mixed
state, in contrast to the pure states which we have studied so far.

There is a second motivation for introducing density matrices, which is that they are
necessary to describe the quantum state of a subsystem of a general system. To understand
why this is the case, imagine given two quantum systems A and B. For example, A and
B are two qubits such that the state of A and B is a normalized vector |ψ⟩AB ∈ C4.
Given this situation, how can we mathematically describe the state of qubit A? Note that
physically speaking, if we imagine qubits A and B as being in very far-away locations,

1 The marginal distribution of X given Y = y is undefined if y cannot occur, i.e. whenever PY (y) = 0.
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then intuitively there must be a way to describe the state of A without referring to B at all.
So how do we do it?

Consider first an easy case. Suppose that the joint state of A and B takes the form

|ψ⟩AB = |ψ1⟩A ⊗ |ψ2⟩B .

Then the answer is clear: the state ofA is the normalized vector |ψ1⟩A. However, remember
from Chapter 1 that there exists quantum states |ψ⟩AB that cannot be written as a simple
tensor product like this! A good example of such a state is the EPR pair

|EPR⟩AB =
1√
2
|0⟩A |0⟩B +

1√
2
|1⟩A |1⟩B .

As shown in Exercise ??, it is impossible to express |EPR⟩AB = |ψ1⟩A⊗ |ψ2⟩B for some
states |ψ1⟩A and |ψ2⟩B . In this case, how can we describe the state of A? It seems like we
dug ourselves into a mathematical rabbit-hole. Either we find a way to describe the state of
A, or there is a problem with our formalism. As we will see, the answer to this question is
the same as the previous one: the notion of a density matrix will help us save the day.

2.2.1 Introduction to the formalism

We start by giving a different way to represent pure quantum states: as matrices. Recall
that a ket |ψ⟩ is a column vector, while the bra ⟨ψ| is a row vector. Therefore, ρ = |ψ⟩⟨ψ|
is a rank-1 matrix: it has precisely 1 non-zero eigenvalue (equal to 1), with associated
eigenstate |ψ⟩. The matrix ρ is called the density matrix of the quantum state.

Example 2.2.1. For the states |0⟩ and |+⟩ = (|0⟩+ |1⟩) /
√
2 we obtain the density matri-

ces

|0⟩⟨0| =
(

1

0

)
(1 0) =

(
1 0

0 0

)
,

|+⟩⟨+| = 1

2

(
1

1

)
(1 1) =

1

2

(
1 1

1 1

)
.

■

How does writing down states as matrices help us resolve the questions above? To see
how, let us first consider the first motivation that we gave: the need for a formalism that
can represent probabilistic combinations of pure quantum states. But before that, let us
remember that physically, the only information that we can obtain about a quantum state
is obtained by performing a measurement. Moreover, if a state |ψ⟩ is measured in a basis
that contains the vector |b⟩, then the probability of obtaining the outcome ‘|b⟩’ is given by

| ⟨b|ψ⟩|2 = ⟨b|ψ⟩⟨ψ |b⟩ = ⟨b| ρ |b⟩ , (2.1)

where as earlier ρ = |ψ⟩ ⟨ψ| is the density matrix representation of the pure state |ψ⟩. In
words: the probability of obtaining the outcome ‘|b⟩’ is obtained by computing the overlap
of |b⟩ with ρ, which is defined as the quantity ⟨b| ρ |b⟩.
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Remark 2.2.1. While |ψ⟩ ≠ − |ψ⟩ as vectors, as matrices we have |ψ⟩⟨ψ| = (− |ψ⟩)(−⟨ψ|).
Thanks to the modulus squared in the computation of probabilities we see that the (−1)
phase has no observable consequence, and so representing the state vector as a matrix
does not lose information.

Moving on, let us consider the case where our preparation device prepares one of two
possible states, |ψ1⟩ or |ψ2⟩, with equal probability p1 = p2 = 1/2 as in 2.1. We claim
that an accurate matrix representation of the state produced by the device can be obtained
by taking the linear combination

ρ =
1

2
|ψ1⟩⟨ψ1|+

1

2
|ψ2⟩⟨ψ2| .

More generally, if the device prepares |ψx⟩ with probability px, the density matrix repre-
sentation of the resulting state is

ρ =
∑
x

px|ψx⟩⟨ψx| . (2.2)

To verify that this choice of representation is accurate, consider what happens if we mea-
sure the state output by the device in a basis that contains the vector |b⟩. If the state is |ψx⟩
for some x, then the probability of obtaining the outcome ‘|b⟩’ is

qb|x = | ⟨b|ψx⟩|2 = ⟨b|ψx⟩⟨ψx|b⟩ .

Since the state |ψx⟩ is prepared with probability px we expect the overall probability of
obtaining the outcome ‘|b⟩’ to be

qb =
∑
x

pxqb|x .

Observe that

qb =
∑
x

pxqb|x =
∑
x

px⟨b|ψx⟩⟨ψx|b⟩ = ⟨b|

(∑
x

px|ψx⟩⟨ψx|

)
|b⟩ = ⟨b| ρ |b⟩ ,

which is precisely the same rule as (2.1). This means that the density matrix representa-
tion (2.2) captures the right amount of information about the state of the system so that
the distribution of outcomes of any measurement on the state can be recovered using the
generalized measurement rule (2.1).

Example 2.2.2. Suppose more generally that a device prepares a state with density matrix
ρx with probability px. Then the density matrix that describes the overall state prepared by
the device is given by

ρ =
∑
x

pxρx .

The set of probabilities and density matrices E = {(px, ρx)}x is called an ensemble of
states. ■
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Device

𝑝!

𝑝"

|𝜓!⟩

|𝜓"⟩

tFig. 2.1
Device that prepares two possible states with equal probability.

Example 2.2.3. Suppose that a device prepares |0⟩⟨0| with probability 1/2, and |+⟩⟨+|
with probability 1/2. Then the resulting density matrix is given by

ρ =
1

2
|0⟩⟨0|+ 1

2
|+⟩⟨+| = 1

2

(
1 0

0 0

)
+

1

4

(
1 1

1 1

)
=

1

4

(
3 1

1 1

)
.

■

Be careful that superposition is not the same as a probabilistic combination! Intuitively,
the difference is that a probabilistic combination, often called a mixture, is an inherently
classical object: there is a process that prepares one or the other state with some probability.
In contrast, a state in a superposition is in some sense one and the other; it is a truly
quantum phenomenon. The following example illustrates the difference between the two.

Example 2.2.4. Consider the difference between preparing a mixture of |0⟩⟨0| and |1⟩⟨1|,
or creating a superposition over |0⟩ and |1⟩. First consider a source that prepares the states
|0⟩⟨0| and |1⟩⟨1| with probabilities p0 = p1 = 1/2. Suppose we measure the resulting
density matrix

ρ =
1

2
|0⟩⟨0|+ 1

2
|1⟩⟨1| = 1

2
I

in the Hadamard basis {|+⟩ , |−⟩}. Then the probability of each possible outcome is given
by

q+ = ⟨+| ρ |+⟩ = 1

2
,

q− = ⟨−| ρ |−⟩ = 1

2
.

In contrast, consider now a state that is an equal superposition of |0⟩ and |1⟩, i.e. the state
|+⟩ = 1√

2
(|0⟩+ |1⟩). Measuring |+⟩ in the Hadamard basis results in q+ = 1 and q− = 0.
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The probabilities are different, so the two states are different! Indeed,

|+⟩⟨+| = 1

2

(
1 1

1 1

)
̸= 1

2

(
1 0

0 1

)
=

1

2
I .

■

Remark 2.2.2. Note that the same density matrix ρ can be obtained from different ensem-
bles {(px, ρx)}. A simple example is provided by the density matrix

ρ =
I
2
,

which is also called the maximally mixed state. You can verify that

I
2
=

1

2
(|0⟩⟨0|+ |1⟩⟨1|) = 1

2
(|+⟩⟨+|+ |−⟩⟨−|) ,

and many other equivalent decompositions are possible. (The maximally mixed state arises
very frequently in cryptography, because it represents a state of complete uncertainty.)
What this means is that the two processes, generating the states |0⟩ or |1⟩ with probability
1
2 each, or generating the states |+⟩ or |−⟩ with probability 1

2 each, return quantum states
that are physically indistinguishable: they have the same density matrix representation
ρ = (1/2)I.

Quiz 2.2.1. Suppose a system is produced in state |0⟩ with probability p0 = 1
2 and in state

|−⟩ with probability p1 = 1
2 . What is the resulting density matrix?

a) ρ = 1
2

(
1 0

0 1

)
b) ρ = 1

4

(
3 1

1 1

)
c) ρ = 1

4

(
3 −1
−1 1

)
d) ρ = 1

2

(
1 1

1 1

)
2.2.2 A little bit of math

To formally define density matrices and their properties we recall some important notions
from linear algebra. We start with Hermitian, and then positive semidefinite, matrices.

