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Abstract— Analog-to-digital converters (ADCs) are key com-
ponents of digital signal processing. Classical samplers in this
framework are controlled by a global clock. At high sampling
rates, clocks are expensive and power-hungry, thus increasing
the cost and energy consumption of ADCs. It is, therefore,
desirable to sample using a clock-less ADC at the lowest
possible rate. An integrate-and-fire time-encoding machine (IF-
TEM) is a time-based power-efficient asynchronous design that
is not synced to a global clock. Finite-rate-of-innovation (FRI)
signals, ubiquitous in various applications, have fewer degrees
of freedom than the signal’s Nyquist rate, enabling sub-Nyquist
sampling signal models. This work proposes a power-efficient
IF-TEM ADC architecture and a sub-Nyquist sampling and FRI
signal recovery. Using an IF-TEM, we implement in hardware
the first sub-Nyquist time-based sampler, with a detailed
hardware design. Our approach provides a robust and accurate
method for estimating FRI parameters from IF-TEM data.
The proposed hardware and reconstruction technique achieves
parameter retrieval with errors up to −25 dB while operating at
approximately one-tenth of the Nyquist rate, enabling low-power
ADC architectures.

Index Terms— Analog-to-digital conversion, brain-inspired
computing, finite-rate-of-innovation (FRI) signals, integrate-and-
fire TEM (IF-TEM), sub-Nyquist sampling, time-based sampling
hardware.

I. INTRODUCTION

ANALOG-TO-DIGITAL converters (ADCs) are essential
electronic components that convert analog signals to digi-

tal signals for processing and communication between physical
systems and computers [2], [3]. Although synchronous ADCs
have been the traditional choice, they come with significant
limitations such as high power consumption due to the
continuous clock signal, and the need for a stable and accurate
clock signal, particularly in high-speed systems where the
sampling rate increases, especially in noisy environments [4],
[5], [6], [7]. Furthermore, synchronous ADCs require complex
clock circuits, which increase the design and implementation
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complexity [8], [9]. Therefore, innovative ADCs are needed
to address these limitations by reducing power consumption
and sampling rate while maintaining accuracy and resolution.

One innovative ADC is the asynchronous sigma-delta
modulator (ASDM) that can detect changes in input integral
and transmit trigger times through linear and nonlinear blocks
that consist of an integrator and a Schmitt trigger comparator,
respectively [10], [11], [12], [13]. The integrate-and-fire time-
encoding machine (IF-TEM) is a special type of ASDM that
replaces the Schmitt trigger in the nonlinear block with a
set of comparators [11]. IF-TEMs are asynchronous, energy-
efficient, and event-driven samplers that use entirely analog,
low-power, and small-sized encoders and do not require a
global clock [8], [14], [15], [16]. In an IF-TEM, an input
signal is integrated, and the resulting signal is compared to
a threshold; if the threshold is met, the time instances or their
differences are recorded [17], [18], [19], [20], [21]. IF-TEMs
have been successfully applied in various applications, such as
ultrawideband communication systems, remote sensing, heart
activity monitoring, event-based cameras, and spiking neural
networks interpretations [22], [23], [24], [25], [26], [27], [28],
[29], [30].

In [17], it was first shown that band-limited (BL) signals
can be sampled and perfectly recovered by using an IF-TEM.
Time-encoding signal reconstruction has been extended to
encompass both shift-invariant spaces [31] and finite rate of
innovation (FRI) signals [20], [21], [32], [33]. FRI signals,
defined by their limited degrees of freedom, enable sub-
Nyquist sampling [2], [34]. This property has led to their
widespread adoption in various scientific domains, including
light detection and ranging [35], ultrasound [36], [37],
[38], radar [39], [40], and time-domain optical-coherence
tomography [41]. The majority of FRI sampling research
exploits signal structure to minimize ADC sampling rates;
however, it ignores other aspects of the ADC, such as its
power-consuming clock [34], [36], [42], [43]. We address
the issue of the synchronous ADCs’ power consumption by
utilizing the asynchronous IF-TEM sampler, which is energy-
efficient.

FRI signal sampling via time-based methods aligns with
conventional techniques, notably kernel-based sampling [1],
[20], [21], [32], [33], [44]. Naaman et al. in [21] established
theoretical guarantees for the sampling and recovery of FRI
signals using an IF-TEM and proposed a sampling method
that is more robust in the presence of noise than existing
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Fig. 1. Diagram of an IF-TEM. The input signal is first biased by b and
scaled by κ before being fed into an integrator. Whenever the integrator output
reaches the threshold δ, a spike is generated, its time instant is recorded, and
the integrator is reset to zero.

techniques. Nonetheless, further enhancements are needed for
robust reconstruction when utilizing real hardware data. Our
work introduces IF-TEM ADC hardware that demonstrates
sub-Nyquist sampling and FRI signal recovery building upon
the approach in [21]. We use hardware-measured data with
time instances perturbations up to 35 ms. The jittered time
instances are modeled as t ′n = tn + ϵn , where tn are the ideal
time instances, and we model the jitter noise as i.i.d. uniformly
distributed ϵn

iid
∼ U[−σ/2, σ/2]. The value of σ depends on the

particular system parameters, and in our case, it fluctuates up
to 70 ms. This level of timing perturbation can be challenging
for current reconstruction techniques to manage. Therefore, the
methodology proposed in [21] is modified to ensure robustness
in the presence of timing noise inherent in the hardware
environment.

Rastogi et al. in [45] implemented an IF-TEM sampler with
a refractory period that can accept input signals containing
both positive and negative parts over time without biasing
the input signal before passing it through the integrator.
However, their approach involves two separate paths for
the positive and negative parts of the signal and has a
refractory period on the order of milliseconds, which poses
limitations for measuring FRI signals with shorter periods.
To address this limitation and support FRI signals sampling
and reconstruction, we propose an improved IF-TEM design
with a significantly faster integrator capacitor time in the ns
range. Furthermore, our solution incorporates a positive bias to
the input signal before integration, eliminating the need for a
negative path. This streamlined approach reduces the number
of components and minimizes heat dissipation. In comparison
to the authors’ implementation, our solution employs a single
comparator with two rules for threshold recognition and trigger
of the reset mechanism, along with a straightforward reset
mechanism.

