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Abstract—The fundamental principle underlying compressed
sensing is that a signal, which is sparse under some basis rep-
resentation, can be recovered from a small number of linear
measurements. However, prior knowledge of the sparsity basis
is essential for the recovery process. This work introduces the
concept of blind compressed sensing, which avoids the need to
know the sparsity basis in both the sampling and the recovery
process. We suggest three possible constraints on the sparsity basis
that can be added to the problem in order to guarantee a unique
solution. For each constraint, we prove conditions for uniqueness,
and suggest a simple method to retrieve the solution. We demon-
strate through simulations that our methods can achieve results
similar to those of standard compressed sensing, which rely on
prior knowledge of the sparsity basis, as long as the signals are
sparse enough. This offers a general sampling and reconstruction
system that fits all sparse signals, regardless of the sparsity basis,
under the conditions and constraints presented in this work.

Index Terms—Blind reconstruction, compressed sensing, dictio-
nary learning, sparse representation.

I. INTRODUCTION

S PARSE signal representations have gained popularity in re-
cent years in many theoretical and applied areas [1]–[9].

Roughly speaking, the information content of a sparse signal
occupies only a small portion of its ambient dimension. For ex-
ample, a finite dimensional vector is sparse if it contains a small
number of nonzero entries. It is sparse under a basis if its rep-
resentation under a given basis transform is sparse. An analog
signal is referred to as sparse if, for example, a large part of its
bandwidth is not exploited [7], [10]. Other models for analog
sparsity are discussed in detail in [8], [9], [11].

Compressed sensing (CS) [1], [2] focuses on the role of spar-
sity in reducing the number of measurements needed to repre-
sent a finite dimensional vector . The vector is mea-
sured by , where is a matrix of size , with

. In this formulation, determining from the given mea-
surements is ill-posed in general, since has fewer rows than
columns and is therefore non-invertible. However, if is known
to be sparse in a given basis , then under additional mild con-
ditions on [3], [12], [13], the measurements determine
uniquely as long as is large enough. This concept was also re-
cently expanded to include sub-Nyquist sampling of structured
analog signals [7], [9], [14].
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In principle, recovery from compressed measurements is
NP-hard. Nonetheless, many suboptimal methods have been
proposed to approximate its solution [1], [2], [4]–[6]. These
algorithms recover the true value of when is sufficiently
sparse and the columns of are incoherent [3], [5], [12],
[13]. However, all known recovery approaches use the prior
knowledge of the sparsity basis .

Dictionary learning (DL) [15]–[18] is another application of
sparse representations. In DL, we are given a set of training sig-
nals, formally the columns of a matrix . The goal is to find
a dictionary , such that the columns of are sparsely repre-
sented as linear combinations of the columns of . In [15], the
authors study conditions under which the DL problem yields a
unique solution for a given training set .

In this work we introduce the concept of blind compressed
sensing (BCS), in which the goal is to recover a high-dimen-
sional vector from a small number of measurements, where
the only prior is that there exists some basis in which is sparse.
We refer to our setting as blind, since we do not require knowl-
edge of the sparsity basis for sampling or reconstruction. This
is in sharp contrast to CS, in which recovery necessitates this
knowledge. Our BCS framework combines elements from both
CS and DL. On the one hand, as in CS and in contrast to DL,
we obtain only low-dimensional measurements of the signal. On
the other hand, we do not require prior knowledge of the spar-
sity basis which is similar to the DL problem.

Since in BCS the sparsity basis is unknown, the uncertainty
about the signal is larger than in CS. A straightforward solu-
tion would be to increase the number of measurements. How-
ever, we show that no rate increase can be used to determine ,
unless the number of measurements is equal the dimension of

. Furthermore, we prove that even if we have multiple signals
that share the same (unknown) sparsity basis, as in DL, BCS re-
mains ill-posed. In order for the measurements to determine
uniquely we need an additional constraint on the problem.

The goal of this work is to define the new BCS problem, and
investigate basic theoretical conditions for uniqueness of its so-
lution. We first prove that BCS is ill-posed in general. Next we
analyze its uniqueness under several additional constraints. Due
to the relation between BCS and the problems of CS and DL, we
base the BCS uniqueness analysis on the prior uniqueness con-
ditions of CS and DL, as presented in [3] and [15]. Finally, under
each of the investigated constraints we propose a method to re-
trieve the solution. To prove the concept of BCS we begin by
discussing two simple constraints on the sparsity basis. Under
each of these constraints we show that BCS can be viewed as
a CS or DL problem, which serves as the basis of our unique-
ness analysis and proposed solution method. We then turn to a
third constraint which is our main focus, and is inspired by mul-
tichannel systems. The resulting BCS problem can no longer
be viewed as CS or DL, so that the analysis and algorithms are
more involved. We note that many other constraints are possible
in order to allow blind recovery of sparse signals. The purpose
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of our work is to introduce BCS and prove its concept. Our hope
is to inspire future work in this area, leading to additional setups
under which BCS may be possible.

The first constraint on the basis that we consider relies on
the fact that over the years there have been several bases which
have been considered “good” in the sense that they are known to
sparsely represent many natural signals. These include, for ex-
ample, various wavelet representations [19] and the discrete-co-
sine transform (DCT) [20]. We therefore treat the setting in
which the unknown basis is one of a finite and known set
of bases. We develop uniqueness conditions and a recovery al-
gorithm by treating this formulation as a series of CS problems.
To widen the set of possible bases that can be treated, the next
constraint allows to contain any sparse enough combination
of the columns of a given dictionary. We show that the resulting
CS problem can be viewed within the framework of standard
CS, or as DL with a sparse dictionary [21]. We compare these
two approaches for BCS with a sparse basis. For both classes of
constrains we show that a Gaussian random measurement ma-
trix satisfies the uniqueness conditions we develop with proba-
bility one.

The third and main constraint we treat is inspired by multi-
channel systems, where the signals from each channel are sparse
under separate bases. In our setting this translates to the require-
ment that is block diagonal. For simplicity, and following sev-
eral previous works [22]–[24], we impose in addition that is
orthonormal. We then choose to measure a set of signals , all
sparse in the same basis, by a measurement matrix consisting
of a union of orthonormal bases. This choice has been used in
previous CS and DL works as well [25]–[29]. For technical rea-
sons we also choose the number of blocks in as an integer
multiple of the number of bases in . Using this structure we
develop uniqueness results as well as a concrete recovery algo-
rithm. The uniqueness condition follows from reformulating the
BCS problem within the DL framework and then relying on re-
sults obtained in that context. As we show, a suitable choice of
random matrix satisfies the uniqueness conditions with prob-
ability 1.

Unfortunately, the reduction to an equivalent DL problem
which is used for the uniqueness proof, does not lead to a prac-
tical recovery algorithm. This is due to the fact that it neces-
sitates resolving the permutation ambiguity, which is inherent
in DL. Instead, we propose a simple and direct algorithm for
recovery, which we refer to as the orthonormal block diagonal
BCS (OBD-BCS) algorithm. This method finds by
computing a basis and a sparse matrix using two alternating
steps. The first step is sparse coding, in which is fixed and
is updated using a standard CS algorithm. In the second step
is fixed and is updated using several singular value decompo-
sitions (SVDs).

For all of the above formulations we demonstrate via simu-
lations that when the signals are sufficiently sparse the results
of our BCS methods are similar to those obtained by standard
CS algorithms which use the true, though unknown in prac-
tice, sparsity basis. When relying on the structural constraint
we require in addition that the number of signals must be large
enough. However, our simulations show that the number of sig-
nals needed is reasonable and much smaller than that used for
DL [21], [28]–[30].

The remainder of the paper is organized as follows. In
Section II, we review the fundamentals of CS and define the

BCS problem. In Section III, we prove that BCS is ill posed
by showing that it can be interpreted as a certain ill-posed
DL problem. Sections IV, V, and VI consider the three con-
strained BCS problems respectively. Simulation results and a
comparison between the different approaches is provided in
Section VII.