Definition 2.2.1 (Hermitian matrix M ). A d × d complex matrix M is Hermitian if it
satisfies M† = M , where recall from Definition 1.1.2 that M† denotes the conjugate-
transpose.

To define density matrices formally, we need a few more mathematical concepts. The
spectral theorem states that any Hermitian matrix M can be diagonalized with real eigen-
values. This means that there exists an orthonormal basis {|vj⟩} of Cd (the eigenvectors)
and real numbers λj (the eigenvalues) such that M =

∑
j λj |vj⟩⟨vj |.
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Definition 2.2.2 (Positive semidefinite matrix). A Hermitian matrixM is positive semidef-
inite if all its eigenvalues {λi}i are non-negative. This condition is denoted M ≥ 0.

Exercise 2.2.1 Show that a matrixM is positive semidefinite if and only if ⟨v|M |v⟩ ≥
0 for all unit vectors |v⟩. In particular, the diagonal coefficients ⟨i|M |i⟩ of M in any
basis are non-negative.

Exercise 2.2.2 Show that the diagonal coeffiecients being positive is not a sufficient
condition for M to be positive semidefinite: find an M such that the diagonal coeffi-
cients of M are all positive but M itself is not positive semidefinite.

Exercise 2.2.3 Even worse: find an M such that all coefficients (i.e. entries) of M are
non-negative, but M is not positive semidefinite.

An important operation on matrices is the trace, which is simply the sum of the diagonal
elements. It is convenient to note that the trace can also be expressed as follows.

Definition 2.2.3 (Trace of a matrix). The trace of a d× d matrix M is

tr(M) =

d−1∑
i=0

⟨i|M |i⟩ ,

where {|i⟩} is any orthonormal basis of Cd.

The definition implicitly assumes that the definition of the trace does not depend on the
choice of orthonormal basis. Let’s verify that this is indeed the case. First, in the following
exercise we verify an important property of the trace, which is that it is cyclic. We will
frequently make use of this property in our calculations.

Exercise 2.2.4 Show that for any matrices M,N (such that both products MN and
NM are well-defined) we have tr(MN) = tr(NM). We will often use this property
to perform manipulations such as

⟨i|A |i⟩ = tr(⟨i|A |i⟩) = tr(A|i⟩⟨i|) ,

where we made use of the fact the trace is cyclic with M = ⟨i| and N = A |i⟩.
(Make sure you can follow all the kets and bras!) It is worth noting that in general a
non-cyclic permutation of the matrices does not preserve the trace. More precisely,
for matrices M,N,P , in general

tr(MNP ) ̸= tr(NMP ) .

Now, if {|ui⟩} is any orthonormal basis of Cd, we know that there exists a unitary
transformation U such that U |i⟩ = |ui⟩ for all i = 0, . . . , d − 1. So given a d × d matrix
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M , ∑
i

⟨ui|M |ui⟩ =
∑
i

⟨i|U∗MU |i⟩

= Tr(U†MU)

= Tr(MUU†)

= Tr(M) ,

where for the second line we used the cyclicity property and for the last line we used
UU† = I. This shows that our definition of the trace is indeed independent of the choice
of orthonormal basis! In particular, by choosing the basis of eigenvectors of M , you can
verify that for any Hermitian matrix M , tr(M) is the sum of its eigenvalues (counted with
multiplicity).

2.2.3 Density matrices and their properties

Before we take the density matrix ρ as our new definition for a general quantum state, let
us investigate when an arbitrary matrix ρ can be considered a valid density matrix, that is,
a valid representation of a quantum state. It turns out that two properties are necessary and
sufficient: the matrix ρ should be positive semidefinite and have trace equal to 1.

To see why this is true, consider the diagonalized representation of a density matrix ρ as
a function of its eigenvalues {λj}j and corresponding eigenvectors {|vj⟩}j :

ρ =
∑
j

λj |vj⟩⟨vj | .

Imagine that we measure ρ in an orthonormal basis {|wk⟩}k. Based on (2.1) we know that
the probability of obtaining the measurement outcome k is given by

qk = ⟨wk| ρ |wk⟩ . (2.3)

For this to specify a proper distribution, it must be that qk ≥ 0 and
∑

k qk = 1. By
performing the measurement in the eigenbasis of ρ, |wj⟩ = |vj⟩, we obtain the necessary
conditions λj ≥ 0, that is, ρ is a positive semidefinite matrix, and tr(ρ) = 1, since

1 =
∑
j

qj =
∑
j

λj tr(|vj⟩⟨vj |) = tr(ρ) .

This shows that the two conditions are necessary for ρ to lead to well-defined distributions
on measurement outcomes when using the rule (2.1). The following exercise asks you to
show that the conditions are also sufficient.

Exercise 2.2.5 Show that for any positive semidefinite matrix ρ with trace 1, and any
orthonormal basis {|wk⟩}k, the numbers qk = ⟨wk| ρ |wk⟩ are real, non-negative,
and sum to 1.

We give a formal definition of a density matrix, which is the most general way of repre-
senting a quantum state.
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Definition 2.2.4 (Density matrix). A density matrix on Cd is a d × d matrix ρ such that
ρ ≥ 0 and tr(ρ) = 1. If furthermore ρ is of rank 1, then ρ is called a pure density matrix.
Otherwise it is called a mixed density matrix.

Note that by definition a pure density matrix is of the form ρ = λ1|u1⟩⟨u1|, where the
trace condition implies that necessarily λ1 = 1. Thus for the case of pure states, density
matrices and the vector representation we got used to before are in one-to-one correspon-
dence. (Except for the phase, which as we pointed out is not relevant since there is no
observation on the state that can determine it.)

We also summarize the rule for computing outcome probabilities when measuring a
quantum system described by the density matrix ρ.

Definition 2.2.5 (Measuring a density matrix in a basis). Consider a density matrix ρ.
Measuring ρ in the orthonormal basis {|bj⟩}j results in outcome j with probability

qj = ⟨bj | ρ |bj⟩ .

Quiz 2.2.2. Is ρ =

(
1 0

0 1

)
a valid density matrix?

a) Yes
b) No

Quiz 2.2.3. Is there always a unique way of preparing the state described by a given
density matrix?

a) Yes
b) No

2.2.4 Bloch representation for one-qubit mixed states

Week 1, Lecture 1.2,Lecture 3: The Bloch sphere representation of the density matrix

In Chapter 1 we saw that single-qubit states have a convenient graphical representation
in terms of a vector on the Bloch sphere. In particular any pure quantum state can be
described by a Bloch vector r⃗ = (cosϕ sin θ, sinϕ sin θ, cos θ). Rather conveniently, the
representation extends to mixed states. Concretely, it is always possible to write a single-
qubit density matrix as

ρ =
1

2
(I+ vxX + vzZ + vyY ) , (2.4)

where X,Y, Z are the Pauli matrices defined in Chapter 1 and vx, vy, vz are real coeffi-
cients. The fact that such an expansion always exists follows from the fact that the matrices
P = {I, X, Y, Z} form a basis for the space of 2× 2 density matrices that correspond to a
qubit.

Exercise 2.2.6 Use the fact that all matrices M,N ∈ P with M ̸= N anti-commute,
i.e., {M,N} =MN+NM = 0 to show that tr(MN) = 0 wheneverM ̸= N ∈ P .
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Exercise 2.2.7 Using the orthogonality condition (2.5), show that

|0⟩⟨0| = 1

2
(I+ Z) ,

|1⟩⟨1| = 1

2
(I− Z) .

The exercise shows that the matrices I, X, Y, Z are orthogonal under the Hilbert-Schmidt
inner product ⟨A,B⟩ = tr(A†B). That is,

tr(X†Y ) = tr(X†Z) = tr(X†I) = 0 , (2.5)

and similarly for all other pairs of matrices. This is why we can refer to them as an or-
thonormal basis.

If ρ is pure you can verify that the vector v⃗ = (vx, vy, vz) is precisely the Bloch vector r⃗
defined in Chapter 1. For pure states ∥v⃗∥22 = v2x + v2y + v2y = 1. In other words, pure states
live on the surface of the Bloch sphere. For mixed states, however, we can have ∥v⃗∥22 ≤ 1.
Mixed states thus lie in the interior of the Bloch sphere. For the case of 2× 2 matrices the
vector v⃗ tells us immediately whether the matrix ρ is a valid one qubit quantum state: this
is the case if and only if ∥v⃗∥2 ≤ 1.