Our contributions are twofold. First, we introduce a robust
sub-Nyquist sampling and reconstruction technique designed
to effectively recover FRI signals below the Nyquist rate
while accommodating the inherent noise of hardware. Second,
we present a hardware implementation of this technique
specifically for FRI signals, which can be employed in low-
power time-of-flight applications. To ensure robust recovery of
the FRI signals, we prefilter the signal using a sampling kernel
that eliminates the signal’s dc (zero frequency component).
Our reconstruction method relies on both the sampling
kernel selection and a new forward model that improves the
recovery from noisy hardware data. Compared to our previous

work [21], our work offers streamlined proof recovery
guarantees based on using a partial sum of the measurements,
resulting in robust and stable reconstruction. We demonstrate
that our proposed technique outperforms the method in [21]
in the presence of noise.

The FRI-TEM hardware prototype we present is designed
to accommodate a broad spectrum of FRI signal frequencies
and consists of two primary components: an integrator and
a reset function. As long as the input signal is positive, the
integrator capacitor must operate in its linear domain, which is
continuously charged or increasing. In addition, the IF-TEM
thresholding requires a rapid reset function, which is achieved
by incorporating a differentiator and a field-effect transistor
(FET). We demonstrate the capabilities of the system using
several FRI signals prefiltered with a BPF filter as the sampling
kernel. The designed hardware samples the filtered signal,
resulting in consecutive time instance differences, which can
be recorded using an oscilloscope or a time-to-digit converter
(TDC). To estimate the FRI parameters, we introduce a
recovery algorithm that computes the Fourier coefficients and
subsequently estimates the parameters using the annihilating
filter (AF) techniques. Our findings demonstrate the feasibility
of estimating FRI parameters using sub-Nyquist samples,
acquired at roughly ten times the rate of innovation, taken
at approximately 10 times the rate of innovation, significantly
lower than the Nyquist rate of the signal.

The rest of the article is organized as follows. In Section II,
we formulate the problem of sampling and recovering an
FRI signal using an IF-TEM and discuss some background
results. In Section III, we introduce our robust reconstruction
algorithm along with simulation results. In Section IV,
we justify the required hardware components and explain the
circuit challenges. This is followed by a detailed discussion of
the analog board’s design work specifications. Experimental
hardware results of IF-TEM sub-Nyquist sampling and
reconstruction are shown in Section V. Finally, we conclude
the article in Section VI.

II. PRELIMINARY RESULTS PROBLEM FORMULATION

In this section, we review some previously established
results in time encoding and FRI, followed by our formulation
of the theoretical problem of FRI sampling and reconstruction
utilizing an IF-TEM sampler.

A. Integrate and Fire Time-Encoding Machine

The IF-TEM operates on principles outlined in [21].
As depicted in Fig. 1, it transforms a bounded input signal y(t)
into a series of time instances or spikes and is characterized
by positive real parameters b, κ , and δ. The process begins
by adding a bias b to the c-bounded signal y(t), where
|y(t)| ≤ c < b < ∞. This sum is integrated and scaled by
1/κ . When the resulting signal reaches the threshold δ, the
time instant tn is recorded, and the integrator resets. This cycle
repeats for subsequent time instants, adhering to the relation

1
κ

∫ tn+1

tn
(y(s)+ b) ds = δ. (1)
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Fig. 2. Our IF-TEM hardware sampling: the IF-TEM input signal y(t) (blue),
the integrator output (green), and the IF-TEM time instances (red).

Fig. 3. Hardware integrator circuit. Our hardware implementation
is comprised of an operational amplifier, a capacitor C, and resistors
R1 and R2.

Fig. 2 depicts the operational output of our IF-TEM
hardware implementation using real data. The integrator
constant κ is determined from the integrator circuit hardware
as demonstrated in Fig. 3. The sequence of time encodings
tn, n∈Z serves as a discrete representation of the continuous-
time signal y(t). The goal is to reconstruct y(t) from these
encodings. This reconstruction process commonly involves an
intermediate step, where we derive another set of discrete
values yn, n∈Z, defined as

yn ≜
∫ tn+1

tn
y(s) ds = −b(tn+1 − tn)+ κδ. (2)

The sequence {yn, n∈Z} are computed from the time-encoding
measurements {tn, n ∈ Z} and the parameters of the IF-TEM
κ , b, and δ. Applying the constraint from (2) and considering
that the magnitude of y(t) is bounded by c, we can derive a
relationship between consecutive sampling instants [17], [46]

κδ

b + c
≤ tn+1 − tn ≤

κδ

b − c
. (3)

B. FRI Signal Recovery

Let an FRI signal be characterized as

x(t) =
L∑

ℓ=1

aℓh(t − τℓ) (4)

where h(t) is the pulse shape. The amplitudes aℓ ∈ R and
time delays τℓ ∈ (0, T ] constitute the signal’s innovation
parameters, with L innovations occurring within the interval
(0, T ]. The pulse shape h(t) is assumed to be known and

Fig. 4. Continuous-time input signal x(t) is first convolved with the sampling
kernel g(t), resulting in the filtered signal y(t), which is then encoded by
an IF-TEM, which produces a sequence of nonuniform time instances {tn}
representing the signal information.

belongs to L2(R). The total number of pulses L in the signal
is considered to be known a priori. Since the analysis of
recovering aperiodic FRI signals using IF-TEM measurements
is similar to that of recovering periodic FRI signals [21], in this
article, we will concentrate on the scenario of recovering
T -periodic FRI signals.