II. BCS PROBLEM DEFINITION

A. Compressed Sensing

We start by shortly reviewing the main results in the field of
CS needed for our derivations. The goal of CS is to reconstruct
a vector from measurements , where

and . This problem is ill posed in general and
therefore has infinitely many possible solutions. In CS we seek
the sparsest solution:

(1)

where is the semi-norm which counts the number of
nonzero elements of the vector. This idea can be generalized to
the case in which is sparse under a given basis , so that there
is a sparse vector such that . Problem (1) then becomes

(2)

and the reconstructed signal is . When the maximal
number of nonzero elements in is known to equal , we may
consider the objective

(3)

An important question is under what conditions (1)–(3) have
a unique solution. In [3] the authors define the spark of a ma-
trix, denoted by , which is the smallest possible number
of linearly dependent columns. They prove that if is -sparse,
and , then the solution to (2), or equivalently (3),
is unique. Unfortunately, calculating the spark of a matrix is a
combinatorial problem. However, it can be bounded by the mu-
tual coherence [3], which can be calculated easily. Denoting the
th column of a matrix by , the mutual coherence of is

given by

It is easy to see that . Therefore, a sufficient
condition for the uniqueness of the solutions to (2) or (3) is

Although the uniqueness condition involves the product ,
some CS methods are universal. This means that by constructing
a suitable measurement matrix , uniqueness is guaranteed for
any fixed orthonormal basis . In such cases knowledge of
is not necessary for the sampling process. One way to achieve
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this universality property with probability 1 relies on the next
proposition.

Proposition 1: If is an i.i.d. Gaussian random matrix of size
, where , then with probability 1

for any fixed orthonormal basis .
Proof: Due to the properties of Gaussian random variables,

the product is also an i.i.d. Gaussian random matrix for any
unitary . Since any (or less than ) i.i.d. Gaussian vectors
in are linearly independent with probability 1, we have that

with probability 1. On the other hand, more than
vectors in are always linearly dependent, therefore

.

According to Proposition 1 if is an i.i.d.Gaussian matrix
and the number of nonzero elements in is , then
the uniqueness of the solution to (2) or (3) is guaranteed with
probability 1 for any fixed orthonormal basis (see also [31]).

Problems (2) and (3) are NP-hard in general. Many sub-
optimal methods have been proposed to approximate their
solutions, such as [1], [2], [4]–[6]. These algorithms can be
divided into two main approaches: greedy techniques and
convex relaxation methods. Greedy algorithms approximate
the solution by selecting indices of the nonzero elements in
sequentially. One of the most common methods of this type
is orthogonal matching pursuit (OMP) [5]. Convex relaxation
approaches change the objective in (2) to a convex problem.
The most common of these techniques is basis pursuit (BP) [4],
which considers the problem

(4)

Under suitable conditions on the product and the sparsity
level of the signals, both the greedy algorithms and the convex
relaxation methods recover . For instance, both OMP and BP
recover the true value of when the number of nonzero elements
in is less than [3], [5], [12], [13].

B. BCS Problem Formulation

Even when the universality property is achieved in CS, all ex-
isting algorithms require knowledge of the sparsity basis for
the reconstruction process. The idea of BCS is to entirely avoid
the need of this prior knowledge. That is, perform both sampling
and reconstruction of the signals without knowing under which
basis they are sparse.

This problem seems impossible at first, since every signal is
sparse under a basis that contains the signal itself. This would
imply that BCS allows reconstruction of any signal from a small
number of measurements without any prior knowledge, which
is clearly impossible. Our approach then, is to sample an en-
semble of signals that are all sparse under the same basis. Later
on we revisit problems with only one signal, but with additional
constraints.

Let denote a matrix whose columns are the
original signals, and let denote the matrix whose
columns are the corresponding sparse vectors, such that

for some basis . The signals are all sampled
using a measurement matrix , producing the ma-
trix . For the measurements to be compressed the di-
mensions should satisfy , where the compression ratio is

. Following [15], [30] we assume the maximal number
of nonzero elements in each of the columns of , is known to
equal . We refer to such a matrix as a -sparse matrix. The
BCS problem can be formulated as follows.

Problem 1: Given measurements and a measurement ma-
trix find the signal matrix such that where

for some basis and -sparse matrix .
Note that our goal is not to find the basis and the sparse

matrix . We are only interested in the product . In
fact, for a given matrix there is more than one pair of matrices

and such that . Here we focus on the question of
whether can be recovered given the knowledge that such a
pair exists.

III. UNIQUENESS

We now discuss BCS uniqueness, namely the uniqueness of
the signal matrix which solves Problem 1. Unfortunately, al-
though Problem 1 seems quite natural, its solution is not unique
for any choice of measurement matrix , for any number of
signals, and for any sparsity level. We prove this result by first
reducing the problem to an equivalent one using the field of DL,
and then proving that the solution to the equivalent problem is
not unique.

In Section III-A we review results in the field of DL needed
for our derivation. We then use these results in Section III-B to
prove that the BCS problem does not have a unique solution. In
Sections IV, V, and VI, we suggest several constraints on the
basis that ensure uniqueness.

A. Dictionary Learning (DL)

DL [15]–[18] focuses on finding a sparse matrix
and a dictionary such that where only

is given. Usually in DL the dimensions satisfy
. BCS can be viewed as a DL problem with where
is known and is an unknown basis. Thus, one may view

BCS as a DL problem with a constrained dictionary. However,
there is an important difference in the output of DL and BCS.
DL provides the dictionary and the sparse matrix

. On the other hand, in BCS we are interested in recovering
the unknown signals . Therefore, after performing DL
some postprocessing is needed to retrieve from . This is an
important distinction which, as we show in Section VI.B, makes
it hard to directly apply DL algorithms.

An interesting question is under what requirements DL has a
unique solution. That is, given a matrix what are the
conditions for the uniqueness of the pair of matrices
and such that where is -sparse. Note
that if some pair satisfies , then scaling (including
sign changes) and permutation of the columns of and rows of

respectively do not change the product . Therefore,
in the context of DL the term uniqueness refers to uniqueness
up to scaling and permutation. In fact in most cases without loss
of generality we can assume the columns of the dictionary have
unit norm, such that there is no ambiguity in the scaling, but
only in the permutation.

Conditions for DL uniqueness when the dictionary is or-
thogonal or just square are provided in [23] and [24]. However,
in BCS is in general rectangular. In [15], the authors
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prove sufficient conditions on and for the uniqueness of
a general DL problem. We refer to the condition on as the
spark condition and to those on as the richness conditions.
The main idea behind these requirements is that should sat-
isfy CS uniqueness, and the columns of should be diverse with
respect to both the locations and the values of the nonzero ele-
ments. More specifically, the requirements for DL uniqueness
are:

• the spark condition: .
• The richness conditions:

1) All the columns of have exactly nonzero elements.
2) For each possible -length support there are at least

columns in .
3) Any columns in , which have the same support,

span a -dimensional space.
4) Any columns in , which have different supports,

span a -dimensional space.
According to the second of the richness conditions the

number of signals, which is the number of columns in , must

be at least . Nevertheless, it was shown in [15]

that in practice far fewer signals are needed. Heuristically, the
number of signals should grow at least linearly with the length
of the signals. It was also shown in [15] that DL algorithms
perform well even when there are at most nonzero elements
in the columns of instead of exactly .

B. BCS Uniqueness

Under the conditions above, the DL solution given the mea-
surements is unique. That is, up to scaling and permutations
there is a unique pair such that and is -sparse.
Since we are interested in the product and not in or
themselves, without loss of generality we can ignore the ambi-
guity in the scaling and permutation, and assume that applying
DL on provides and . Therefore, under the DL
uniqueness conditions on and , the BCS problem is equiv-
alent to the following problem.

Problem 2: Given and , where
, find a basis such that .
Since the matrix in Problem 2 has a null space, and

therefore without the constraint that must be a basis, there is
obviously no unique such that . Moreover, as im-
plied from the following proposition, even with the constraint
that is a basis there is still no unique solution to the DL equiv-
alent problem.

Proposition 2: If there is a solution to Problem 2, then it
is necessarily not unique.

Proof: Assume solves Problem 2, so that it has full rank
and satisfies . Decompose as
where the columns of are in , the null space of ,
and those of are in its orthogonal complement .
Note that necessarily , otherwise the matrix
is in and has full rank. However, since the dimension
of is at most , it contains at most linearly
independent vectors. Therefore, there is no full rank
matrix whose columns are all in .