Quiz 2.2.4. A qubit density matrix with Bloch vector v = (0.8, 0, 0.8) is

a) A pure state

b) A mixed state

c) Not a valid quantum state

Quiz 2.2.5. The matrix ρ = 1
2 I is

a) A pure state

b) A mixed state

c) Not a valid quantum state

2.2.5 Combining density matrices

Week 1, Lecture 1.4,Lecture 1: Combining multiple qubits - tensor product of density ma-
trices

Suppose we are given two quantum systems A and B, described by density matrices ρA
and ρB respectively. How should their joint state ρAB be defined? In the previous chapter
we saw that two pure quantum states |v1⟩ ∈ Cd1 , |v2⟩ ∈ Cd2 respectively can be combined
by taking their tensor product |v1⟩ ⊗ |v2⟩ ∈ Cd1 ⊗Cd2 . It turns out that the rule for mixed
states is very similar.
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Let us start with the simple case where ρA, ρB are 2× 2-dimensional matrices. Then

ρA ⊗ ρB =

(
m11 m12

m21 m22

)
⊗
(
n11 n12
n21 n22

)
=

m11

(
n11 n12
n21 n22

)
m12

(
n11 n12
n21 n22

)
m21

(
n11 n12
n21 n22

)
m22

(
n11 n12
n21 n22

)


=


m11n11 m11n12 m12n11 m12n12
m11n21 m11n22 m12n21 m12n22
m21n11 m21n12 m22n11 m22n12
m21n21 m21n22 m22n21 m22n22

 .

For example, if we have two density matrices ρA =

(
1 0

0 0

)
and ρB =

(
0 0

0 1

)
, then

ρAB = ρA ⊗ ρB =

(
1 · ρB 0 · ρB
0 · ρB 0 · ρB

)
=


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 .

This definition easily extends to larger matrices as follows.

Definition 2.2.6 (Tensor product). Consider any d′ × d matrix ρA and k′ × k matrix ρB ,

ρA =


m11 m12 · · · m1d

m21
. . .

. . . m2d

...
. . .

. . .
...

md′1 md′2 · · · md′d

 , ρB =


n11 n12 · · · n1k

n21
. . .

. . . n2k
...

. . .
. . .

...
nk′1 nk′2 · · · nk′k

 .

Their tensor product is given by the d′k′ × dk matrix

ρAB = ρA ⊗ ρB =


m11ρB m12ρB · · · m1dρB

m21ρB
. . .

. . . m2dρB
...

. . .
. . .

...
md′1ρB md′2ρB · · · md′dρB

 .

As a word of caution, beware that the tensor product, as the usual matrix product, is
non-commutative.

Example 2.2.5. Consider the density matrices ρA = 1
4

1 1 0

1 2 1

0 1 1

 and ρB = 1
2

(
1 −i
i 1

)
.
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Then

ρA ⊗ ρB =
1

8



1 −i 1 −i 0 0

i 1 i 1 0 0

1 −i 2 −2i 1 −i
i 1 2i 2 i 1

0 0 1 −i 1 −i
0 0 i 1 i 1


,

and

ρB ⊗ ρA =
1

8



1 1 0 −i −i 0

1 2 1 −i −2i −i
0 1 1 0 −i −i
i i 0 1 1 0

i 2i i 1 2 1

0 i i 0 1 1


̸= ρA ⊗ ρB .

■

Quiz 2.2.6. 1
2

(
ρ1A + ρ2A

)
⊗ ρB = 1

2

(
ρ1A ⊗ ρB + ρ2A ⊗ ρB

)
for all ρ1A, ρ

2
A and ρB . True

or false?

a) True

b) False

Quiz 2.2.7. ρA ⊗ ρB = ρB ⊗ ρA for all ρA and ρB . True or false?

a) True

b) False

Quiz 2.2.8. What is the tensor product ρAB = ρA ⊗ ρB of ρA = |1⟩⟨1| and ρB = I
2?

a) ρAB = 1
4


1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1



b) ρAB = 1
2


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1



c) ρAB = 1
2


0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1


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2.2.6 Classical-quantum states

Week 1, Lecture 1.5,Lecture 1: Classical-quantum states

In quantum cryptography we frequently find ourselves in a situation in which the “honest
parties” have some classical information X about which an “adversary” — such as an
eavesdropper Eve — may hold quantum information Q. In other words, the quantum state
Q is correlated with the classical information X . Since classical information is a special
case of quantum information, the joint state of both X and Q can be represented by a
density matrix ρXQ. How does such a density matrix look like?

Classical states
As a first step, let us pause to think about what it means forX to contain “classical informa-
tion”. In full generality, classical information can be modeled by a probability distribution
over strings of bits x. Here x denotes the information and px the probability that this is the
information contained in X . Suppose then that we are given a probability distribution over
symbols x taken from the alphabet X = {0, . . . , d− 1}, and let px denote the probability
of symbol x. Identifying each possible value in X with an element of the standard basis
{|0⟩ , . . . , |d− 1⟩} we can describe a system that is initialized in state |x⟩ with probability
px using the density matrix

ρ =

d−1∑
x=0

px|x⟩⟨x| .

Note that ρ is a matrix which has the probabilities px on the diagonal and has all other
entries equal to zero. As such, ρ is just another way to represent the distribution px: instead
of a sequence of numbers, or a vector, we wrote the numbers on the diagonal of a matrix.
Moreover, you can verify that measuring ρ in the standard basis results in outcome “x”
with probability precisely px. In this sense, ρ is an accurate representation of the system X

described above.

Definition 2.2.7 (Classical state). Let {|x⟩}d−1
x=0 denote the standard basis for Cd. A system

X is said to be in a classical state, or c-state, if its density matrix ρX is diagonal in the
standard basis, i.e. ρX has the form

ρ =

d−1∑
x=0

px|x⟩⟨x| ,

where {px}d−1
x=0 is a probability distribution.

Thus from now on we equate “classical state” or “classical density matrix” with “diag-
onal in the standard basis”. The choice of the standard basis is arbitrary, as from a mathe-
matical point of view all orthonormal bases are equivalent. Nevertheless, it is an important
convention and serves as a point of connection between the classical and quantum worlds.

https://learning.edx.org/course/course-v1:CaltechDelftX+QuCryptox+3T2018/block-v1:CaltechDelftX+QuCryptox+3T2018+type@sequential+block@4b3b93e7f18b45dcb2208a97a67dea99/block-v1:CaltechDelftX+QuCryptox+3T2018+type@vertical+block@a8e0da002a454250b30b015bbc598843
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Classical-quantum states
Now, let’s move to states which are partially classical and partially quantum. Let’s start
with an example. Suppose that with probability 1/2 system X is in the classical state |0⟩
and system Q is in the mixed state I

2 , and with probability 1/2 system X is in the classical
state |1⟩ and system Q is in the pure state |+⟩. How do we write down the density matrix
of the joint system XQ? In the first case, the density matrix is |0⟩⟨0|X ⊗ (I/2)Q, and in the
second it is |1⟩⟨1|X ⊗ |+⟩⟨+|Q. Since both probabilities are equal to 1

2 , overall we obtain

ρXQ =
1

2
|0⟩⟨0|X ⊗

IQ
2

+
1

2
|1⟩⟨1|X ⊗ |+⟩⟨+|Q .

Check for yourself that ρXQ is a valid density matrix (remember the two conditions that
need to be verified). This kind of density matrix is called a classical-quantum state, or
cq-state for short. The reason is that the X part of the state is classical. More generally we
give the following definition.

Definition 2.2.8. A classical-quantum state, or simply cq-state, is a state of two subsys-
tems, X and Q, such that its density matrix has the form

ρXQ =
∑
x

px|x⟩⟨x|X ⊗ ρQx ,

where {px} is a probability distribution and for every x, |x⟩ designates the standard basis
state on X and ρQx is an arbitrary density matrix on Q.

In applications to cryptography x will often represent some (partially secret) classical
string that Alice creates during a quantum protocol, and ρQx some quantum information that
an eavesdropper may have gathered during the protocol and which may be correlated with
the string x. By convention we will usually reserve the letters X,Y, Z to denote classical
registers, and use the other letters for quantum information. (More letters for quantum!)

Quiz 2.2.9. Which of the following states is in general a classical-quantum state?

a) ρAB = 1
2

(
ρ0A ⊗ ρ0B + ρ1A ⊗ ρ1B

)
b) ρAB = 1

2

(
ρ0A ⊗ ρ0B + |0⟩⟨0|A ⊗ |1⟩⟨1|B

)
c) ρAB = 1

2

(
|0⟩⟨0|A ⊗ ρ0B + |1⟩⟨1|A ⊗ ρ1B

)
Quiz 2.2.10. Alice prepares uniformly at random (each with probability pi = 1/3) one
out of three quantum states ρiB , where i ∈ {0, 1, 2}, and sends this state to Bob. After
preparation, the information about the state she prepared becomes encoded in a classical
memory |i⟩⟨i|A that Alice keeps. What is the correct description of the joint state that Alice
and Bob share?

a) ρAB = 1
3

(
|0⟩⟨0|A ⊗ ρ0B + |1⟩⟨1|A ⊗ ρ1B + |2⟩⟨2|A ⊗ ρ2B

)
b) ρAB = 1

9 (|0⟩⟨0|A + |1⟩⟨1|A + |2⟩⟨2|A)⊗
(
ρ0B + ρ1B + ρ2B

)
c) ρAB = 1

2

(
|0⟩⟨0|A ⊗ |1⟩⟨1|A ⊗ |2⟩⟨2|A + ρ0B ⊗ ρ1B ⊗ ρ2B

)
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2.3 General measurements

Week 1, Lecture 1.6,Lecture 1: General measurements

So far we have described how to measure a quantum state, pure or mixed, in a given or-
thonormal basis. Quantum mechanics allows a much more refined notion of measurement,
which plays an important role both in quantum information theory and in cryptography.
Indeed, in quantum information theory certain tasks, such as the task of discriminating
between multiple states, can be solved more efficiently using these generalized measure-
ments. Moreover, taking an adversarial viewpoint, in quantum cryptography it is essential
to prove security for the most general kind of attack, including all measurements that an at-
tacker could possibly make! This includes using extra qubits to make measurements, which
is effectively how such generalised measurements can be realized.