A T -periodic FRI signal can be represented as

x(t) =
∑
n∈Z

L∑
ℓ=1

aℓh(t − τℓ − nT ) (5)

where h(t) ∈ L2(R) is a prototype pulse. The signal’s
innovation is characterized by L pairs of amplitudes aℓ ∈ R
and delays τℓ∈(0, T ]. With a rate of innovation 2L/T , perfect
recovery is achievable using 2L measurements [2], [34].

Since the signal x(t) is periodic with period T , it can be
expressed as a Fourier series

x(t) =
∑
k∈Z

x̂[k]e jkω0t (6)

where ω0 = 2π/T . The coefficients of the Fourier series
(FSCs) are defined as

x̂[k] =
1
T

ĥ(kω0)

L∑
ℓ=1

aℓe− jkω0τℓ (7)

where K is a set of integers and ĥ(ω) is the continuous-time
Fourier transform of h(t) [2]. Given k ∈ K, it is presumed
that ĥ(kω0) ̸= 0.

The work in [34] demonstrated that the FRI parameters
{aℓ, τℓ}

L
ℓ=1 can be perfectly recovered from a set of 2L

FSCs represented as x̂[k]. This determination relies on
spectral analysis methods, with the AF technique being
a notable example, as described in [2]. Consequently, the
challenge of reconstructing an FRI signal can be reframed
as unambiguously identifying the necessary number of FSCs
from the provided signal measurements.

C. Kernel and Sub-Nyquist Sampling

A crucial component of an FRI sampling architecture
is the sampling kernel. Generally, sampling kernels that
meet the criteria for alias-cancellation to suppress unwanted
FSCs [36] with compact support are preferable from a
hardware implementation perspective. Based on the robust
sampling kernel presented in [21] and to maintain the real-
valued nature of the filter response and output, the sampling
function g(t) satisfies

ĝ(kω0) =

{
1, if k ∈ K
0, else
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where K = {−K , . . . ,−1, 1, . . . , K }, and ĝ(kω0) denotes the
equidistant samples of the signal g(t) Fourier transform, with
K ≥ 2L . A notable instance of this sampling function is the
finite-duration sum-of-sincs (SoS) kernel. Its Fourier transform
is expressed as

ĝ(ω) =
∑
k∈K

sinc
(

ω

ω0
− k

)
. (8)

The resilience of the sampling kernel is a result of selecting
a support set K that is symmetric about zero but does not
include zero.

The signal y(t) = (x ∗ g)(t) that represents the filtered
output is described as

y(t) =
∑
k∈K

x̂[k]ĝ(kω0)e jkω0t
=

∑
k∈K

x̂[k]e jkω0t . (9)

The relationship between the filtered signal samples yn and
the target FSCs is described by the following forward model:

yn =
∑
k∈K

x̂[k]
jkω0

(
e jkω0tn+1 − e jkω0tn

)
. (10)

It was shown in [21] that y(t) remains bounded given that
h(t) is absolutely integrable and max{aℓ|aℓ ∈ R}Lℓ=1 < ∞.
To extract the FSCs from (10), let

y =
[∫ t2

t1
y(t)dt,

∫ t3

t2
y(t)dt, . . . ,

∫ tN

tN−1

y(t)dt
]⊤

where N is the number of time instants in the interval T . The
measurements y and the FSCs

x̂ =
[
−

x̂[−K ]
j Kω0

, . . . ,−
x̂[−1]

jω0
,

x̂[1]
jω0

, . . . ,
x̂[K ]
j Kω0

]⊤
(12)

are related as

y = Bx̂ (13)

where the matrix B is defined in (11), as shown at the bottom
of the next page. Naaman et al. in [21] have proved that
the matrix B is uniquely left invertible since it has a full
column rank. In this case, the Fourier coefficients vector can
be calculated as

x̂ = B†y (14)

where B† denotes the Moore–Penrose inverse. Perfect
reconstruction is established by [21] when N ≥ 4L + 2 and
|K| ≥ 2L , as outlined in the theorem below.

Theorem 1 (21, Sect. III-D): Consider an FRI signal x(t)
with period T of the form

x(t) =
∑
n∈Z

L∑
ℓ=1

aℓh(t − τℓ − nT )

where L denotes the number of FRI pulses and h(t) ∈ L2(R)

is a known pulse. Let x(t) be sampled using the mechanism
depicted in Fig. 4, with a sampling kernel g(t) satisfying

ĝ(kω0) =

{
1, if k ∈ K
0, else

with K = {−K , . . . ,−1, 1, . . . , K } and maxt |(h∗g)(t)| <∞.
The signal y(t) = (x ∗ g)(t) is the result of filtering x(t) with
g(t). If the IF-TEM parameters {κ, δ, b} chosen to satisfy the
condition b > c, where c = maxt |y(t)|, and

2K + 2
T

≤
b − c
κδ

. (15)

Then, L pairs of amplitudes aℓ ∈ R and delays τℓ ∈ (0, T ] can
be perfectly reconstructed using the IF-TEM time instances if:

1) K ≥ L when {tℓ}Lℓ=1 are on-grid and
2) K ≥ 2L when {tℓ}Lℓ=1 are off-grid.
In practice, our IF-TEM hardware circuit introduces noise

into the signal, which causes the time occurrences tn to be
perturbed. Consequently, the utilization of the aforementioned
algorithm for reconstructing data from hardware measurements
led to unstable recovery, as discussed in Section III. Hence,
in this article, we introduce a reconstruction strategy designed
to offer greater resilience to noise, specifically designed to
support the noise inherent in the hardware.

