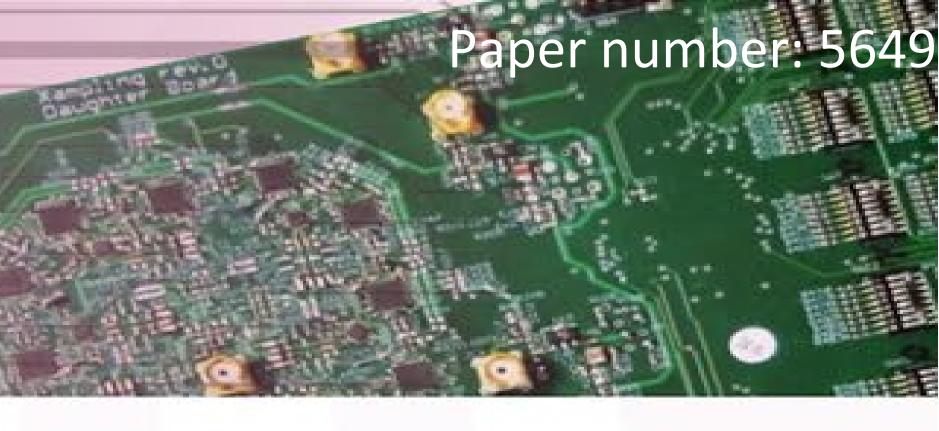

| Motivation and Contributions                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Radio frequency (RF) chains play a major role in digital receivers<br>Allocating a dedicated RF chain per antenna in massive MIMO<br>systems is infeasible due to high cost and power consumption                                                                                                                                                                                          |
| We propose an analog combining hardware for reducing the number of RF chains                                                                                                                                                                                                                                                                                                               |
| The prototype employs 16 antennas and 4 RF chains, and the analog combiner consists of a controllable network of gains and phase shifters                                                                                                                                                                                                                                                  |
| Channel state information of a massive MIMO system is accuratel<br>and cost-effectively estimated with the developed analog<br>combining board                                                                                                                                                                                                                                             |
| Analog Combiner Design                                                                                                                                                                                                                                                                                                                                                                     |
| Consider some power constrained analog combiner on its rows, minimize the MSE is equivalent to maximize the following problem without considering the noise <sup>[1]</sup><br>$\underset{\mathbf{W}}{\operatorname{argmax}} tr(\mathbf{QW}^{*}(\mathbf{WQW}^{*})\mathbf{WQ}^{*})$                                                                                                          |
| s.t. $diag\{WW^*\} \leq p_w diag\{I\}$<br>Due to the separable structure of the Kronecker model, an optimal analog combiner is derived as<br>$W_{cg} = \sqrt{p_w} U^* \longleftarrow$ First $N_{rf}$ eigenvectors of Q<br>The phase-shifter-only combiner is a projection of the optimal                                                                                                   |
| <br>analog combiner on the feasible set determined by the controllable network $W_{pso} = \mathcal{P}(\sqrt{p_w}U^*) \longleftarrow \text{Projection operator } e^{j2\pi \angle U}$ ] T. Gong, N. Shlezinger, S. S. Ioushua, M. Namer, Z. Yang, and Y. C. Eldar. "RF chain reduction for IMO systems: A hardware prototype". IEEE System Journal, vol. 14, no. 4, Dec. 2020, pp. 5296-5307 |
| User Interface                                                                                                                                                                                                                                                                                                                                                                             |
| <image/>                                                                                                                                                                                                                                                                                                                                                                                   |
| Complex-gain (CG) combiner calibration valuesReduced RF chain 1InputAmplifyPhase shift (Degrees)10.26-18020.25153.3530.2185.57                                                                                                                                                                                                                                                             |

# כרון ויצמן למדע Signal Acquisition Modeling Processing and Learning WEIZMANN INSTITUTE OF SCIENCE

## **Analog Combiner for RF Chain Reduction Demo**

<sup>1</sup> Weizmann institute of Science, Rehovot, Israel


<sup>2</sup> School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel <sup>3</sup> Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel \* e-mail: haiyang.zhang@Weizmann.ac.il



## $\bar{x} = \arg \min ||x||_1 + \lambda ||_2$

Haiyang Zhang<sup>1</sup>, Eliya Reznitskiy<sup>1</sup>, Nimrod Glazer<sup>1</sup>, Nir Shlezinger<sup>2</sup>, Moshe Namer<sup>3</sup>, Yonina C. Eldar<sup>1</sup>

 $C = \int_{0}^{B} \log_2\left(1 + \frac{S(f)}{N(f)}\right) df$ 