2.3.1 POVMs

If we are only interested in computing the probabilities of measurement outcomes – but
do not require a complete specification of what happens to the quantum state once the
measurement has been performed – then the most general kind of measurement that is
allowed in quantum mechanics can be described mathematically by a positive operator-
valued measure, or POVM for short.

Definition 2.3.1 (POVM). A POVM on Cd is a set of positive semidefinite matrices {Mx}x∈X
such that ∑

x

Mx = Id .

The subscript x is used as a label for the measurement outcome.

Quiz 2.3.1. Which of the following is a valid POVM?

I.
{(

1
2 − 1

2

− 1
2

1
2

)
,

(
1
2 0

0 1
2

)
,

(
0 1

2
1
2 0

)}
II.
{(

1
3 0

0 1
3

)
,

(
1
2 0

0 0

)
,

(
0 0

0 1
2

)}
III.

{(
1
2 0

0 0

)
,

(
0 0

0 1
2

)
,

(
1
2 0

0 1
2

)}
a) I. and II.
b) I. and III.
c) only I.
d) only III.

Having generalized our notion of measurement, we need to extend the measurement

https://learning.edx.org/course/course-v1:CaltechDelftX+QuCryptox+3T2018/block-v1:CaltechDelftX+QuCryptox+3T2018+type@sequential+block@ed8f089183f142ad9cd802b6eae1951e/block-v1:CaltechDelftX+QuCryptox+3T2018+type@vertical+block@26ff3df7d5ab4b8ab3549feca711a62a
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rule, i.e. the rule that specifies the probability of obtaining each possible outcome when
performing the measurement on a given state with density matrix ρ.

Definition 2.3.2 (Generalized measurement rule). Let {Mx} be a POVM. Then the prob-
ability px of observing outcome x when performing the measurement {Mx} on a density
matrix ρ is

px = tr(Mxρ) .

This expression is sometimes called the Born rule.

The next two examples show that the generalized Born rule is compatible with the mea-
surement rule we had introduced before.

Example 2.3.1. Consider a probability distribution (px) and the associated classical mix-
ture ρ =

∑
x px|x⟩⟨x|. If we measure ρ in the standard basis, with associated POVM

Mx = |x⟩⟨x| as in Example 2.3.2, we obtain outcome x with probability

tr(|x⟩⟨x|ρ) = ⟨x| ρ |x⟩ = px ,

as expected: ρ indeed captures the classical distribution given by the probabilities px. ■

Example 2.3.2. Recall that when measuring a state |ψ⟩ =
∑

x αx |x⟩ in a basis such as
{|x⟩}x, the probability of observing outcome x is given by |αx|2. Let us verify that this rule
is recovered as a special case of the POVM formalism. For each x let Mx = |x⟩ ⟨x|, so
that Mx is positive semidefinite (in fact, it is a projector, i.e. M2

x = Mx) and
∑

xMx = I
(this can be verified by using that {|x⟩} is a basis), as required. Let ρ = |ψ⟩⟨ψ|. We can
use the Born rule to compute

px = tr(Mxρ)

= tr(|x⟩⟨x|ρ)
= ⟨x| ρ |x⟩

=
∑
x′,x′′

αx′α∗
x′′ ⟨x|x′⟩⟨x′′ |x⟩

= |αx|2 .

■

Beyond the calculation of outcome probabilities it can be important to know what hap-
pens to a quantum state after a generalized measurement has been performed. For the case
of measuring in a basis, we already know the answer: the state collapses to the basis ele-
ment associated with the outcome of the measurement that is obtained.

In the case of a POVM it turns out that the information given by the operators {Mx} is
not sufficient to fully determine the post-measurement state. The reason for this is because
such a measurement may not fully collapse the state, meaning that the post-measurement
state may not be pure (this corresponds to the case where Mx has rank more than 1).
Intuitively, if the measurement operator Mx does not have rank 1 there is some freedom
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in choosing exactly where the post-measurement state lies without affecting the outcome
probabilities.

2.3.2 Generalized measurements

The additional information needed to specify post-measurement states is a Kraus operator
representation of the POVM.

Definition 2.3.3 (Kraus operators). Let M = {Mx} be a POVM on Cd. A Kraus operator
representation of M is a set of d′ × d matrices Ax such that Mx = A†

xAx for all x.

For any positive semidefinite matrix N , if N =
∑

i λi|vi⟩⟨vi| is the spectral decom-
position of N , then N has a unique positive semidefinite square root which is given by√
N =

∑
i

√
λi|vi⟩⟨vi|. Thus a Kraus decomposition of any POVM always exists by set-

ting Ax =
√
Mx. In particular, if Mx = |ux⟩⟨ux| is a projector then

√
Mx = Mx and we

can take Ax = Mx. But for any unitary Ux on Cd, A′
x = Ux

√
Mx is also a valid decom-

position. Hence, there is no unique Kraus representation for a given POVM. In fact, the
definition even allows matrices Ax that are not square.

This means we cannot go from POVM to Kraus operators. However, given Kraus op-
erators we can find the POVM. Thus the most general form to write down a quantum
measurement is through the full set of Kraus operators {Ax}x. Let’s see how knowledge
of the Kraus operators allows us to compute post-measurement states.

Definition 2.3.4 (Post-measurement state). Let ρ be a density matrix and M = {Mx}x
a POVM with Kraus decomposition given by operators {Ax}x. Suppose the measurement
is performed on a density matrix ρ, and the outcome x is obtained. Then the state of the
system after the measurement, conditioned on having obtained the outcome x, is

ρ|x =
AxρA

†
x

tr(A†
xAxρ)

.

If tr(A†
xAxρ) = 0 then the formula for ρ|x is meaningless. However, in that case the

outcome x has probability 0 of occurring and so there is no need to define an associated
post-measurement state.

You may want to convince yourself that when measuring a pure state |ψ⟩ in an arbitrary
orthonormal basis, with Kraus decompositionAx =

√
Mx = |x⟩⟨x|, the post-measurement

state as defined above is precisely the basis state associated to the measurement outcome.
An important class of generalized measurements is given by the case where the Mx are

projectors onto orthogonal subspaces (not necessarily of rank 1).

Definition 2.3.5. A projective measurement, also called a von Neumann measurement, is
given by a set of orthogonal projectors Mx = Πx such that

∑
x Πx = I. For such a mea-

surement, unless otherwise specified we will always use the default Kraus decomposition
Ax =

√
Mx = Πx. For such a measurement the probability qx of observing measurement
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outcome x can be expressed as

qx = tr(Πxρ),

and the post-measurement states are

ρ|x =
ΠxρΠx

tr(Πxρ)
.

The following example shows how to use the formalism of generalized measurements
to perform a certain task in different ways.

Example 2.3.3. Suppose given a two-qubit state ρ, such that we would like to measure the
parity (in the standard basis) of the two qubits. A first way to do this would be to measure
ρ in the standard basis, obtain two bits, and take their parity. In this case the probability
of obtaining the outcome “even” would be

qeven = ⟨00| ρ |00⟩+ ⟨11| ρ |11⟩ ,

and the post-measurement state would be the mixture of the two post-measurement states
associated with outcomes (0, 0) and (1, 1), so

ρ|even =
1

qeven

(
⟨00| ρ |00⟩

)
|00⟩ ⟨00|+

(
⟨11| ρ |11⟩

)
|11⟩ ⟨11| .

Now suppose that we attempt to measure the parity using a generalized measurement which
directly projects onto the relevant subspaces, without measuring the qubits individually.
That is, consider the projective measurement Πeven = |00⟩⟨00| + |11⟩⟨11| and Πodd =

I − Πeven = |01⟩⟨01| + |10⟩⟨10|. With this measurement the probability of obtaining the
outcome “even” is

q′even = tr(Πevenρ) = ⟨00| ρ |00⟩+ ⟨11| ρ |11⟩ ,

as before. However, the post-measurement state is now

ρ′|even =
1

q′even
ΠevenρΠeven .