D. Problem Formulation

Consider an FRI signal with period T of the form of (5)
and a sampling mechanism as shown in Fig. 4. The signal
x(t) undergoes convolution with the sampling kernel g(t),
as specified in (8). The resultant signal y(t) is subsequently
sampled using an IF-TEM. The amplitude measurements
{yn}

N
n=1 represent a discrete representation of y(t) = (x∗g)(t),

and the time instances {tn}Nn=1 encodes information of the FRI
signal. As our primary aim is to design robust hardware, the
FRI parameters {aℓ, τℓ}

L
ℓ=1 need to be accurately estimated

from the IF-TEM time instances. For this purpose, together
with the hardware implementation, a robust recovery algorithm
is needed. In Section III, we first introduce our robust recovery
mechanism that perfectly recovers the FSCs {x̂[k]}k∈K from
the IF-TEM observations in the noiseless case with as few as
4L + 2 spikes inside an interval T . Then, we illustrate the
resilience of our system in the case of noise and demonstrate
that it outperforms the one proposed in [21]. In Section IV,
we discuss our hardware prototype realizations.

III. ROBUST TIME-BASED SUB-NYQUIST SAMPLING AND
RECONSTRUCTION OF FRI SIGNALS

The IF-TEM circuit can introduce noise into the signal,
which, in turn, can perturb the time instances {tn}. Even in the
absence of noise, the time instances can only be determined
with limited precision. The modeled jittered time instances are
expressed as

t ′n = tn + ϵn (16)

where tn are the ideal time instances and ϵn
iid
∼ U[−σ/2, σ/2]

is the noise jitter. Our hardware experiments have shown
that the noise level σ fluctuates up to 70 ms. However,
when we attempted to reconstruct FRI signals from IF-TEM
measurements using the method presented in our previous
work [21], inconsistent recovery was observed with hardware
data. Therefore, in this article, we propose a more noise-
tolerant reconstruction method that addresses this limitation.
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To assess the effectiveness of the new noise-tolerant
reconstruction method, we compare it with the approach
presented by [21], under the presence of perturbations in
the measured time instances. Both methods use a sample
kernel without the zero frequency. However, while the method
proposed by [21] employs the forward equation specified
in (10), our new proposed algorithm adopts an alternative
formulation, as introduced in (19) below.

A. Robust Reconstruction

This section presents a method for determining the Fourier
coefficients of the FRI signal that is more robust and improves
recovery. The reconstruction method presented in [21] and
described in Section II relied on calculating the FRI signal
x(t) FSCs x̂ via (14). In the presence of noise, this causes
inaccuracies or deviations in the yn (10) and B (11). When
calculating the FSCs, the robustness of B, as quantified by its
condition number, influences the results. We next demonstrate
that by utilizing a partial summation of yn , perfect recovery
is achieved similar to Theorem 1. In the case of noise, our
method is more stable. As demonstrated next, when utilizing
a partial sum of yn results in a reconstruction challenge
analogous to (14). However, in this scenario, the matrix A
described in (22) takes the place of B. Notably, A has a better
condition number compared to B.

To better understand the reasoning behind this phenomenon,
we demonstrate that for every k ∈ K, utilizing the partial
summation of the measurements reduces the noise in each
element of A by half compared to its corresponding element
in B. This result is summarized in the following lemma.

Lemma 1: Let [B]nk = e jkω0tn+1 − e jkω0tn be the entries of
matrix B, where n = {1, . . . , N − 1}, k ∈ K. Let [A]nk =

e jkω0tn+1 be the entries of matrix A, where n = {1, . . . , N−1},
k ∈ K ∪ {0}. The jittered time instances are modeled as t ′n =
tn+ϵn , where tn are the ideal time instances and the jitter noise
is modeled as ϵn

iid
∼ U[−σ/2, σ/2], i.i.d. uniformly distributed.

For every t ′n and k ∈ K

var([B]nk) = 2var([A]nk) (17)

where var is the variance.
Proof: By utilizing the fact that t ′n = tn + ϵn , and

using (11) and (22), it follows that

var([B]nk) = var
(
e jkω0(tn+1+ϵn+1) − e jkω0(tn+ϵn)

)
= |e jkω0tn+1 |

2 var
(
e jkω0ϵn+1

)
+ |e jkω0tn |2 var

(
e jkω0ϵn

)
= 2var

(
e jkω0ϵn

)
= 2var([A]nk) (18)

establishing the lemma.
It can be intuitively inferred that by utilizing the partial

summation, the noise in each element of [A]nk becomes

smaller than the corresponding noise in [B]nk . Consequently,
the matrix A has a better condition number than B. This can be
explained by the fact that the condition number of a matrix is a
measure of the sensitivity of the matrix to small perturbations
in its elements, and a smaller condition number indicates that
the matrix is less sensitive to such perturbations. Therefore,
by reducing the noise in the elements of A using the partial
summation, we can improve its condition number.

In the subsequent phase, we utilize the partial sum of yn (10)
to introduce a perfect reconstruction condition for FRI signals
by using IF-TEM. Rather than extracting the FSCs from yn

via (10) with K ∈ {−K , . . . ,−1, 1, . . . , K }, where K ≥ 2L ,
which establishes the connection between yn and the FSCs
x̂[k], we suggest an alternative approach based on zn . These
zn values represent the cumulative sums of the measurements
yn defined as

zn =

n−1∑
i=1

yi =
∑
k∈K

x̂[k]
jkω0

(
e jkω0tn − e jkω0t1

)
(19)

where n = 2, . . . , N . Note that (19) can be written as

zn =
∑
k∈K

x̂[k]
jkω0

e jkω0tn + c (20)

where

c = −
∑
k∈K

x̂[k]
jkω0

e jkω0t1 . (21)

Let z = [z2, . . . , zN ]
T
∈ RN−1 be the vector

of partial sums, ẑ = [−(x̂[−K ])/ j Kω0, . . . ,

−(x̂[−1])/ jω0, c, (x̂[1])/ jω0, . . . , (x̂[K ])/ j Kω0]
⊤
∈C(2K+1)

be the vector of FSCs, with c in the zeroth place, and the
matrix A ∈ C(N−1)×(2K+1) is specified as

A =


e− j Kω0t2 · · · 1 · · · e j Kω0t2

e− j Kω0t3 · · · 1 · · · e j Kω0t3

...
. . .