Next, define the matrix which is different
from , but it is easy to see that . Moreover, since
the columns of are perpendicular to the columns of

(5)

A square matrix has full rank if and only if has full
rank. Therefore, since has full rank, (5) implies that also
has full rank, so that both and are solutions to Problem 2.

According to Proposition 2 if there is a solution to Problem 2,
then there is at least one more solution. However, it is easy to
see from the proof that in fact there are many more solutions.
For instance, some of them can be found by changing the signs
of only part of the columns of .

We now return to the original BCS problem, as defined in
Problem 1. We just proved that when the DL solution given
is unique, Problem 1 is equivalent to Problem 2 which has no
unique solution. Obviously if the DL solution given is not
unique, then BCS will not be unique. Therefore, Problem 1 has
no unique solution for any choice of parameters.

In order to guarantee a unique solution we need an additional
constraint. We next discuss constraints on that can render the
solution to Problem 2 unique. Therefore, in addition to the rich-
ness conditions on and the spark condition on these con-
straints guarantee the uniqueness of the solution to Problem 1.
Although there are many possible constraints, we focus below
on the following.

1) is one of a finite and known set of bases.
2) is sparse under some known dictionary.
3) is orthonormal and has a block diagonal structure.
The motivation for these constraints comes from the unique-

ness of Problem 2. Nonetheless, we provide conditions under
which the solution to Problem 1 with constraints 1 or 2 is unique
even without DL uniqueness. In fact, under these conditions the
solution to Problem 1 is unique even when , so that there
is only one signal.

In the next sections we consider each one of the constraints,
prove conditions for the uniqueness of the corresponding con-
strained BCS solution, and suggest a method to retrieve the so-
lution. Table I summarizes these three approaches.

IV. FINITE SET OF BASES

Over the years a variety of bases were proven to lead to sparse
representations of many natural signals, such as wavelet [19]
and DCT [20]. These bases have fast implementations and are
known to fit many types of signals. Therefore, when the basis is
unknown it is natural to try one of these choices. Motivated by
this intuition we discuss in this section the BCS problem with
an additional constraint which limits the possible sparsity basis
to a finite and known set of bases. The constrained BCS is then:

Problem 3: Given measurements , a measurement matrix
and a finite set of bases , find the signal matrix such that

and for some basis and -sparse
matrix .
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TABLE I
SUMMARY OF CONSTRAINTS ON �

A. Uniqueness Conditions

We now show that under proper conditions the solution to
Problem 3 is unique even when there is only one signal, namely

. In this case instead of the matrices we deal with
vectors , respectively.

Assume is a solution to Problem 3. That is, is -sparse
under and satisfies . Uniqueness is achieved
if there is no which is -sparse under a basis
and also satisfies . We first require that ;
otherwise even if there is no unique solution [3]. Since
the real sparsity basis is unknown, we require that

for any .
Next we write , where is the index set

of the nonzero elements in with is the vector of
nonzero elements in , and is the submatrix of containing
only the columns with indices in . If is also a solution to
Problem 3 then , where is the index set
of the nonzero elements in , and . Moreover,

, which implies that the matrix has
a null space. This null space contains the null space of .
By requiring

(6)

we guarantee that the null space of equals the null
space of . Therefore, under (6), if
and only if , which implies .

Therefore, in order to guarantee the uniqueness of the solution
to Problem 3 in addition to the requirement that
for any , we require that any two index sets of size

and any two bases satisfy (6).

Definition 3: A measurement matrix is -rank preserving
of the bases set if any two index sets of size and any
two bases satisfy (6).

The conditions for the uniqueness of the solution to Problem
3 can therefore be summarized by the following theorem:

Theorem 4: If for any , and is -rank
preserving of the set , then the solution to Problem 3 is unique.

In order to satisfy the condition on the spark with probability
1, according to Section II.A we may require all to be
orthonormal and generate from an i.i.d. Gaussian distribution.
However, since the number of bases is finite, we can instead
verify this condition is satisfied by checking the spark of all the

products . Alternatively, one can bound the spark of these
matrices using their mutual coherence.

In order to satisfy the condition on with probability 1,
we can generate it at random, as incorporated in the following
proposition.

Proposition 5: An i.i.d. Gaussian matrix of size is
-rank preserving of any fixed finite set of bases and any

, with probability 1.
Proof: If then has full column rank with prob-

ability 1, and is therefore -rank preserving with probability 1.
We therefore focus on the case where . Assume are
index sets of size , and . Denote .
We now need to prove that .

Perform a Gram Schmidt process on the columns of
and denote the resulting matrix by . It follows that is an

matrix with orthonormal columns, with
and . Next we complete to
an orthonormal matrix by adding columns. According to
Proposition 1 since is an i.i.d. Gaussian matrix and is or-
thonormal with probability 1. Therefore, with
probability 1 any columns of are linearly independent,
with . In particular, with probability 1 the columns of
are linearly independent, so that , completing the
proof.

Until now we proved conditions for the uniqueness of
Problem 3 assuming there is only one signal . The same
conditions hold for as we can look at every signal
separately. However, since all the signals are sparse under the
same basis, if then the condition that must be -rank
preserving can be relaxed. For example, consider the case where
there are only two index sets and two bases
( is the real sparsity basis) that do not satisfy (6). If we have
many signals with different sparsity patterns, then only a small
portion of them fall in the problematic index set, and therefore
might falsely indicate that is the sparsity basis. However,
most of the signals correspond to index sets that satisfy (6), and
therefore these signals indicate the correct basis. The selection
of the sparsity bases is done according to the majority of signals
and therefore the correct basis is selected.

Another example is when there are enough diverse signals
such that the richness conditions on are satisfied. In this case
it is sufficient to require that for any two bases the
matrices and are different from one another even under
scaling and permutation of the columns. This way we guarantee
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that the problem equivalent to Problem 3 under the richness and
spark conditions has a unique solution, and therefore the solu-
tion to Problem 3 is also unique.

Problem 3 can also be viewed as CS with a block sparsity
constraint [11], [32]. That is, if then the
desired signal matrix can be written as

...

where only one of the submatrices is not all zeros. In contrast
to the usual block sparsity, as in [33], in our case the nonzero
submatrix is itself sparse. However, the uniqueness condi-
tions which are implied from this block sparsity CS approach
are too strong compared to our BCS results. For example, they
require all to be incoherent, whereas BCS uniqueness
is not disturbed by coherent bases. In fact the solution is unique
even if the bases in equal one another. This is because here
we are not interested in recovering but rather .

B. The F-BCS Method

The uniqueness conditions we discussed lead to a straight-
forward method for solving Problem 3. We refer to this method
as F-BCS which stands for finite BCS. When , F-BCS
solves a CS problem for each

(7)

and chooses the sparsest . Under the uniqueness conditions it is
the only one with no more than nonzero elements. Therefore,
if we know the sparsity level , we can stop the search when we
find a sparse enough . The recovered signal is where
is the basis corresponding to the we chose. When is known
an alternative method is to solve for each

(8)

and choose that minimizes . In the noiseless case,
this minimum is zero for the correct basis .

When we can solve either (7) or (8) for each of the
signals. The solution for each signal indicates a basis . We
select the sparsity basis to be the one which is chosen by the
largest number of signals.

To solve problems (7) and (8), we can use any of the standard
CS algorithms. Since these techniques are suboptimal in gen-
eral, there is no guarantee that they provide the correct solution

, even for the true basis . In general, when is small enough
relative to these algorithms are known to perform very well.
Moreover, when is selected according to the majority
of signals, and therefore if the CS algorithm did not work well
on a few of the signals it will not effect the recovery of the rest.

Simulation results are presented in Section VII-A, where
we test the method on signals with additive noise and different
number of nonzero elements. As we show the proposed algo-
rithm preforms very well as long as the number of nonzero
elements and the noise level are small enough.

V. SPARSE BASIS

A different constraint that can be added to Problem 1 in order
to reduce the number of solutions is sparsity of the basis . That
is, the columns of are assumed to be sparse under some known
dictionary , so that there exists an unknown sparse matrix
such that . We assume the number of nonzero elements
in each column of is known to equal . We refer to as a
dictionary since it does not have to be square. Note that in order
for to be a basis must have full row rank, and must have
full column rank.