To see the difference, consider the state ρ = |EPR⟩ ⟨EPR| where |EPR⟩ = 1√
2
(|00⟩ +

|11⟩). Then clearly the parity measurement should report the outcome “even” with prob-
ability 1, and you can check that this is the case for both measurements. However, the
post-measurement states are different. In the first case,

ρ|even =
1

2
|00⟩ ⟨00|+ 1

2
|11⟩ ⟨11| ,

while in the second case,

ρ′|even = |EPR⟩ ⟨EPR|

is unchanged! This is one of the key advantages of using generalized measurements, as
opposed to basis measurements: they allow to compute certain simple quantities on multi-
qubit states (such as the parity) without fully “destroying” the state. ■
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Exercise 2.3.1 Use a projective measurement to measure the parity, in the Hadamard
basis, of the state |00⟩⟨00|.

Exercise 2.3.2 For the same scenario as the previous exercise, compute the probabil-
ities of obtaining measurement outcomes “even” and “odd”, and the resulting post-
measurement states. What would the post-measurement states have been if you had
first measured the qubits individually in the Hadamard basis, and then taken the par-
ity?

2.4 The partial trace

Week 1, Lecture 1.7,Lecture 1: The partial trace
Week 1, Lecture 1.7,Lecture 2: Another way to compute the partial trace

Going back to our second motivation for introducing density matrices, let us now give
an answer to the following question: given a multi-qubit state, how do we write down
the “partial state” associated to a subset of the qubits? More generally, suppose ρAB is a
density matrix on a tensor product space CdA

A ⊗CdB

B , and suppose that Alice holds the part
of ρ corresponding to system A and Bob holds the part corresponding to system B. How
do we represent the state ρA of Alice’s system?

2.4.1 An operational viewpoint

The operation that takes us from ρAB to ρA is called the partial trace. It can be specified
in purely mathematical terms, and we do so in the next section. Before we do that, let us
try to think about the problem from an operational point of view. First, consider an easy
case: if ρAB = ρA ⊗ ρB , where ρA and ρB are both density matrices, then clearly Alice’s
system is defined by ρA. In this case, we would say that the partial trace of ρAB , when
“tracing out” system B, is the density matrix ρA.

A slightly more complicated case is when

ρAB =
∑
i

pi ρ
A
i ⊗ ρBi (2.6)

is a mixture of tensor products (we will later see that this is called a “separable state”).
Using the interpretation that this represents a state that is in state ρAi ⊗ ρBi with probability
pi, it would be natural to claim that Alice’s share of the state is ρAi with probability pi,
i.e. the partial trace of ρAB , when tracing out — i.e. ignoring — system B, is now ρA =∑

i piρ
A
i .

How about a general ρAB? Remember from Exercise ?? that there exists some ρ that do
not have a decomposition of the form (2.6), such as for example the EPR pair. Our idea is to
“force” such a decomposition by performing the following little thought experiment. Let us
imagine that Bob performs a complete basis measurement on his system, using an arbitrary
basis {|ux⟩}x. Let us introduce a POVM on the joint system of Alice and Bob that models
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this measurement: since Alice does nothing, we can set Mx = IA ⊗ |ux⟩⟨ux|B , which you
can check indeed defines a valid POVM. Moreover, this is a projective measurement, so
we can take the Kraus operators Ax =

√
Mx = Mx. By definition the post-measurement

states are given by

ρAB
|x =

MxρABMx

tr
(
MxρAB

) =

(
(IA ⊗ ⟨ux|)ρAB(IA ⊗ |ux⟩)

)
A
⊗ |ux⟩ ⟨ux|B

tr
(
(IA ⊗ |ux⟩⟨ux|B)ρAB

) .

Notice how we wrote the state as a tensor product of a state on A and one on B. Make sure
you understand the notation in this formula, and that it specifies a well-defined state.

The key step is to realize that, whatever the state of Alice’s system A is, it shouldn’t de-
pend on any operation that Bob performs on B. After all, it may be that A is here on Earth,
and B is on Mars. Since quantum mechanics does not allow faster than light communica-
tion, as long as the two of them remain perfectly isolated, meaning that Alice doesn’t get
to learn the measurement that Bob performs or its outcome, then her state should remain
unchanged. We can thus describe it as follows: “With probability qx = Tr(MxρAB), Al-
ice’s state is the A part of ρAB

|x ”. Using the rule for computing post-measurement states,
we get

ρA =
∑
x

qx

(
(I⊗ ⟨ux|)ρAB(I⊗ |ux⟩)

)
A

Tr
(
(I⊗ |x⟩⟨x|)ρAB

) =
∑
x

(I⊗ ⟨ux|)ρAB(I⊗ |ux⟩). (2.7)

Although we derived the above expression for Alice’s state using sensible arguments, there
is something you should be worried about: doesn’t it depend on the choice of basis {|ux⟩}x
we made for Bob’s measurement? Of course, it should not, as our entire argument is based
on the idea that Alice’s reduced state should not depend on any operation performed by
Bob. The next exercise asks you to verify that this is indeed the case. (We emphasize that
this is only the case as long as Alice doesn’t learn the measurement outcome! If we fix a
particular outcome x then it’s a completely different story. Beware of this subtlety, it will
repeatedly come up throughout the book.)

Exercise 2.4.1 Verify that the state ρA defined in Eq.(2.7) does not depend on the
choice of basis {|ux⟩}. [Hint: first argue that if two density matrices ρ, σ satisfy
⟨ϕ| ρ |ϕ⟩ = ⟨ϕ|σ |ϕ⟩ for all unit vectors |ϕ⟩ then ρ = σ. Then compute ⟨ϕ| ρA |ϕ⟩,
and use the POVM condition

∑
xMx = I to check that you can get an expression

independent of the {|ux⟩}. Conclude that ρA itself does not depend on {|ux⟩}.]

Example 2.4.1. Consider the example of the EPR pair

|EPR⟩AB =
1√
2
(|00⟩+ |11⟩) . (2.8)

Writing this as a density operator we have

ρAB = |EPR⟩⟨EPR|AB =
1

2
(|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ |11⟩⟨11|) . (2.9)

Let’s measure system B in the standard basis: taking A into account we consider the
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POVM M0 = IA ⊗ |0⟩ ⟨0|B and M1 = IA ⊗ |1⟩⟨1|B . We can then compute

q0 = Tr(M0ρ)

=
1

2
Tr
(
(I⊗ |0⟩⟨0|)(|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ |11⟩⟨11|)

)
=

1

2

(
1 + 0 + 0 + 0) =

1

2
,

and similarly q1 = 1/2. The post-measurement stated on A is then

ρA|0 =
1

2
(I⊗ ⟨0|)ρAB(I⊗ |0⟩) +

1

2
(I⊗ ⟨1|)ρAB(I⊗ |1⟩) =

1

2
|0⟩⟨0|+ 1

2
|1⟩⟨1| .

Now do the same calculation using a measurement in the Hadamard basis onB, and check
that you get the same result! ■

Quiz 2.4.1. Suppose that Alice and Bob share the state 1√
2
(|00⟩ + |11⟩). Bob measures

his qubit in the basis {|+⟩ , |−⟩} and obtains |+⟩. What is the post-measurement state of
Alice’s qubit?

a) |−⟩
b) |0⟩
c) |+⟩

Quiz 2.4.2. Suppose instead that Alice and Bob share the state 1√
2
(|00⟩−|11⟩). Bob again

measures his qubit in the basis {|+⟩ , |−⟩} and obtains |+⟩. What is the post-measurement
state of Alice’s qubit?

a) |−⟩
b) |0⟩
c) − |+⟩

2.4.2 A mathematical definition

Armed with our “operational” definition of what the partial trace should achieve, we now
give the precise, mathematical definition of this operation.

Definition 2.4.1 (Partial Trace). Consider a general matrix

MAB =
∑
ijkℓ

γkℓij |i⟩⟨j|A ⊗ |k⟩⟨ℓ|B , (2.10)

where |i⟩A , |j⟩A and |k⟩B , |ℓ⟩B run over orthonormal bases of A and B respectively.
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Then the partial trace over B is defined as

MA = trB(MAB)

=
∑
ijkℓ

γkℓij |i⟩⟨j|A ⊗ tr(|k⟩⟨ℓ|B)

=
∑
ijkℓ

γkℓij |i⟩⟨j|A ⊗ ⟨ℓ| k⟩B)

=
∑
ijkℓ

γkℓij |i⟩⟨j|A ⊗ δkℓ

=
∑
ij

(∑
k

γkkij

)
|i⟩⟨j|A .