...

e− j Kω0tN · · · 1 · · · e j Kω0tN

. (22)

Consequently, (20) can be represented in matrix form as

z = A ẑ. (23)

Given that the firings {tn}Nn=2 are distinct, and A is a
Vandermonde matrix when N − 1 ≥ 2K + 1, it follows that A
has full column rank. This means that the matrix A has linearly
independent columns. Therefore, we can perfectly recover the
vector of FSCs ẑ via

ẑ = A† z (24)

B =


e− j Kω0t2 − e− j Kω0t1 · · · e− jω0t2 − e− jω0t1 e jω0t2 − e jω0t1 · · · e j Kω0t2 − e j Kω0t1

e− j Kω0t3 − e− j Kω0t2 · · · e− jω0t3 − e− jω0t2 e jω0t3 − e jω0t2 · · · e j Kω0t3 − e j Kω0t2

...
...

...
...

e− j Kω0tN − e− j Kω0tN−1 · · · e− jω0tN − e− jω0tN−1 e jω0tN − e jω0tN−1 · · · e j Kω0tN − e j Kω0tN−1

 (11)
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where A† denotes the Moore–Penrose inverse of A. Once we
have ẑ, the FSCs x̂[k] can be determined uniquely. Using

ẑ[k] =


−

∑
k ′∈K

(
x̂[k ′]
jk ′ω0

)
e jk ′ω0t1 if k = 0

x̂[k]
jω0k

, if k ∈ K .

(25)

The vector of FSCs ẑ and the vector of FSCs x̂ are related by

x̂ =
[
ẑ[−K ], . . . , ẑ[−1], ẑ[1], . . . , ẑ[K ]

]⊤
∈ C2K . (26)

This equation allows us to obtain x̂ by selecting the
appropriate elements of ẑ, which is the vector obtained from
the partial sums of the measurements. Note that the resulting
vector x̂ has dimensions 2K , which implies that it only
contains the FSCs for positive and negative frequencies.

Using the vector ẑ and (26), the vector of FSCs x̂ is uniquely
determined. This implies that, excluding the zero-frequency
component, the FSCs x̂[k] can be uniquely recovered from
the time encodings when N − 1 ≥ 2K + 1. This indicates that
at least 2K +2 firing instants within an interval T are needed.
As shown in [21], the lowest firing rate using an IF-TEM
is (b − c)/κδ. Therefore, to ensure unique reconstruction, the
IF-TEM parameters should satisfy the condition (b − c)/κδ ≥

(2K + 2)/T (refer to [21] for further details).
A recovery algorithm to compute the FRI parameters from

IF-TEM firings is presented in Algorithm 1. Compared to
the technique presented in [21], our method requires the
same number of FSCs in the absence of noise. However,
in the presence of noise, as is typically the case in real-world
hardware, the proposed approach yields a lower error for the
same number of measurements.

Algorithm 1 Reconstruction of an FRI Signal With Period T

Input: N ≥ 2K + 2 spike times {tn}Nn=1 in a period T .
1: Let n← 1
2: while n ≤ N − 1 do
3: Compute yn = κδ − b(tn+1 − tn)
4: Compute zn+1 =

∑n
i=1 yi

5: n := n + 1.
6: end while
7: Compute the vector ẑ = A† z, where A is defined in (22)
8: Compute the Fourier coefficients vector x̂ from ẑ

using (26)
9: Estimate {aℓ, τℓ}

L
ℓ=1 via a spectral analysis method for

K ≥ 2L .
Output: {(aℓ, τℓ)}

L
ℓ=1.

B. Numerical Evaluation

This section presents simulation results that validate the
effectiveness of Algorithm 1 and demonstrate how the
proposed reconstruction technique improves the conditioning
of the forward transformation. This leads to significantly better
reconstruction accuracy, which is crucial for precise signal
recovery in real hardware implementations. To test Theorem 1,
we simulate an FRI signal h(t) consisting of Dirac impulses

Fig. 5. IF-TEM sampling with a modified kernel enables perfect recovery of
an FRI signal. (a) Original input signal with L = 5 pulses and its reconstructed
version. (b) Filtered signal y(t) along with the IF-TEM firing times tn .

with period T = 1 s and L = 5 pulses. The pulse amplitudes
are randomly selected between [−1, 1] and the time delays
are chosen randomly from the interval (0, 1) using a grid with
a resolution of 0.05 The input x(t) is processed through SoS
kernel with K = {−K , . . . ,−1, 1, . . . , K }, with K equal to
L . The resulting filtered signal y(t) is input to an IF-TEM.
The IF-TEM’s parameters are chosen to satisfy the bound
in (15). For this setup, the IF-TEM produced 16 firing events
per period, shown in Fig. 5(b). Fig. 5(a) shows that using
a kernel without zero frequency enables perfect FRI signal
recovery.

Since the IF-TEM circuit introduces noise that perturbs the
firing times {tn}, we analyze recovery under jitter: t ′n = tn+ϵn ,
as in (16). We compare our method to the algorithm from [21],
both using kernels without zero frequency. While [21] uses the
forward relation in (10), we employ a different one defined
in (19).

The forward operators A and B [(13) and (23)] are used to
recover the FRI signals in each method. These matrices depend
on the measured firing times and sampling kernel. Fig. 6
compares the condition numbers of A and B as a function of
L , using 4L + 2 perturbed firing times. Results are averaged
over 5000 random monotonic time sequences tn ∈ [0, T )N

n=1.
Matrix A consistently has a lower condition number than B,
indicating that our reconstruction algorithm improves stability
and noise resilience.