The constrained BCS problem then become:

Problem 4: Given measurements , a measurement matrix
and the dictionary , which has full row rank, find the signal ma-
trix such that where for some -sparse
matrix and -sparse and full column rank matrix .

This problem is similar to that studied in [21] in the con-
text of sparse DL. The difference is that [21] finds the ma-
trices , while we are only interested in their product. The
motivation behind Problem 4 is to overcome the disadvantage
of the previously discussed Problem 3 in which the bases are
fixed. When using a sparse basis we can choose a dictionary

with fast implementation, but enhance its adaptability to dif-
ferent signals by allowing any sparse enough combination of the
columns of . Note that we can solve the problem separately
for several different dictionaries , and choose the best solu-
tion. This way we can combine the sparse basis constraint and
the constraint of a finite set of bases. Another possible combi-
nation between these two approaches is to define the basic dic-
tionary as , where the finite set of bases is

. This way we allow any sparse enough com-
bination of columns from all the bases in .

A. Uniqueness Conditions

As we now show, here too under appropriate conditions the
constrained problem has a unique solution even when there is
only one signal . Therefore, instead of matrices
we deal with vectors respectively. Since and

is -sparse, the vector necessarily satisfies
. We can then write Problem 4 as

(9)

or equivalently:

(10)

The recovery is . From CS we know that the solutions to
(9) and (10) are unique if . If there is more then
one signal, , then (9) and (10) can be solved for each
signal separately.

Note that in Problem 4 the matrix necessarily has full
column rank, while this constraint is dropped in (9) and (10).
However, if the solution without this constraint is unique then
obviously the solution with this constraint is also unique.
Therefore, a sufficient condition for the uniqueness of Problem
4 is .
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B. Algorithms for Sparse BCS

1) Direct Method: When there is only one signal the solution
to Problem 4 can be found by solving either (9) or (10) using a
standard CS algorithm. When there are more signals the same
process can be performed for each signal separately. Since we
use a standard CS algorithm, for this method to succeed we re-
quire the product to be small relative to .

2) Sparse K-SVD: Sparse K-SVD [21] is a DL algorithm
that seeks a sparse dictionary. That is, given the measurements

and a base dictionary it finds -sparse and -sparse ,
such that . In our case we can run sparse K-SVD on

with in order to find and , and then recover
the signals by . Sparse K-SVD consists of two alter-
nating steps. The first is sparse coding, in which is fixed and

is updated using a standard CS method. The second step is
dictionary update, in which the support of is fixed and is
updated together with the value of the nonzero elements in .

In general, BCS cannot be solved using DL methods. How-
ever, under the sparse basis constraint, BCS is reduced to a
problem that can be viewed as constrained DL, and therefore
solved using sparse K-SVD. Nevertheless, the sparse BCS
problem is not exactly a constrained DL problem, since in DL
we seek the matrices and themselves, whereas here we are
interested only in their product . Moreover, as in any
DL algorithm, for sparse K-SVD to perform well it requires a
large number of diverse signals. However, such diversity is not
needed for the uniqueness of the solution to the sparse BCS
problem or for the direct method of solution. In some cases
this required diversity of the signals can prevent sparse K-SVD
from working, for instance when the signals are jointly sparse
(have similar sparse patterns). Sparse K-SVD is also much
more complicated than the direct method.

Simulation results for sparse K-SVD can be found in
[21]; simulation results of the direct method are presented in
Section VII-B. As we will see, this algorithm preforms very
well when the number of nonzero elements and the noise level
are small enough. This method can also be used in cases sparse
K-SVD cannot be used, such as when there is a small number
of signals or when the signals share similar sparsity patterns.

VI. STRUCTURAL CONSTRAINT

In this section, we discuss a structural constraint on the basis
, which is motivated by multichannel systems, where the sig-

nals from each channel are sparse under separate bases. In such
systems we can construct the set of signals by concatenating
signals from several different channels. In this setting, the spar-
sity basis is block diagonal, where the number of blocks equals
the number of channels, and each block is the sparsity basis of
the corresponding channel.

For example, in microphone arrays [34] or antenna arrays
[35], we can divide the samples from each microphone/antenna
into time intervals in order to obtain the ensemble of signals

. Each column of is a concatenation of the signals from
all the microphones/antennas over the same time interval. Al-
ternatively we can look at large images that can be divided into
patches such that each patch is sparse under a separate basis. In
this case every column of is a concatenation of the patches

in the same locations in different images. This partition into
patches is used, for example, in JPEG compression [36].

The advantage of the block structure of is that with the
right choice of we can look at the problem as a set of separate
simple problems. For instance, Problem 2 looks for such that

. Assume for the moment that is block diagonal,
such that

. . .

and is chosen to be a union of orthonormal bases, as in
[25]–[29]. That is, where are all
orthonormal matrices. In this case

and we can recover simply by

. . . (11)

Therefore, the solution to Problem 2 under the constraint that
is block diagonal is straightforward.

Eventually we are interested in the BCS problem, as defined
in Problem 1, therefore the constraint should be added to this
problem and not to Problem 2. The BCS problem with an addi-
tional structural constraint on is not equivalent to Problem 2
with the same constraint. Therefore, the solution to this struc-
tural BCS problem is not as simple as in (11). The reason for
this asymmetry between the problems is that in Section III we
reduce Problem 1 into Problem 2 by applying DL on the mea-
surements . In this reduction we ignore the ambiguity in the
scaling and permutation of the DL output. However, here we
can no longer ignore the ambiguity in the permutation, since a
permutation of can destroy its block diagonal structure. The
ambiguity in the scaling can still be ignored following the same
reasoning as in Section III.

We conclude that we cannot refer to Problem 2 with a block
diagonal constraint on and solve it using (11). Instead the ad-
ditional constraint in Problem 2 should be that the basis is an
unknown column permutation of a block diagonal matrix. We
can solve this new problem using (11) only if we can guarantee
that this unknown column permutation keeps the block diag-
onal structure. That is, it permutes only the columns inside each
block of , and does not mix the blocks or change their outer
order. As we prove in the uniqueness discussion below, this can
be guaranteed if the number of blocks in is an integer mul-
tiple of the number of blocks in , which we denote by . That
is, we assume that has blocks for . For simplicity
we will use in our derivations below; the extension to

is trivial. Following many works in CS and DL, we fur-
ther assume that is orthonormal [22]–[24].

Summarizing our discussion, the constrained BCS problem
is:

Problem 5: Given measurements and a measurement ma-
trix find the signal matrix such that



GLEICHMAN AND ELDAR: BLIND COMPRESSED SENSING 6965

where for some orthonormal -block diagonal ma-
trix and -sparse matrix .

In this new setting the size of the measurement matrix is
, where is the number of measurements and is the

number of blocks in . The signal length is ,
and the size of the basis is . The -block diagonal
structure of implies that the size of its blocks is , so that

must be even.

A. Uniqueness Conditions

The uniqueness discussion in this section uses the definition
of a permutation matrix, which is a column (or row) permutation
of the identity matrix. In other words, it has only one nonzero
element, which equals 1, in each column and row. If is a
permutation matrix, then for any matrix the product is
a column permutation of , and is a row permutation of

. Obviously, any permutation matrix is orthonormal, and a
product of any two permutation matrices is also a permutation
matrix.

To prove uniqueness of the solution to Problem 5, we note that
we can solve this problem by first applying DL on the measure-
ments , which provides and for some
unknown permutation matrix . We then extract out
of , and recover . As we show in
Section VI-B, this method is not practical. However, it is useful
for the uniqueness proof. For this method to recover the original
signal , first we need the solution of the DL in the first step
to be unique (up to scaling and permutation). Therefore, we as-
sume that the richness conditions on and the spark condition
on are satisfied. Under this assumption, the uniqueness of
the solution to Problem 5 is achieved if the solution of the second
step in the above method is unique. That is, under the richness
and spark conditions the structural BCS problem is equivalent
to the following problem:

Problem 6: Given matrices and , which have more
columns than rows, find an orthonormal such that ,
and for some permutation matrix and orthonormal

-block diagonal matrix .
In order to discuss conditions for uniqueness of the solution

to Problem 6 we introduce the following definition.