Similarly, the partial trace over A is

MB = trA(MAB) =
∑
ijkℓ

γkℓij tr(|i⟩⟨j|)⊗ |k⟩⟨ℓ| =
∑
kℓ

∑
j

γkℓjj

 |k⟩⟨ℓ| .
IfMAB = ρAB is a density matrix, meaning that it is positive semidefinte and tr(MAB) =

1, then it is a good exercise to verify that the partial traces ρA = trB(ρAB) and ρB =

trA(ρAB) are again density matrices. We refer to them as the reduced states of the system
AB on system A and system B respectively.

The formal definition directly gives us a recipe for computing the partial trace of a state
ρAB , as follows.

1 Write a decomposition of ρAB in the form (2.10). Note that you may do this for any
choice of orthonormal bases that you like for systems A and B. The coefficients γkℓij are
then simply the entries of the matrix ρAB at position |i⟩⟨j| ⊗ |k⟩⟨ℓ|.

2 Put a trace on the “B part” and use cyclicity of the trace to finish the computation.

In many cases, a decomposition of ρ as in (2.10) is easily found.

Example 2.4.2. Let us consider again the example of the EPR pair

|EPR⟩AB =
1√
2
(|00⟩+ |11⟩) ,

with associated density matrix

ρAB = |EPR⟩ ⟨EPR|AB

=
1

2

(
|0⟩⟨0|A ⊗ |0⟩⟨0|B + |0⟩⟨1|A ⊗ |0⟩⟨1|B + |1⟩⟨0|A ⊗ |1⟩⟨0|B + |1⟩⟨1|A ⊗ |1⟩⟨1|B

)
.

Using the definition we can compute

trB(ρAB) =
1

2

(
|0⟩⟨0|A ⊗ tr(|0⟩⟨0|B) + |0⟩⟨1|A ⊗ tr(|0⟩⟨1|B)

+ |1⟩⟨0|A ⊗ tr(|1⟩⟨0|B) + |1⟩⟨1|A ⊗ tr(|1⟩⟨1|B)
)
.
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Since the trace is cyclic, tr(|0⟩⟨1|) = ⟨1|0⟩ = 0, similarly tr(|1⟩⟨0|) = 0, but tr(|0⟩⟨0|) =
tr(|1⟩⟨1|) = 1 and hence

trB(ρAB) =
1

2
(|0⟩⟨0|+ |1⟩⟨1|) = I

2
. (2.11)

Convince yourself that when we take the partial trace operation over A, and hence look at
the state of just Bob’s qubit we also get

trA(ρAB) =
I
2
. (2.12)

This is consistent with our calculations in Example 2.4.2. ■

Exercise 2.4.2 If ρAB = |Φ⟩⟨Φ| is the singlet |Φ⟩ = (|01⟩ − |10⟩) /
√
2, compute ρA

and ρB .

Example 2.4.3. The notion of partial trace allows us to verify that performing a unitary
operation on A has no effect on the state of B, i.e., it does not change ρB .

(UA ⊗ IB)ρAB(UA ⊗ IB)† =
∑
ijkℓ

γkℓij UA|i⟩⟨j|AU†
A ⊗ |k⟩⟨ℓ|B . (2.13)

Computing again the partial trace we have

trA(UA ⊗ IBρABU
†
A ⊗ IB) =

∑
ijkℓ

γkℓij tr(UA|i⟩⟨j|U†
A)⊗ |k⟩⟨ℓ| (2.14)

=
∑
ijkℓ

γkℓij tr(|i⟩⟨j|U†
AUA)⊗ |k⟩⟨ℓ| (2.15)

=
∑
ijkℓ

γkℓij tr(|i⟩⟨j|)⊗ |k⟩⟨ℓ| (2.16)

=
∑
kℓ

∑
j

γkℓjj

 |k⟩⟨ℓ| = ρB . (2.17)

Can you convince yourself that performing a measurement on A also has no effect on B?
■

Quiz 2.4.3. What are Alice and Bob’s reduced states in the joint state

ρAB =


1
4 0 0 1

4

0 1
4 − 1

4 0

0 − 1
4

1
4 0

1
4 0 0 1

4

?

a) ρA = ρB =

(
1
2 0

0 1
2

)
b) ρA = ρB =

(
1
2 − 1

2

− 1
2

1
2

)
c) ρA =

(
3
4 0

0 1
4

)
, ρB =

(
1
4 0

0 3
4

)
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Quiz 2.4.4. Alice and Bob share a state ρAB . If Alice’s reduced state is ρA = |0⟩⟨0|, we
know that ρAB is . . .

a) pure
b) mixed
c) not enough information

Quiz 2.4.5. Alice and Bob share a state ρAB . If Alice’s reduced state is ρA = 1
2 (|0⟩⟨0| +

|1⟩⟨1|), we know that ρAB is . . .

a) pure
b) mixed
c) not enough information

2.5 Secure message transmission

With all the math behind us we are ready to turn to our first serious cryptographic task —
in fact, the most serious task of all: the secure transmission of messages. To set things up,
imagine two protagonists, Alice and Bob. Alice and Bob would like to exchange classical
messages between each other (e.g. they want to chat!). However, Alice and Bob are worried
that the messages they exchange could be intercepted by a malicious eavesdropper, Eve.
This is because, although Alice and Bob each trust that they have full control over their
own secure laboratory (i.e. their bedroom), they really don’t know what happens on the
communication line, such as the airwaves for a cell phone conversation or the post office
truck for a snail mail conversation. Alice and Bob’s goal is to limit, and if possible reduce
to zero, the useful information that Eve may be able to get: they want to make sure that
even if Eve intercepts all the classical messages they exchange, these messages look like
complete rubbish to Eve!

If you think about this setup, you will see that we are faced with a symmetry-breaking
problem. This is because, if Alice wants to send a message to Bob but Eve can listen to all
messages exchanged, then Eve receives everything that Bob does. So then, how can Bob
understand what Alice wants to say to him, but somehow Eve has no information, even
though she read the same message?

To break the symmetry we will make a crucial assumption. We will assume that Alice
and Bob are in possession of a secret key, that is known to them but completely unknown to
Eve. This key will be used to hide the messages that they exchange. Cryptosystems which
make use of this assumption are called private-key cryptosystems.

For the time being, we will not justify our assumption about the key: this is just some
secret key Alice and Bob have in common, a secret they may have agreed on a long time in
the past, when they were in the same place and could whisper to each other’s ears. In later
chapters we will see how quantum information can be used to establish such a secret even
when Alice and Bob are physically separated.
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Alice sends an encrypted message to Bob.

2.5.1 Shannon’s secrecy condition and the need for large
keys

The mathematical framework for the description of secret communication schemes was
first developed by Claude Shannon in the 1940s, well before quantum information made
its apparition. According to Shannon’s formalism, an encryption scheme consists of two
functions. The first is the encryption function Enc(k,m) = e, that takes the key k and the
message m and maps it to some encrypted message e. The original message m is often
called the plaintext, and e the ciphertext. The second function is the decryption function
Dec(k, e) = m, that takes the key k and the ciphertext e back to the plaintext ( 2.2).

Definition 2.5.1. An encryption scheme (Enc,Dec) is called correct if for every key k and
every plaintext m, Dec(k,Enc(k,m)) = m. It is called perfectly secure if for any distri-
bution p(·) over the spaceM of plaintexts the following two distributions on plaintexts are
identical:

1 Generate a random plaintext m ∈M with probability p(m).

2 Select an arbitrary ciphertext e. Generate a uniformly random key k ∈ K. Generate a
random plaintext m ∈M with probability p(m|Enc(k,m) = e).

In the definition of perfectly secure the key k is chosen uniformly at random. This is
an important condition. It expresses our assumption that Eve has no information whatso-
ever about the key. So from her point of view every possible key has the same a priori
probability: for every k in the key space K, it holds that pk = 1/|K|.

The definition may be a little hard to understand the first time that you read it. So let’s
paraphrase using words. We call an encryption scheme perfectly secure whenever an eaves-
dropper Eve ignorant of the key does not gain any additional information about a plaintext
message m from its encryption e. In other words, the probability p(m) of the message m
is the same a priori (as anyone could guess) as it is from the point of view of Eve, who has
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obtained e. Observe that this is a very strong notion of security: absolutely no information
is gained from having access to e!

This definition is so strong that it may even seem impossible to realize: if e has “no
information” about m, then how can e be decrypted to recover m? As we will soon see,
there is no contradiction: it is possible that e has no information at all about m from the
point of view of an Eavesdropper who does not know the secret key k, yet e still has full
information about m from the point of view of a honest party Bob who does know the
secret key. This is a very subtle point: make sure you fully understand the distinction.

Note that it would be easy to come up with an encryption scheme which is “just” secret:
Alice simply sends a randomly chosen e to Bob. Then, because e is random and indepen-
dent of any message, of course learning e does not reveal information about the message.
But clearly this scheme would not be correct: Bob cannot recover Alice’s message. Sim-
ilarly, it is easy to devise a scheme which is “just” correct: Alice sends e = m to Bob.
Clearly this is not secure since Even also learns m. In summary, the art of encryption is to
design schemes that are both correct and secure.