We evaluate the relative MSE in estimating time delays
to compare reconstruction accuracy between our algorithm
and [21]

MSE = 10 log

(
L∑

ℓ=1

(τℓ − τ̂ ℓ)
2

)
. (27)

Here, x(t) is an FRI signal as in (5) with period T = 1 s,
L = 3 pulses, and h(t) a cubic B-spline of order 3. The
off-grid amplitudes {aℓ}

3
ℓ=1 and delays {τℓ}

3
ℓ=1 are randomly
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Fig. 6. Mean conditioning of matrices A and B, plotted with respect to the
quantity of FRI pulses, L .

Fig. 7. Comparison of [21] and Algorithm 1 for off-grid time delays with
perturbation in the time encodings: our method has lower error compared
to [21]. (a) Without zero approach in [21]. (b) Without zero Algorithm 1.

drawn from [1, 5] and (0, T ]. The IF-TEM parameters are
b = 2.5c with c = maxt |y(t)|, κ = 1, and δ satisfies (15).
An SoS kernel with K = {−K , . . . ,−1, 1, . . . , K } computes
the FSCs x̂[k]. The firing times {tn} are perturbed as t ′n =
tn + ϵn with ϵn uniform on [−σ/2, σ/2]. We estimate time
delays using an AF with Cadzow denoising, which needs >2L
consecutive FSCs, so we set K ≥ 2L + 1 excluding zero.
Our method calculates {x̂[k]}−1

k=−K and {x̂[k]}Kk=1, by applying
Cadzow denoising independently to every sequence and then
jointly estimate delays via block annihilation [47].

Fig. 7 shows delay estimation MSEs for varying numbers
of FSCs and noise levels, averaged over 500 realizations.
Fig. 7(a) and (b) compares [21] and Algorithm 1 without zero
frequency for K ∈ [2L + 1, 5L]. We observe gains up to
10 dB for our method. Since the jitter of the time encoding is
equivalent to quantization noise, the lower MSEs suggest our
method can operate using fewer bits than [21].

IV. ANALOG BOARD AND HARDWARE CHALLENGES

In this section, we will describe the specifications of our
FRI-TEM hardware prototype.

A. FRI-TEM Analog Board

We begin by discussing the key components of the FRI-
TEM hardware implementation, as well as various circuit
design considerations. As shown in Figs. 8 and 9, the analog
board comprises three sequential stages: the generation of an
FRI signal, bandpass filtering, and an IF-TEM sampler.

The FRI signal generator uses an analog approach,
which is known for its low digital noise and ability to
accurately simulate real-world applications such as radar and
ultrasound [48]. The process of signal production involves
several components working together to generate and process
a signal. For instance, in creating an FRI signal that contains
two pulses, one feasible configuration involves employing a
signal generator comprising a scope, a splitter, an analog
delay generator, and a passive radio frequency (RF) combiner.
The scope generates an FRI pulse (10–500 ns wide) that is
transmitted through the splitter. The splitter receives the pulse
and sends it to both the delay generator and the combiner (see
Fig. 8). The delay generator is comprised of a fiber-optic cable,
a photo-diode encoder, and a photo-diode detector. Encoding
the signal with the photo-diode encoder is the initial step of
the delay generator. The signal then travels through the fiber-
optic line, causing a delay of at least 4 µs. The significance
of the fiber-optic delay implementation originates from its
well-known benefits, such as the introduction of low digital
noise, which more accurately simulates practical applications.
To decode the delayed input signal, a photo-diode detector
is used to transform the signal to an analog signal with the
same frequency as the original FRI input pulse. In Fig. 8,
for instance, the FRI signal x(t) (5) consists of two 20-MHz
pulses separated by a relative delay of 4 µs. The output of the
combiner, x(t), is then sent as input to the sampling kernel.

The filter, also known as the sampling kernel, is used
to remove the dc component of the signal, as shown in
Fig. 10. For example, if the frequency of the signal is 10 Hz,
the magnitude of the zero-frequency component would be
−30 dB. The positioning of the sampling kernel is critical
for time-based FRI signals using an IF-TEM (see Section III).
Since our objective of employing a compactly supported filter
is to eliminate the dc component, we utilize a BPF in the
hardware setup.

To accurately recover and analyze two pulses of an FRI
signal within a noise-free setting for a short time period
such as T = 10 µs, the minimum theoretical sampling
rate required is 0.4 MHz [2], [34]. To facilitate this fast
sampling and reconstruction process, a 0.22 kHz–1 MHz BPF
was chosen. As shown in Fig. 10, an eighth-order BPF is
employed, enabling a suitable tradeoff between energy usage
and reconstruction performance.

The output of the filter, y(t) (9), is then transmitted to the
IF-TEM sampler. The block diagram of the IF-TEM circuit is
shown in Fig. 9, the specific components list of the IF-TEM
circuit can be found in Table I. A prototype of the IF-TEM
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Fig. 8. FRI-TEM hardware prototype includes a signal generator, a sampling kernel, and an IF-TEM sampler. In the case of FRI signals consisting of two
pulses, the signal generator is configured as follows: a delay path of 4 µs is constructed using a modulator optic fiber terminating in a photo-diode detector.
Then, a combiner receives the original signal (single one or more) from the generator and the delayed path to create the FRI signal. The generated signal
is passed into a BPF of 0.22 kHz–1 MHz which removes the zero frequency. Lastly, the IF-TEM sampler board samples the processed signal. Based on
Algorithm 1, the FRI signal is recovered.

Fig. 9. Block diagram of the analog board. In the example, the signal generator is configured to produce FRI signals comprising two pulses, yet the hardware
configuration is adaptable to accommodate any FRI signal form.