Definition 6: Denote , such that
for any . is called inter-block diagonal if

there are two indices for which the product

(12)

where , satisfies:

(13)

An example of an inter-block diagonal matrix is presented in
the next proposition:

Proposition 7: Assume where
for any and . If

the product for some is 2-block diagonal then is
inter-block diagonal.

Proof: Since for any the block
has full rank, so that also has full rank. Therefore if

for some the product is 2-block diagonal then the
relevant submatrices, as defined in (12), satisfy
and have full ranks, so that (13) holds.

With Definition 6 in hand we can now derive conditions for
uniqueness of Problem 6.

Theorem 8: If is a union of orthonormal bases,
which is not inter-block diagonal, and , then the
solution to Problem 6 is unique.

The proof of this theorem relies on the following lemma.

Lemma 9: Assume and are both orthonormal -block
diagonal matrices, and satisfies the conditions of Theorem 8.
If for some permutation matrix , then .

In general since has a null space, if the matrices do
not have special structure, then the equality does
not imply . However, according to Lemma 9 under
the constraints on this is guaranteed. The full proof of
Lemma 9 appears in Appendix A. Here we present only the
proof sketch.

Proof Sketch: It is easy to see that due to the orthonormality
of the blocks of , if is block diagonal then
implies . Therefore, we need to prove that is neces-
sarily block diagonal. Denote . In general the multipli-
cation can yield three types of changes in . It can mix the
blocks of , permute the order of the blocks of , and permute
the columns inside each block. The matrix is block diagonal
if and only if it permutes only the columns inside each block,
but does not mix the blocks or change their outer order.

First, we prove that cannot mix the blocks of . For this
we use the condition on the spark of , and the orthonrmality of
the blocks. Next, we prove that cannot change the outer order
of the blocks. This time we use the fact that both and have

blocks and that is not inter-block diagonal. Therefore,
can only permute the columns inside each block, which implies
that it is block diagonal.

The extension of the proof of Lemma 9 to blocks where
is trivial. It is also clear from the proof that if and

have only blocks instead of , then is no longer guaranteed
to be block diagonal. Therefore, we cannot change the number
of diagonal blocks in Lemma 9 to instead of . This implies
that the number of blocks in the structural BCS problem also
cannot be only .

Proof of Theorem 8: The proof we provide for Theorem 8
is constructive, although far from being a practical method to
deploy in practice. Denote the desired solution to Problem 6 by

, and denote

. . .

where for and for are all or-
thonormal matrices. We first find a permutation matrix such
that , where is an orthonormal -block
diagonal matrix. There is always at least one such permutation.
For instance, we can choose so that , and
therefore it is necessarily orthonormal -block diagonal.
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Denote the blocks of by for , and note
that

Since are orthonormal for all , we can recover
the blocks of by

such that

. . .

Since both and are orthonormal -block diagonal, and
since the product is itself a permutation matrix, according
to Lemma 9 the equality implies

. Therefore, we can recover by .

The conclusion from Theorem 8 is that if the richness condi-
tions on are satisfied and satisfies the conditions of Theorem
8, then the solution to the structural BCS problem is unique.

One way to guarantee that satisfies the conditions of The-
orem 8 with probability 1 is to generate it randomly according
to the following proposition, which is proved in Appendix B.

Proposition 10: If is a union of
orthonormal bases, where each block is generated randomly

from an i.i.d. Gaussian distribution followed by a Gram Schmidt
process, then with probability 1 satisfies the conditions of
Theorem 8.

The conditions of Theorem 8 guarantee the uniqueness of the
solution to Problem 6, which is equivalent to Problem 5 under
the DL uniqueness condition. Therefore, the uniqueness condi-
tions of Problem 5 are formulated as follows:

Theorem 11: If is a union of orthonormal
bases, which is not inter-block diagonal, and if

and satisfies the richness conditions, then the solution to
Problem 5 is unique.

B. The OBD-BCS Algorithm

Although the proof of Theorem 8 is constructive it is far from
being practical. In order to solve Problem 5 by following this
proof one needs to first perform a DL algorithm on , resulting
in . Then, it is necessary to try all the permutations

, and look for such that the matrices , for all
, are 2-block diagonal. After finding such a permutation

the recovery of is

. . .

The problem with this method is the search for the permu-
tation . There are different permutations of the columns
of , where is the length of the signals, while only

of them satisfy the requirement (see Appendix C). As
and grow, the relative fraction of the desirable permuta-

tions decreases. For instance, for signals of length and
a compression ratio of only % of the permuta-
tions satisfy the requirement. For the same signals but a higher
compression ratio of only % satisfy the con-
dition, and for longer signals of length and only

% satisfy the requirement.
Therefore, a systematic search is not practical, even for short

signals. Moreover, in practice the output of the DL algorithm
contains some error, so that even for the correct permutation
the matrices are not exactly 2-block diagonal, which
renders the search even more complicated. Although there exist
suboptimal methods for permutation problems such as [37],
these techniques are still computationally extensive and are
sensitive to noise.

Instead, we present here the orthonormal block diagonal BCS
(OBD-BCS) algorithm for the solution of Problem 5, which
is, in theory, equivalent to DL followed by the above postpro-
cessing. However, it is much more practical and simple. This
algorithm is a variation of the DL algorithm in [28], [29], which
learns a dictionary under the constraint that the dictionary is a
union of orthonormal bases. Given , the algorithm in [28] and
[29] aims to solve

(14)

s.t. is -sparse and is a union of orthonormal bases.
In the BCS case is orthonormal -block diagonal and
is a union of orthonormal bases. Therefore, the equivalent
dictionary is

Since all and are orthonormal, here too is a union of
orthonormal bases. The measurement matrix is known and
we are looking for an orthonormal -block diagonal matrix
and a sparse matrix such that . This leads to the
following variant of (14):

(15)

s.t. is -sparse and is orthonormal -block diagonal.
The algorithm in [28], [29] consists of two alternating steps.

The first step is sparse coding, in which the dictionary is fixed
and the sparse matrix is updated. The second step is dictionary
update, in which is fixed and is updated. This algorithm
finds the dictionary and the sparse matrix but not
the basis , and consequently, not the signal matrix .

In OBD-BCS we follow similar steps. The first step is again
sparse coding, in which is fixed and is updated. The second
step is basis update, in which is fixed and is updated. The
difference between OBD-BCS and the algorithm in [28], [29]
is mainly in the second step, where we add the prior knowledge
of the measurement matrix and the block diagonal structure
of . In addition, we use a different CS algorithm in the sparse
coding step.
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We now discuss in detail the two steps of OBD-BCS.
1) Sparse Coding: In this step is fixed so that the opti-

mization in (15) becomes

(16)

It is easy to see that (16) is separable in the columns of . There-
fore, for each column of and , we need to solve

(17)

where are the appropriate columns of respectively.
This is a standard CS problem, as in (3), with the additional
property that the combined measurement matrix is a
union of orthonormal bases. This property is used by the block
coordinate relaxation (BCR) algorithm [28], [29], [38]. The idea
behind this technique is to divide the elements of into blocks
corresponding to the orthonormal blocks of . In each iteration,
all the blocks of are fixed except one, which is updated using
soft thresholding. The DL method proposed by [28], [29] is a
variation of the BCR algorithm, which aims to improve its con-
vergence rate. In OBD-BCS we can also use this variation. How-
ever, experiments showed that the results are about the same as
the results with OMP. Therefore, we use OMP in order to up-
date the sparse matrix , when the basis is fixed.

2) Basis Update: In this step, the sparse matrix is fixed
and is updated. Divide each of the matrices and
into submatrices of size such that:

...
...

Divide each orthonormal block of into two blocks:
for , such that

With this notation , and . There-
fore, (15) becomes

(18)

To minimize (18), we iteratively fix all the blocks for
except one, denoted by , and solve

(19)

where . With slight abuse of notation,
from now on we abandon the index .