In our presentation we assumed that Alice and Bob share a secret key k, and we infor-
mally argued that such a key was needed to “break the symmetry” between Bob and the
eavesdropper Eve. Is this argument watertight — is a key really needed? As it turns out,
not only it is needed but in fact the number of possible keys needs to be as large as the
number of possible messages that Alice may wish to send. The following theorem, due to
Shannon, proves this.

Theorem 2.5.1. An encryption scheme (Enc,Dec) can only be perfectly secure and cor-
rect if the number of possible keys |K| is at least as large as the number of possible mes-
sages |M |, that is, |K| ≥ |M |.

Proof Suppose for contradiction that there exists a correct scheme using fewer keys,
i.e., |K| < |M |. We will show that such a scheme cannot be perfectly secure. Let p be the
uniform distribution over M . Consider an eavesdropper who has intercepted the ciphertext
e. She can compute

S = {m̂ | ∃k, m̂ = Dec(k, e)} , (2.18)

that is, the set of all messages m̂ for which there exists a key k that could have resulted
in the observed ciphertext e. Note that the size |S| of this set is |S| ≤ |K|, since for
each possible key k we get at most one message m̂. Since |K| < |M |, we thus have
|S| < |M |. This means that there exists at least one message m such that m /∈ S , and
hence p(m|e) = 0. However, by definition p(m) = 1/|M |. This contradicts the definition
of perfect security given in Definition 2.5.1.

Can the bound given in the lemma be achieved: does there exist an encryption scheme
that is both correct and secure, and which uses precisely the minimal number of keys
|K| = |M |? The answer is yes! We construct such a scheme in the next section.
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An example of a one-time pad between Alice and Bob.

2.5.2 The (quantum) one-time pad

Week 1, Lecture 1.1,Lecture 1: The one-time pad
Week 1, Lecture 1.3,Lecture 1: Encrypting qubits with the quantum one-time pad

The one-time pad is arguably the simplest, yet also the most secure, encryption scheme
known. We start with the “classical” version, that allows encryption of classical messages.

The classical one-time pad
Imagine that Alice (the sender) wants to send a secret messagem to Bob (the receiver). For
simplicity, we take the message spaceM to be the set of all n-bit strings:M = {0, 1}n. Let
us furthermore assume that Alice and Bob already share a key k ∈ {0, 1}n which is just as
long as the message, and is uniformly random from the point of view of the adversary Eve.
In the following definition, we use the notation a⊕ b for the bitwise XOR, or equivalently
addition modulo 2: for a, b ∈ {0, 1}, a⊕ b = a+ b mod 2.

Protocol 1. The classical one-time pad is an encryption scheme in which the encryption
of a message m ∈ {0, 1}n using the key k ∈ {0, 1}n is given by

Enc(k,m) = m⊕ k = (m1 ⊕ k1,m2 ⊕ k2, . . . ,mn ⊕ kn) = (e1, . . . , en) = e .

The decryption is given by

Dec(k, e) = e⊕ k = (e1 ⊕ k1, e2 ⊕ k2, . . . , en ⊕ kn).

2.3 shows an example of the one-time pad. Note that since for any j ∈ {1, . . . , n},
mj ⊕ kj ⊕ kj = mj , the scheme is correct. Is it secure?

To see that it satisfies Shannon’s definition, consider any distribution p on M . For a

https://learning.edx.org/course/course-v1:CaltechDelftX+QuCryptox+3T2018/block-v1:CaltechDelftX+QuCryptox+3T2018+type@sequential+block@ee15ed7348724fa8bc54b98b489d70bd/block-v1:CaltechDelftX+QuCryptox+3T2018+type@vertical+block@0a49a6a93a964c7790a1b5e066c26fb1
https://learning.edx.org/course/course-v1:CaltechDelftX+QuCryptox+3T2018/block-v1:CaltechDelftX+QuCryptox+3T2018+type@sequential+block@0a1fed3fc097422892464498c57247cd/block-v1:CaltechDelftX+QuCryptox+3T2018+type@vertical+block@93e8746354fe4ca28bea1fa8e097292f
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uniformly random choice of key k and a fixed message m, the associated ciphertext e =

Enc(k,m) is uniformly distributed over all n-bit strings: for any e,

p(Enc(k,m) = e|m) = p(m⊕ k = e|m) = p(k = e⊕m|m) =
1

2n
,

since k is chosen uniformly at random. Since this holds for any message m,

p(e) =
∑
m

p(m)p(e|m) =
1

2n
.

Applying Bayes’ rule we get that

p(m|e) = p(m, e)

p(e)
=
p(e|m)p(m)

p(e)
= p(m) ,

independent of m. Thus p(m|e) = p(m) and the scheme is perfectly secure.
Note that our argument crucially relies on the key being uniformly distributed and inde-

pendent from the eavesdropper, a condition that has to be treated with care! In Chapter 6
we will introduce a method called privacy amplification that can be used to “improve” the
quality of a key about which the eavesdropper may have partial information.

Remark 2.5.2. While the one-time pad is “perfectly secure” according to Shannon’s def-
inition, it does not protect against an adversary changing bits in the messages exchanged
between Alice and Bob. Indeed, you can verify that for any key k, and any string x,
Enc(m ⊕ x, k) = Enc(m, k) ⊕ x. What this means is that flipping bits of the cipher-
text is equivalent to flipping bits of the plaintext, and there is no way for Bob to detect if
such an operation has taken place. This would be an issue for bank transactions, since
an adversary could flip the transaction amount in an arbitrary way (without learning any
information about the amount itself!). For this reason, one-time pads are generally supple-
mented by checksums or message authentication codes which allow changes to be detected
(and corrected). These are well-known classical techniques, and we will not get into them
in more detail here.

Quiz 2.5.1. Bob received from Alice a message encoded using the one-time pad: e =

0010111. Bob has the key needed to decrypt the message: k = 1001011. What is the
message that Alice sent him?

a) 1001011

b) 0010111

c) 1011100

d) 1011111

There is another way to look at the classical one time pad that brings it much closer to
the quantum version we will consider next. Consider the encryption of a single-bit message
m ∈ {0, 1}. Recall that we can represent this message as a pure quantum state |m⟩, or
equivalently as the density matrix |m⟩⟨m|. When we apply the XOR operation the result is
that the bitm is flipped whenever the key bit k = 1, and unchanged if k = 0. That is, when
k = 1 the state is transformed as |m⟩ 7→ X |m⟩, where recall that X is the Pauli bit-flip
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Classical one-time pad in the xz-plane of the Bloch sphere for m = 0.

matrix. Thus in this case encryption implements the transformation |m⟩⟨m| 7→ X|m⟩⟨m|X
visualized in 2.4.

If Alice and Bob choose a uniformly random key bit k then we can write the density
matrix for the entire system KM , where K contains the key and M the message, as

ρKM =
1

2
|0⟩⟨0|K ⊗ |m⟩⟨m|M +

1

2
|1⟩⟨1|K ⊗X|m⟩⟨m|MX .

From the point of view of Eve, who does not have access to the system K containing the
key, the state of the message is represented by the density matrix

ρM =
1

2
|m⟩⟨m|M +

1

2
X|m⟩⟨m|MX =

I
2
.

Note that ρM does not depend on m! Whatever m is, we get that ρM = I
2 . Since all

information that can be gained from receiving the encrypted message is captured in the
density matrix ρM , it follows that absolutely no information about m can be gained from
intercepting the encryption.

The quantum one-time pad
We are finally ready for our first element of quantum cryptography: the quantum one-time
pad! Let us consider the task of encrypting a qubit, instead of a classical bit (see 2.5). As
a first attempt we might try to use the classical one-time pad, and see if it works for qubits
as well. Does it? Well, the qubits |0⟩ and |1⟩ are encrypted just like classical messages are.
But what about qubit in state |+⟩? Because X |+⟩ = |+⟩, in this case whatever key Alice
and Bob share, the qubit is “encrypted” to itself. This is certainly not secure!



73 Secure message transmission

x

a

y

b

x

a

y

b

%

key &
message 3

% = 4 & 34 & #

key &
3 = 4 & #%4(&)tFig. 2.5

General form of a quantum one-time pad. Alice encrypts the message qubit ρ
with key k by applying unitary U(k). Bob decrypts by undoing the unitary
according to the key k.

The difficulty is that a quantum encryption scheme should hide information in all possi-
ble bases the qubit could be encoded in. In the classical case applying the bit flip operator
X allowed us to encrypt any bit expressed in the standard basis. If we are allowed other
bases, we should also encrypt a bit encoded in the Hadamard basis. This could be done by
applying a Z instead of an X , because Z |+⟩ = |−⟩ and vice-versa.

But what about other bases, what operation do we need to apply to encrypt information
encoded in them? And how do we combine all these operations so that the same encryption
scheme works for all qubits?

