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Application of the sub-Nyquist framework to collocated MIMO radar in time and
space while preserving the range-azimuth resolution

B Low rate sampling and digital processing

B Reduced number of antennas

Recovery algorithm scaled with problem size by adapting the OMP algorithm to
matrix form )

Collocated MIMO Radar
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MIMO combines multiple transmit and receiver antenna elements
Each transmitting element radiates orthogonal waveforms e
Core idea: achieving high spatial resolution by separation
and coherent processing of the receivers’ channels

All space is uniformly lit - beamforming is done at the receiver
Conventional processing for range-azimuth recovery:
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Resolution in Time and Space

Resolution in the space domain

Classic approach adopts a virtual ULA structure
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Resolution in the time domain

Azimuth resolution: determined by virtual ULA’s aperture

Problem:
High resolution in the azimuth <+ large virtual ULA’s aperture
E—) requires large number of elements

Range resolution: determined by transmitted signal’s bandwidth

Problem:

High resolution in the range large sighal bandwidth
requires high sampling rate
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Proposed Array Structure and Signal Model

e Frequency division approach

® Random array

Sub-Nyquist in space

B Preserving azimuth resolution of T transmitters and R receivers while using M<T
transmitters and Q<R receivers

e Elements are randomly located with uniform distribution across the virtual ULA’s

aperture of T transmitters and R receivers V S Vv = V
Sub-Nyquist in time ‘ = >
E Preserving range resolution of signal with bandwidth T B;, while the effective

sampling rate is lower et Freaueny

B The transmissions are performed ‘ ‘i’
over total bandwidth TBy,. ‘ = —
g For each transmission, sub-Nyquist sampling scheme is applied
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NN Xampling in Time and Space

® Received signal at the gth antenna after demodulation:

Recieved Signal - Frequency domain
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E Goal: estimate the targets range and azimuth 7., 4.

E Fourier coefficients of the channel between

mth transmitter and gth receiver:
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E [mg is governed by the elements location
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while f,,, by the carriers frequencies
e Xampling: obtain set of Fourier coefficients from low rate samples

m m m T
& Fourier coefficients for the mth transmission in matrix form Y™ =A"X(B")
B A",B":range-azimuth dictionaries

B X:sparse matrix whose elements are located at the targets’ range—J.
azimuth

Joint Range-Azimuth Detection

B Frequency diversity: channels are azimuth-dependent
and range dependent

B Range-azimuth coupling resolved by using
random array and joint range-azimuth detection

B By processing all channels together: achieve

Goal: break link between number of elements and spatial resolution and sampling
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rate and time resolution )

range resolution according to total bandwidth

<m< —
\O_m_M 1.

Simulation results
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Sub-Nyquist Collocated MIMO Radar in Time and Space

Algorithm 1 OMP for simultaneous sparse matrix recovery

Input: observation matrices Y ™', measurement matrices A™, B,

forall0 <m < M — 1

Output: index set A containing the locations of the non zero indices

of X, estimate for sparse matrix X

1: Imtialization: residual R = Y™, index set Ag =0, t =0

1=

. Find the two indices A, = [A(1)

- Project residual onto measurement matrices:

¥ = A'RB
where A = [A'_”:r Al AMSDNT o B =
[Enf B|J' E[.'l.f—l}:]-,l' and R = di.‘ig [[H—'EI H_:'f_l]l_] e
block diagonal
A:(2)] such that

[Ae(1)  Ae(2)] = arg max, ; | ;|

. Augment index set Ay = Ay [J{ A}
. Find the new signal estimate

x| = (D D;)” ' D] vec(Y)

E't:[l"lzl_ L e

. Compute new residual

TE T L i
R =Y - Z“!H.x,ra.n {b-xrir-z}]
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. Increment ¢ and return to step 2 1f ¢ < L, otherwise stop
. Estimated support set A = Ap

- Estimated matrix X: (Az(l, 1), Az(l, 2))-th component of X ir;/

given by a; for [l = 1, .- , L while rest of the elements are zero

Graph 1: Resolution in range and Azimuth
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Graph 2: Hit rate vs SNR

10 targets range-azimuth recovery performance
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Recovery algorithm via OMP Matrix Approach
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