Since is orthonormal and consists of columns from an
orthonormal matrix, , and .
Thus, (19) reduces to

(20)

Let the singular value decomposition (SVD) of the matrix
be , where are orthonormal matrices

TABLE II
THE OBD-BCS ALGORITHM

and is a diagonal matrix. Using this notation we can manipu-
late the trace in (20) as follows:

The matrix is orthonormal if and only if is
orthonormal. Therefore, (20) is equivalent to

If the matrix has full rank then is invertible. In
this case the maximization is achieved by , and therefore

is the unique minimum of (19). Even if does not
have full rank achieves a minimum of (19).

Table II summarize the OBD-BCS algorithm. Note that the
initiation can be any -block diagonal matrix, not necessarily
the identity matrix as written in the table; however, the identity
is simple to implement. This algorithm is much simpler then
following the uniqueness proof, which requires a combinato-
rial permutation search. Each iteration of OBD-BCS employs a
standard CS algorithm and SVDs.

As we discussed in the Section VI-A there is more than one
possible pair that follows the structural BCS conditions and
satisfies . Therefore, although OBD-BCS finds a pair

this is not necessarily the original pair. However, under
the uniqueness conditions and are unique up to scaling
and permutation. Consequently, in this case OBD-BCS can be
used in order to find the original matrices up to scaling and
permutation.

An important question that arises is whether the OBD-BCS
algorithm converges. To answer this question we consider each
step separately. If the sparse coding step is performed perfectly
it solves (16) for the current . That is, the objective of (15) is
reduced or at least stays the same. In practice, for small enough

the CS algorithm converges to the solution of (16). However,
in order to guarantee that the objective of (15) is reduced or at
least not increased in this step, we can always compare the new
solution after this step with the one from the previous iteration
and chose the one leading to the smallest objective.

Note that this step is performed separately on each column of
. That is, we can choose to keep only some of the columns

from the previous iteration, while the rest are updated. If at
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least part of the columns are updated then the next basis up-
date step changes the basis , so that in the following sparse
coding step we can get a whole new matrix . Therefore, the
decision to keep the results from the previous iteration does not
imply we keep getting the same results in all the next iterations.
Another possibility is to keep only the support of the previous
solution and update the values of the nonzero elements using
least-squares. In practice, in our simulations the algorithm con-
verges even without any comparison to the previous iteration.

The basis update stage is divided into steps. In each, all the
blocks of are fixed except one, which is updated to minimize
(19). Therefore, the objective of (19) is reduced or at least stays
the same in each of the steps constructing the basis update
step. Therefore, the objective of (18), which is equivalent to (15)
with fixed , is reduced or not increased during the basis update
step.

As in the algorithm we are based on [28], [29] and as in
other DL techniques such as [18] and [30], we cannot prove
that OBD-BCS converges to the unique minimum of (15). How-
ever, we can guarantee that under specific conditions there is a
unique minimum and that the objective function is reduced or
at least stays the same in each step. Furthermore, as can be seen
in Section VII-C the OBD-BCS algorithm performs very well
in simulations on synthetic data.

VII. SIMULATION RESULTS

In this section, we present simulation results on synthetic data
of all the algorithms developed in this paper. In Section VII-A
we show simulation results of the F-BCS method for the so-
lution of Problem 3. In Section VII-B, we present the direct
method for the solution of Problem 4. The OBD-BCS algorithm
for the solution of Problem 5 is demonstrated in Section VII-C.
In Section VII-D, we compare the results of all three methods.

A. F-BCS Simulation Results

For this simulation, we chose the set of bases to contain
five bases of size 64 64: the identity, DCT [20], Haar wavelet,
Symlet wavelet and Biorthogonal wavelet [19]. One-hundred
signals of length 64 were created randomly by generating
random sparse vectors and multiplying them by the Biorthog-
onal wavelet basis in . Each sparse vector contained up to six
nonzero elements in uniformly random locations, and values
from a normal distribution.

The measurement matrix was an i.i.d. Gaussian matrix of
size 32 64. The measurements were calculated first without
noise, that is , and then with additive Gaussian noise
with varying SNR from 30 to 5 dB. For each noise level the
F-BCS method was performed, where the CS algorithm we used
was OMP [5].

Table III summarizes the results. For all noise levels the basis
selection according to the majority was correct. The miss de-
tected column in the table contains the percentage of signals
that indicated a false basis. The average error column contains
the average reconstruction error, calculated as the average of

(21)

TABLE III
F-BCS SIMULATION RESULTS

where are the columns of the real signal matrix and
the reconstructed signal matrix respectively. The average is
performed only on the signals that indicated the correct basis.
Reconstruction of the rest of the signals obviously failed. As
can be seen from Table III in the noiseless case the recovery
is perfect and the error grows with the noise level. For high
SNR there are no miss detections, but as the SNR decreases
beyond 15 dB the percentage of miss detections increases. In
these cases, one should use more than one signal, so that if one
of the signals fails there will be an indication for this through
the rest of the signals.

Another simulation we performed investigated the influence
of the sparsity level , which is the number of nonzero elements
in . The settings of this simulation were the same as those of
the first simulation, only this time there was no noise added to
the measurements, and was gradually increased from 1 to 32.
For each sparsity level new signals were generated with the same
sparsity basis and measured by the same measurement matrix.
For , the recovery of the signal was perfect, but as ex-
pected, for higher values of the number of false reconstructed
signals and the average error grew. The reason for this is that the
OMP algorithm works well with small values of ; for higher
values of , even if the uniqueness conditions are still satisfied,
the OMP algorithm may not find the correct solution.

B. Sparse Basis Simulation Results

We now present simulation results for the direct method.
First, we tested the influence of the sparsity level of the basis.
We generated a random sparse matrix— , of size 256 256
with up to nonzero elements in each column. The value
of —the number of nonzero elements in —was gradually
increased from 1 to 20. For each , we generated as a random

-sparse matrix of size 256 100, and created the signal matrix
, where was the DCT basis. The matrix was

measured using a random Gaussian matrix of size 128 256,
resulting in .

We solved Problem 4 given and using the direct method,
where again the CS algorithm we used was OMP. For compar-
ison we also performed OMP with the real basis , which is
unknown in practice. Fig. 1 summaries the results. For every
value of , the error of each of the graphs is an average over
the reconstruction errors of all the signals, calculated as in (21).
Both the errors are similar for , but for larger ’s the error
of the blind method is much higher.

Since is an i.i.d. Gaussian matrix and the DCT matrix
is orthonormal with probability 1, . Therefore,
with probability 1 the uniqueness of the sparse BCS method is
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Fig. 1. Reconstruction error as a function of the sparsity level.

achieved as long as , or . The error began to
grow before this sparsity level because OMP is a suboptimal al-
gorithm that is not guaranteed to find the solution even when it
is unique, but works well on sparse enough signals. The recon-
struction error of the OMP which used the real grows much
less for the same values of . That is, since in this case itself,
instead of , should be small relative to .

Sparse K-SVD can improve the results for high values of ,
assuming of course it is small enough for the solution to be
unique. However, in this simulation the number of signals is
even less then the length of the vectors, and sparse K-SVD does
not work well with such a small number of signals. In the sparse
K-SVD simulations which are presented in [21], the number of
signals is at least 100 times the length of the signals.

We also investigated the influence of noise on the algorithm.
The setting of this simulation was the same as in the previous
simulation only this time we fixed and added Gaussian
noise to the measurements . We looked at different noise
levels, where for each level we ran the direct method for sparse
BCS, and also for comparison an OMP algorithm which used
the real basis . Table IV summarizes the average errors of
each of the methods. In the noiseless case both approaches lead
to perfect recovery. As the SNR decreases both errors increase,
but as can be expected, the one of the BCS grows faster. The
reason for the big difference in the low SNR regime is again
the fact that in standard CS the OMP algorithm is performed on
sparser signals, relative to the sparse BCS setting.

C. OBD-BCS Simulation Results

In these simulations, the signal matrix had 64 rows and
was generated as a product of a random sparse matrix and
a random orthonormal 4-block diagonal matrix . The value
of the nonzero elements in were generated randomly from
a normal distribution, and the four orthonormal blocks of

TABLE IV
RECONSTRUCTION ERROR FOR DIFFERENT NOISE LEVELS

were generated from a normal distribution followed by a Gram
Schmidt process. The measurement matrix was constructed
from two random 32 32 orthonormal matrices, that were gen-
erated from a normal distribution followed by a Gram Schmidt
process. The number of signals and the sparsity level were grad-
ually changed in order to investigate their influence.