At this point it may seem miraculous that quantum encryption is at all possible using
only a finite amount of key! But it is possible, and in face all we need are two bits of key,
for every qubit.

Amazingly, it is in fact enough to handle both the standard and the Hadamard bases,
and all other bases will follow. Let’s see how this works. To flip in both bases, we apply
the unitary operator Xk1Zk2 , where k1, k2 ∈ {0, 1} are two key bits chosen uniformly at
random. With this choice of encryption operation, an arbitrary single-qubit ρ is transformed
as

ρ 7→ 1

4

∑
k1,k2∈{0,1}

Xk1Zk2ρZk2Xk1 . (2.19)

Now let’s verify that this securely encrypts any single-qubit density matrix ρ. For this,
remember the Bloch sphere representation of ρ. Remember also the fact that the Pauli
matrices pairwise anti-commute. Using this we can make a small calculation,

1

4

(
X +XXX + ZXZ +XZXZX

)
=

1

4

(
X +X − ZZX −XZZXX

)
=

1

4

(
X +X −X −X

)
= 0 ,
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Quantum one-time pad in the xz-plane of the Bloch sphere. A qubit ρ is encoded
by two key bits: the operations I, X, Z,XZ are performed on the qubit with equal
probability. The resulting mixture of states is the maximally mixed state
(represented by the origin of the diagram).

where we used the fact that the Pauli matrices are observables (i.e. they are Hermitian and
square to identity), and {X,Z} = XZ + ZX = 0. The interpretation of this calculation
is that if we apply either I, X , Z or XZ with equal probability to the Pauli matrix X then
we obtain 0. Moreover, the same calculation can be done on the matrices Y and Z, and we
obtain the same result, 0.

Exercise 2.5.1 Show that similarly, for any M ∈ {X,Y, Z} we have

1

4

∑
k1,k2∈{0,1}

Xk1Zk2MZk2Xk1 = 0 . (2.20)

Now let’s use that any single-qubit state can be written as

ρ =
1

2
(I+ vxX + vyY + vzZ) .

By linearity and the calculation in Exercise 2.5.2 we then get that for any ρ,

1

4

∑
k1,k2∈{0,1}

Xk1Zk2ρZk2Xk1 =
I
2
. (2.21)

What this equation means is precisely that from the point of view of anyone who does
not know k1, k2 the bit- and phase-flipped state is completely independent of the input ρ,
which means that all information contained in ρ is hidden from the eavesdropper who only
“sees” I

2 independently of ρ. This leads to the following quantum encryption scheme.

Protocol 2. The quantum one-time pad is an encryption scheme for qubits. The key k =
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An example of a one-time pad using unitary operations.

(k1, k2) is chosen uniformly at random in K = {0, 1}2. To encrypt a qubit in state ρ, Alice
applies the unitary operation Xk1Zk2 to ρ. To decrypt, Bob applies the inverse operation
(Xk1Zk2)† = Zk2Xk1 .

The fact that the scheme is correct follows by definition, since the decryption operation
is the inverse of the encryption operation. See 2.7 for an example. For security, we haven’t
given a complete formal definition for the quantum case. Doing so would take us too far
so early in the book; if you are impatient you may jump ahead to Chapter 12. Intuitively,
the scheme is perfectly secure because just as for the classical case, when we compute
the reduced density matrix of an encrypted qubit, having traced out the key, we obtain
something that is completely independent from the message itself.

To conclude we observe that the quantum one-time pad can easily be extended to n
qubits by applying either I, X , Z or XZ on each qubit, depending on two key bits associ-
ated with that qubit. This means that to encrypt n qubits, we use 2n bits of classical key. In
Chapter 12 we will show that this is optimal: quantum information requires twice as many
bits of key as classical information for perfectly secure encryption.

Exercise 2.5.2 Show that the collection of all (normalized) tensor products of Pauli
matrices

P s =
1

2n
Xs1Zs2 ⊗Xs3Zs4 ⊗ . . .⊗Xs2n−1Zs2n

with s ∈ {0, 1}2n form an orthogonal basis for the vector space of all 2n × 2n

matrices, i.e. for all s, t ∈ {0, 1}2n, tr((P s)†P t) = δst. In particular, any density
matrix ρ on n qubits has a unique decomposition of the form

ρ =
1

2n

(
I⊗n +

∑
s̸=0

vsP
s
)
, (2.22)

for some complex coefficients vs.

Quiz 2.5.2. Alice encodes the qubit |ψ⟩ using the quantum one-time pad. Eve is ignorant
about the key bits k1 and k2. What is the state of the encoded qubit as seen by Eve?
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a) ρ = 1
2 (|ψ⟩⟨ψ|+XZ |ψ⟩⟨ψ|ZX)

b) ρ = I
2

c) ρ = Xk1Zk2 |ψ⟩⟨ψ|Zk2Xk1

Quiz 2.5.3. What is the state of the encoded qubit as seen by Bob who does know the key
bits k1 and k2?

a) ρ = 1
2 (|ψ⟩⟨ψ|+XZ |ψ⟩⟨ψ|ZX) ,

b) ρ = I
2 ,

c) ρ = Xk1Zk2 |ψ⟩⟨ψ|Zk2Xk1

2.6 Chapter notes

For additional background on probability theory you may consult any one of the many
textbooks available, such as [Kel94, Ros10]. For the new elements of the quantum formal-
ism introduced in this chapter we recommend the textbook [NC00]. For a more advanced
discussion focused on quantum information theory, the book [Wil13] provides a wealth of
information.

Shannon in his 1949 paper [Sha49] formally introduced the notion of perfect secrecy for
classical communication and showed that the one-time pad achieves perfect secrecy. The
task of encrypting quantum information is first considered in [AMTdW00a, BR00], who
introduce the quantum one-time pad and show that it achieves perfect secrecy for quantum
encryption. We will return to the topic of quantum encryption in Chapter 12.
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2.7 Cheat Sheet

Trace
Given a matrix M , its trace is given by tr(M) =

∑
iMii, i.e. the sum of its diagonal ele-

ments. The trace operation is cyclic, i.e. for any two matrices M,N , tr(MN) = tr(NM).

Density Matrices
If we prepare a quantum system in the state ρx with probability px, then the state of the
system is given by the density matrix

ρ =
∑
x

pxρx.

Bloch representation of density matrices: any qubit density matrix can be written as
ρ =

1

2
(I+ vxX + vzZ + vyY ) ,

and the Bloch vector v⃗ = (xx, vy, vz) satisfies ∥v⃗∥ ≤ 1, with equality if and only if ρ is
pure.

Probability of measurement outcomes on a density matrix
If a quantum state with density matrix ρ is measured in the basis {|wj⟩}j , then the proba-
bilities of obtaining each outcome |wj⟩ is given by

pwj
= ⟨wj | ρ |wj⟩ = tr(ρ|wj⟩⟨wj |).

Combining density matrices

For density matrices ρA =

(
a11 a12
a21 a22

)
and ρB =

(
b11 b12
b21 b22

)
representing qubits A and

B, the joint density matrix is given by

ρAB = ρA ⊗ ρB :=

(
a11ρB a12ρB
a21ρB a22ρB

)
=


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

 .

Partial trace
Given a bipartite matrix ρAB which has a decomposotion of the form

ρAB =
∑
ijkl

γklij |i⟩⟨j|A ⊗ |k⟩⟨l|B ,

where {|i⟩A} and {|k⟩B} are orthonormal bases of A and B respectively, the partial trace
over system A yields the reduced state ρB

ρB = trA(ρAB) =
∑
ijkℓ

γkℓij tr(|i⟩⟨j|)⊗ |k⟩⟨ℓ|B =
∑
kℓ

∑
j

γkℓjj

 |k⟩⟨ℓ|B .

Properties of the Pauli Matrices X,Y, Z
For any S1, S2 ∈ {X,Y, Z}, {S1, S2} = 2δS1S2

I where the anti-commutator is {A,B} =
AB +BA. This implies the following properties.
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• Zero trace: tr(S1) = 0.
• Orthogonality: tr(S†

1S2) = 0.
• Unitary: S†

1S1 = S1S
†
1 = I.

• Square to identity: S2
1 = I.

2.8 Quiz solutions

Quiz 2.2.1 c)
Quiz 2.2.2 b)
Quiz 2.2.3 b)
Quiz 2.2.4 c)
Quiz 2.2.5 b)
Quiz 2.2.6 a)
Quiz 2.2.7 b)
Quiz 2.2.8 b)
Quiz 2.2.9 c)
Quiz 2.2.10 a)
Quiz 2.3.1 d)
Quiz 2.4.1 c)
Quiz 2.4.2 a)
Quiz 2.4.3 a)
Quiz 2.4.4 c)
Quiz 2.4.5 c)
Quiz 2.5.1 c)
Quiz 2.5.2 b)
Quiz 2.5.3 c)
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