Fig. 10. 0.22 kHz–1 MHz filter Bode plot. The sampling kernel removes
the dc component of the input signal. The magnitude (in blue) and phase (in
red) are plotted on a logarithmic frequency scale.

sampler is depicted in Fig. 11. Fig. 12 presents an enlarged
view focusing on specific features of the IF-TEM integrator
transients, providing a detailed insight into the integration and

sampling processes. The top right section displays an expanded
view of the pulse center, highlighting the fast integrator reset
mechanism. Notably, for the 1 s signal, the reset function
operates on an ms scale, while for a 10 µs signal, the reset
occurs on an ns scale. This reset functionality is crucial for
ensuring accurate integration and sampling of signals with
varying time scales. Furthermore, the figure demonstrates the
operational linearity of the integrator, which is important for
accurate signal recovery.

The primary IF-TEM components consist of the bias
b, integrator, comparator, differentiator, and reset function.
To guarantee sufficient samples for reconstruction, we should
ensure that the δ threshold is achieved at least as many times as
the desired sample amount. By adding the bias b to the input
y(t), the integrator obtains a signal that is always nonnegative.
In this case, integration over a nonnegative signal is a positive
function, and the threshold is always attained. For an FRI
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Fig. 11. IF-TEM hardware board.

Fig. 12. Yellow depicts the 1-s input of IF-TEM, green shows the integrator output, and blue is the output time instances of IF-TEM. In the top right,
an expanded view displays the pulse center along with the fast integrator reset mechanism.

Fig. 13. (a) Original FRI signal x(t) (green), the output of the BPF filter y(t) (yellow), and the IF-TEM hardware resulted in 19 samples (blue). (b) IF-TEM
hardware sampling and reconstruction: the input signal x(t) (blue) alongside its reconstructed version (red).

signal x(t) with L pulses, it can be shown that the sampler
input filtered signal y(t) is constrained by [21]

|y(t)| ≤ c = L amax ∥g∥∞∥h∥1 (28)

where g and h are the known filter and pulse shape,
respectively. Consequently, the bias b > c, which is
effectively a constant dc voltage, is selected manually using
a potentiometer, which is a device that allows the user to

adjust the electrical resistance in a circuit by turning a knob.
By adjusting the resistance, the user can fine-tune the value of
the bias to the desired level. It is important to carefully select
the appropriate bias value to ensure that the IF-TEM system
can function properly.

The output of the integrator is sent to the comparator, which
compares the integrator voltage to a predefined threshold δ.
The threshold is a constant dc voltage that is implemented
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Fig. 14. (a) Original FRI signal x(t) (green), the output of the BPF filter y(t) (yellow), and the IF-TEM hardware resulted in 19 samples (blue). (b) IF-TEM
hardware sampling and reconstruction: the input signal x(t) (blue) alongside its reconstructed version (red).

Fig. 15. (a) Original FRI signal x(t) (green), the output of the BPF filter y(t) (yellow), and the IF-TEM hardware resulted in 21 samples (blue). (b) IF-TEM
hardware sampling and reconstruction: the input signal x(t) (blue) alongside its reconstructed version (red).

Fig. 16. (a) Original FRI signal x(t) (green), the output of the BPF filter y(t) (yellow), and the IF-TEM hardware resulted in 22 samples (blue). (b) IF-TEM
hardware sampling and reconstruction: the input signal x(t) (blue) alongside its reconstructed version (red).

Fig. 17. (a) Original FRI signal x(t) (green), the output of the BPF filter y(t) (yellow), and the IF-TEM hardware resulted in 53 samples (blue). (b) IF-TEM
hardware sampling and reconstruction: the input signal x(t) (blue) alongside its reconstructed version (red).

in our hardware utilizing a potentiometer that is manually
regulated and adjustable. The comparator is responsible
for comparing the voltage produced by the integrator to
a predefined threshold value. When the integrator voltage
reaches or exceeds the threshold, the comparator’s output
changes. If the comparator’s input is below the threshold,
it will output a logical value of “0,” while if the input is
above the threshold, the output will be “1.” In other words,
the comparator will produce a sequence of logical “1” values
when the integrator voltage hits the threshold. This change
in the comparator’s output signal indicates that the threshold

has been reached and triggers the next stage in the IF-TEM
process.

The output of the comparator is sent to the differentiator,
which generates a short pulse that activates the fast reset
function. This function is responsible for capturing the time
instances tn . The reset function consists of an amplifier and an
FET that work together to quickly and completely discharge
the integrator capacitor. In greater detail, the FET functions
as a switch and is controlled by the pulse produced by the
differentiator, which determines the duration of time that the
FET is active. This allows the integrator capacitor to be fully
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discharged. The FET has three terminals: a source, a gate, and
a drain. By providing a voltage of “1” to the gate terminal,
the FET can modify the conductivity between the drain and
source terminals, which allows the current flow to be regulated.
This results in a rapid and complete discharge of the integrator
capacitor.

Since the IF-TEM sampler is an energy-efficient
ASDM [11], acknowledged for its energy-efficient
properties [11], [49], we focus our discussion on the
TDC, which samples the filtered signal by capturing the
successive differences in time instances. The proposed
sampler combines the IF-TEM’s analog sampling mechanism
with a time-to-digital conversion, which can be used using
an oscilloscope or a TDC, for end-to-end power-efficient
sampling and digitization. The IF-TEM performs analog
sampling by integrating the input signal and generating pulses
at specific time instances, while the TDC converts these
sampled time instances to the digital domain. TDCs offer a
more energy-efficient alternative to traditional clock-based
ADCs for the same number of samples, as they require
fewer components and are not susceptible to clock drifting
issues. The power savings of TDCs stem from their reduced
component count and the ability to use a less accurate
clock [50]. For example, as shown in Table II, a 12-bit TDC
operating at 100 MHz in a 65-nm CMOS process consumes
only 70 µW, while an 11-bit ADC with the same operating
frequency and process consumes 2.4 mW, highlighting the
significant power efficiency advantage of TDCs. In our case,
with a signal containing L = 5 pulses, merely 22 time
instances need to be captured. Given the minimal length
between samples of approximately 0.4 µs, a clock frequency
of 2.5 MHz suffices, resulting in a dedicated TDC consuming
less than 70 µW for this example.