The stopping rule of the algorithm was based on a maximal
number of iterations and the amount of change in the matrices

and . That is, the algorithm stopped when either the change
from the last iteration was too small, or when the maximal
number of iterations was reached. In most cases the algorithm
stopped due to small change between iterations after about 30
iterations.

First we examined the influence of —the number of signals
needed for the reconstruction, and —the sparsity level. Fig. 2
considers the behavior as a function of where the sparsity
level is set to . For each value of from 150 to 2500
the error presented in the blue (upper) graph is an average over
20 simulations of the OBD-BCS algorithm. In each simulation
the sparse vectors and the orthonormal matrix where generated
independently, but the measurement matrix was not changed.
The error of each signal was calculated according to (21).

For comparison, the green (lower) graph in Fig. 2 is the av-
erage error of a standard CS algorithm that was performed on the
same data, using the real basis , which is unknown in practice.
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Fig. 2. Reconstruction error as a function of the number of signals, for sparsity level � � �.

The CS algorithm we used was again OMP. As expected, the
results of CS are independent of the number of signals, since it
is performed separately and independently on each signal. The
average error of this algorithm is 0.08%. The reason for this
nonzero error, although is known, is that for a small portion
of the signals the OMP algorithm fails.

It is clear from Fig. 2 that for reconstruction of the
proposed algorithm is successful and similar to that obtained
when is known. Similarly to the conclusion in [15], the re-
construction is successful even for much smaller then the
number needed in order to satisfy the sufficient richness con-

ditions, which is . As in most DL

methods, the technique in [28], [29] was evaluated by counting
the number of columns of the dictionary that are detected cor-
rectly. The conclusions of [28], [29] are that their algorithm can
find about 80% of the columns when the number of signals is at
least , and can find all the columns when the number
of signals is at least . Using the same measurement
matrix dimensions as in [28], [29], the minimal number of sig-
nals the OBD-BCS algorithm requires is only 500.

In order to examine the influence of , we performed the same
experiment as before but for different values of . The
results are presented in Fig. 3. It can be seen that for all values
of the graph has the same basic shape: the error decreases with

until a critical , after which the error is almost constant. As
grows this critical increases and so does the value of the

constant error. The graphs for , and follow
the same pattern; they are not in the figure since they are not
visible on the same scale as the rest.

Next we investigated the influence of noise on the algorithm.
In this simulation, the noisy measurements are calculated by

, where the elements of were white Gaussian
noise. For each noise level 20 simulations were performed and
the average error was calculated. In all simulations and

. Table V summarizes the results of the OBD-BCS

algorithm and those of OMP which uses the real . It is clear
from the table that in the noiseless case the error of both algo-
rithms is similar, therefore prior knowledge of the basis can
be avoided. As the SNR decreases both errors increase, but the
error of OBD-BCS increases a bit faster than that of the CS al-
gorithm. However, the difference is not very large.

D. Comparative Simulation

We conclude by illustrating the difference between the three
BCS methods presented in this work. In this simulation the
length of the signals was , the sparsity level ,
the number of signals , and the compression ratio

. The syntectic data was generated as in Section VII-C,
but this time the instead of generating randomly,
we used

. . .

which can be viewed as an orthonormal 4-block diagonal matrix
(each block is 16-block diagonal by itself).

We used five different reconstruction algorithms:
1) CS with the real basis .
2) CS with an estimated basis .
3) The F-BCS method.
4) The direct method for sparse BCS.
5) The OBD-BCS algorithm.
In all the methods above we used OMP as the standard CS

algorithm. The first method, serves as a reference point since it
uses the real basis , whose knowledge we are trying to avoid.
The second method is an intuitive way to reconstruct the signals
when training is possible. Since the basis is unknown one can
estimate it first and then perform CS using the pre-estimated
basis. Note however that this requires access to training data,
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Fig. 3. Reconstruction error as a function of the number of signals for different values of �.

TABLE V
RECONSTRUCTION ERROR FOR DIFFERENT NOISE LEVELS

which we do not assume in BCS. We performed the estimation
using a training set of 2000 signals and DL. The estimated basis
is denoted by . There are several different DL algorithms,
e.g., [18], [28]–[30], [39]. However, in this case we have im-
portant prior knowledge that the basis is orthonormal 4-block
diagonal. One way of using this knowledge is dividing the sig-
nals into 4 blocks corresponding to the 4 blocks of , and
estimating each block of from the relevant block of using
the algorithm in Table VI, which is designed for learning an or-
thonormal basis.

Due to this structure of and due to the sparsity of , in each
column of there are up to 12 nonzero elements. Therefore, the
identity matrix was one of the bases in the finite set that we
used. Specifically, we used the same set as in the simulations
in Section VII-A. The signal matrix had about twice as many
nonzero elements in each column compared to the real sparse
matrix , such that is -sparse under . Therefore, we ran
the F-BCS method with sparsity level of instead of . More-
over, since is sparse itself we used as the base dictio-
nary in the sparse BCS method. It is easy to see that .

Table VII reports the average error of all five methods, calcu-
lated as in (21). As can be seen, the results of F-BCS are much
worse than all the others. This can be expected since in this case
OMP is operated with sparsity level of instead of . The error
of the sparse BCS is also larger than the rest. The reason for this

TABLE VI
DL ALGORITHM FOR ORTHONORMAL DICTIONARY

TABLE VII
RECONSTRUCTION ERROR OF DIFFERENT

RECONSTRUCTION ALGORITHMS

is that in order for the direct method of sparse BCS to work well
the product should be small relative to . In this case it is
not small enough. However, note that though higher from the
rest, the errors of the sparse BCS and F-BCS are quite small.
We performed the same simulations with in which case
both the errors of sparse BCS and F-BCS were reduced to the
level of the rest.

Both OBD-BCS and CS with an estimated basis, do not use
the knowledge of the basis . Nevertheless, the results of these
algorithms are similar to those of the algorithm which uses this
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knowledge. Thus, the prior knowledge of can be avoided. The
advantage of OBD-BCS over CS with an estimated basis is that
it does not require any training set, and therefore can be used in
applications where there is no access to full signals but only to
their measurements.

VIII. CONCLUSION

We presented the problem of BCS which aims to solve CS
problems without prior knowledge of the sparsity basis of the
signals. Therefore, this work renders CS universal not only from
the measurement process point of view, but also from the re-
covery point of view.

We presented three different constraints on the sparsity basis,
that can be added to the BCS problem in order to guarantee the
uniqueness of its solution. Under each of these constraints we
proved uniqueness conditions and proposed simple methods
to retrieve the solution. The first two constraints reduce the
problem to a CS or DL problem, which can be solved using
methods based on existing algorithms. The third case of struc-
tural constraints required more extensive analysis. In particular,
we developed a new algorithm for this setting, OBD-BCS.

The OBD-BCS algorithm reconstructs the signal using alter-
nating steps of CS and basis update, where the latter is based on
the structure of the basis. This method can be useful in multi-
channel systems, since the structure of such systems translates
to block diagonal structure of as required for OBD-BCS. This
approach serves as a proof of the concept of BCS, showing that
BCS can be solved efficiently under an applicable constraint
which does not reduce the problem to a trivial one.

All the methods presented in this paper perform very well in
simulations on synthetic data. In fact, the performance of our
methods is similar to those of standard CS which uses the real,
though unknown in practice, sparsity basis, as long as is small
enough and sufficiently many signals are measured (relevant
only for the structural constraint case).

We also demonstrated through simulations the advantage of
BCS over CS with an estimated sparsity basis. BCS does not
require any training set, and therefore can be used in applica-
tions where there is no access to full signals but only to their
measurements.

An interesting direction for future research is to examine
more ways to assure uniqueness, besides the three presented
here, and weaken the constraint on the basis. For example, one
direction is using different measurement matrices on different
signals without additional constraints on the sparsity basis.

APPENDIX A
PROOF OF LEMMA 9

We prove the Lemma by showing that under its conditions
is necessarily block diagonal. The completion of the proof is

then straightforward.
For any such that

, the permutation can yield three
types of changes in . It can mix the blocks of , permute
the order of the blocks of , and permute the columns inside
each block. The matrix is -block diagonal if and only if it

permutes only the columns inside each block, but does not mix
the blocks or change their outer order.

First we prove that cannot mix the blocks of . We denote
by the group of block permutation matrices, namely the
permutation matrices that keep all blocks together. That is, if

then when multiplying by to form only the
order of the blocks and the order of the columns
inside the blocks change, but there is no mixing between the
blocks. To this end we rely on the following three lemmas.

Lemma A.1: If is a union of
orthonormal bases, and , then any set of

orthogonal columns of are necessarily all from the same block
of .

Proof: Assume is a set of orthogonal columns from .
Denote , where is the set of columns taken from

, and contains the rest of the columns in . Without loss of
generality assume the set is not empty. Since both and
are orthogonal bases of , the span of equals the span of the
columns of which are not in . Therefore, for any column

in , which is not in , the set of columns is either
linearly dependent or empty. However, the set contains
at most columns, so that implies that this
set cannot be linearly dependent. Therefore, is necessarily
empty, and all the columns of are from the same block of .

Lemma A.2: Assume is a
union of orthonormal bases, with , and

for some permutation matrix . Then, if is also a union
of orthonormal bases, then .

Proof: If there was a permutation such that
, it would imply that columns of , not all from

the same block, form one of the orthonormal blocks of . How-
ever, according to Lemma A.1 any orthogonal columns must
be from the same block, and therefore .

Lemma A.3: If is a permutation matrix and
are the following submatrices:

(A-1)

then the ranks of these submatrices satisfy:

(A-2)

Proof: Since is a permutation matrix it has only one
nonzero in each column and row. Therefore, if there is a nonzero
in the th row and th column of , then the th row of and
the th column of are all zero. Consequently

(A-3)

The same consideration on implies that

(A-4)
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Combining (A-3) and (A-4) results in (A-2).

Denote the orthonormal blocks of by for
and the orthonormal blocks of and by and respec-
tively for . Also denote

which are both unions of orthonormal bases since
and are all orthonormal. Therefore, if , then
according to Lemma A.2 .

Next we prove that also cannot change the outer order of
the blocks, and therefore must be -block diagonal. Assume to
the contrary that changes the outer order of the blocks of .
Without loss of generality we assume this change is a switch
between the first two blocks of . That is

where are the corresponding submatrices of which
permute the columns inside the blocks . In order to sat-
isfy , we must have

(A-5)

Since and are orthonormal, (A-5) implies that

(A-6)

From (A-6)

where . Since are all
orthonormal, it is easy to see that the ranks of the submatrices

equal the ranks of the corresponding subma-
trices of . Since is a permutation matrix, Lemma A.3
implies that these ranks satisfy (A-2). Therefore, according to
Definition 6, is necessarily inter-block diagonal. However,
according to the conditions of Theorem 8 is not inter-block
diagonal, so that cannot change the outer order of the blocks,
and it must be -block diagonal.

Denote the diagonal blocks of by for .
Then

Since all are orthonormal the above implies that for all

(A-7)

and since is block diagonal (A-7) implies , which
concludes the proof of Lemma 9.

In fact, in this appendix we prove not only that is -block
diagonal, it is also -block diagonal. Note that the extension
of this proof to the case where and have blocks, for

, is trivial. However, if and have blocks instead
of , then the proof fails. This is a result of the fact that in this
proof in order to eliminate solutions of the form of (A-6) we
use the 2-block diagonal structure of the matrices. If there are
only blocks in , then the matrices in (A-6) are no longer
2-block diagonal. In this case, besides the solution
there is another possibility:

. . .

where are the blocks of and the cor-
responding blocks of . Obviously in this case, .

APPENDIX B
PROOF OF PROPOSITION 10

In order to prove Proposition 10, we show that under its re-
quirements with probability 1 and is not inter-
block diagonal (Definition 6). In fact, the proposition claims that

, however this is implied from and
from the orthonormality of . Namely, if then
the rows of are necessarily linearly independent, and since
is orthonormal so are the rows of .

In Proposition 10, each block of is generated from a
Gaussian distribution followed by a Gram Schmidt process.
Before we begin the proof, we note that this random genera-
tion of each block can be viewed as the following equivalent
process.

• The first column of the block, , is generated randomly
from a Gaussian distribution on .

• The second column, , is generated randomly from the
space , which is the space orthogonal to . The dimen-
sion of is .

• Similarly, any column is generated randomly from ,
which is the space orthogonal to the span of all previous
columns, and its dimension is .

• Finally, all the columns are normalized.
While is generated randomly from a Gaussian distribution,
the distributions from which the rest of the ’s are generated
are more complicated, but these distributions are necessarily
continuous.

In order to prove that with probability 1, we
use the following lemma.
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Lemma B.1: Assume is generated as an i.i.d.
Gaussian matrix followed by a Gram Schmidt process, and
is a given subspace of with dimension . If then with
probability 1 none of the columns of are in .

Proof: Denote the columns of by for .
We start by showing that with probability 1. According
to the discussion above is generated randomly with a contin-
uous (Gaussian) distribution on . The continuity of the distri-
bution implies that the probability of to fall in any subspace
of with dimension smaller than , is zero. Following the def-
inition of Tropp in [13] such a subspace has zero volume in .
Therefore, since the space has zero volume in , so
that with probability 1. Similarly since the dimension
of (the orthogonal complement space of ) is
then with probability 1.

The column is generated randomly with a continuous dis-
tribution on —the space orthogonal to , whose dimension
is . The probability that equals the probability
that . If the dimension of is less than ,
then has zero volume in so that with proba-
bility 1. The dimension of is not smaller then only if

, which implies that . How-
ever, with probability 1, therefore with probability 1

and . Similarly, with probability
1.

We continue sequentially to the rest of the columns of :
For , the column is generated randomly with
a continuous distribution on —the space orthogonal to the

previous columns in . Note that the dimension of
is . The probability that equals the
probability that . As before, this requires that

, however while
with probability 1. Therefore

and with probability 1 for any , so that all
the columns of are not in with probability 1.

With Lemma B.1 in hand we can now prove that
with probability 1. To that end we assume is a set of lin-
early dependent columns from . We will prove that
with probability 1. Denote , where is the subset
of that contains the columns taken from the block , and
are the rest of the columns in . Without loss of generality as-
sume is not empty. Note that since is orthonormal is
also orthonormal, therefore cannot be empty, otherwise is
not linearly dependent.

Any columns from are linearly dependent so that
. We assume by contradiction that

and show that the probability for this is zero. Note
that implies that and . If
contains only one column, denoted by , then this column must
also be in the span of , otherwise is not linearly dependent.
However, the dimension of this space is at most

, and according to Lemma B.1 the probability
for a column of to be in this space is zero. Similarly, if
contains only two columns, denoted by , then must be
in the span of . However, the dimension of this space is
at most , so that again according to Lemma
B.1 the probability for this is zero. We can keep increasing the

cardinality of and as long as the probability for
to be linearly dependent will be zero. Therefore,

with probability 1.
Next, we need to prove that is not inter-block diagonal.

Denote for any pair of indices :

(B-1)

For to be inter-block diagonal there should be a pair
for which (13) is satisfied. However, since and are
orthonormal with probability 1 the rank of all the blocks

is so that (13) is not satisfied, and is not
inter-block diagonal with probability 1.

APPENDIX C

Assume is a union of random orthonormal
bases and is an orthonrmal -block diagonal ma-
trix. Denote , where is some unknown permu-
tation matrix. We prove here that there are different
permutation matrices such that , where is
an orthonormal -block diagonal matrix. Without loss of gen-
erality we can assume , therefore we need to refer to

. According to Lemma 9 this implies .
Since both and are -block diagonal must also be too

-block diagonal, and the size of its blocks is . Since
is a permutation matrix, each of its blocks is a permutation

of the identity matrix of size . Thus, there are only dif-
ferent possibilities for each block. There are blocks such that
the total number of possible ’s is .
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