B. Circuit Challenges

To implement an IF-TEM circuit, it is necessary to employ
an integrator that operates according to (2). Specifically, the
integrator capacitor must operate in its linear domain, which
is continuously charged or rising, as long as the input signal is
positive. In addition, the IF-TEM thresholding process requires
a fast reset mechanism (see Fig. 12). Therefore, our goal
is to develop an integrator and reset function in which the
capacitor of the integrator operates in its linear zone and
discharges rapidly and completely. The main challenge in
the implementation of the IF-TEM hardware is to design
and implement such an IF-TEM integrator capacitor while
supporting a wide range of input FRI signals without circuit
modification. By utilizing the differentiator and an FET in the
reset function, both the entire discharge and rapid discharge
of the capacitor are accomplished for a variety of FRI signals.
Next, we provide results from our hardware and compare them
to our theoretical results from Theorem 1.

V. HARDWARE EXPERIMENTS

To determine the proposed system’s potential and feasibility,
we performed experiments on the FRI-TEM hardware system
we built. As depicted in Fig. 13(a), we consider an FRI input

TABLE I
LIST OF HARDWARE COMPONENTS

TABLE II
CLOCK-BASED ADC VERSUS TDC

signal, referred to as x(t), consisting of two pulses with a
width of 100 ns and a delay of 5 µs between them. The
sampling kernel mentioned in Section II-C was utilized in
these experiments. The parameters for the IF-TEM circuit were
set to a value of κ = 3 · 10−8, with a bias of b = 3 V
and a threshold of δ = 1.5 V. The specific time delays and
amplitudes used in this input signal were chosen arbitrarily,
and the IF-TEM parameters were selected to adhere to the
constraints outlined in (15). As demonstrated in Fig. 13(a),
the filtered signal y(t) is forwarded to an IF-TEM sampler,
which generated 19 time instances tn , resulting in a firing
rate of 1.9 MHz, which is 4.75 times the rate of innovation
and 10.5 times the Nyquist rate. It is important to note that
a minimum of 4L + 2 = 10 time instances are required
for off-grid reconstruction. Fig. 13(b) illustrates a comparison
between the original input signal and the estimated signal.
This demonstrates that the parameters of the FRI system can
be robustly estimated while operating at a rate that is 10 times
lower than the Nyquist rate.

In Figs. 14(a), 15(a), and 16(a), we demonstrate sampling
and reconstruction of FRI signals with L = 3, 5 for h(t)
as a Dirac impulse and stream of pulses. The FRI signal
is represented by the green curve, the filtered signal y(t) is
shown in yellow, and the time instances tn produced by the
IF-TEM sampler are depicted in blue. In each of these figures,
the number of time instances produced is 19, 21, and 22,
respectively, resulting in firing rates of 1.9, 2.1, and 2.2 MHz,
which are all between 9.5 and 10.5 times the Nyquist rate.
The reconstructed FRI signals are shown in Figs. 14(b), 15(b),
and 16(b).

Fig. 17 demonstrates the sampling and recovery of an FRI
signal with L = 5 for Dirac impulse h(t) with T = 1 s.
Fig. 18 presents a comparison between the reconstruction
using the hardware measurements and the simulation for
the delays of the FRI signals with (a) two pulses, (b)
three pulses, and (c) five pulses. This comparison quantifies
the performance of our proposed hardware prototype and
reconstruction method by comparing the results obtained from
the hardware average with those obtained from simulations.
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Fig. 18. Comparison of measured shifts from IF-TEM measurements
compared to true shifts, across varying levels of jitter σ for (a) two pulses,
(b) three pulses, and (c) five pulses. The jitter value represents the average of
the measured shifts, with error bars denoting one standard deviation. Proximity
to the 45◦ diagonal line reflects the effectiveness of recovery.

The evaluation involves calculating the average MSE between
the reconstructed time shifts obtained from the hardware and
simulation, as well as presenting the error bars that denote

Fig. 19. MSE as a function of the fluctuations σ . (a) Time shifts error.
(b) Signal’s reconstruction error.

one standard deviation. The MSE is given in (27). This
comparison provides insights into the accuracy and reliability
of the hardware and reconstruction approach. In Fig. 19,
we show the MSE of the signal reconstruction and the
time shifts (27) as a function of the jitter σ . The error in
the signal reconstruction and time delay estimation is found
to be up to −25 and −70 dB, respectively. Both cases
indicate accurate reconstruction. These results indicate that our
proposed sampling and reconstruction method is suitable for
radar and ultrasonic imaging applications.

VI. CONCLUSION

This research focused on FRI signal recovery using a time-
based IF-TEM ADC. To address this challenge, we proposed
a hardware prototype of a sub-Nyquist IF-TEM ADC and
developed a robust reconstruction approach to accurately
retrieve the FRI parameters. The hardware prototype that
we introduced is an asynchronous, energy-efficient ADC that
estimates the FRI parameters using a sub-Nyquist framework,
which allows it to operate at rates significantly lower than
the Nyquist rate. Our proposed hardware and reconstruction
method has been demonstrated to successfully extract the
FRI parameters, achieving reconstruction accuracy with errors
not exceeding −25 dB. This performance is achieved while
operating at sampling frequencies approximately one-tenth
of the Nyquist rate. These results suggest that the proposed
hardware prototype and reconstruction approach are effective
and efficient in accurately recovering FRI signals and may
be useful in various applications such as radar and ultrasonic
imaging. The designed prototype characteristic and asyn-
chronous operation make it particularly attractive for use in
energy-constrained systems such as battery-powered devices
where these factors are important considerations.
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