

The Andrew & Erna Viterbi **Faculty of Electrical Engineering** Electronics ■■■■Computers ■■■■Communications

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 646804-ERC-COG-BNYQ

Signal Acquisition Modeling and Processing Lab

Towards Sub-Nyquist Tissue Doppler Imaging

Avinoam Bar-Zion^{*1}, Martino Alessandrini², Jan D'hooge², Dan Adam¹ and Yonina Eldar³ ¹Department of Biomedical Engineering, Technion, Haifa, Israel.² Department of Cardiovascular Sciences , KU Leuven, Leuven, Belgium. ³ Department of Electrical Engineering, Technion, Haifa, Israel.

Tissue Doppler Imaging

- Tissue Doppler imaging (TDI) facilitates quantification of LV function by estimating the myocardial velocity profile
- Currently: few measurement points through the LV [1]

Motivation

- Tradeoff between spectral and spatial resolution
- The received A-ling signals (fast time) are sampled at frequencies higher than the Nyquist rate

Current Technology

Methods

Non-Uniformly Spaced Pulses

Non-Uniformly Spaced Stream of Pulses is transmitted:

$$x_{T}(t) = \sum_{p=0}^{T-1} h(t - m_{p}T_{prf}) \sin(2\pi f_{0}(t - m_{p}T_{prf})).$$

- > The received signal from L dominant scatterers is defined by the 3L degrees of freedom (DOF): $\{\overline{a}_l, \tau_l, \nu_l\}_{l=1}^L$

Sampling rate reduction via CS

File KxP	KxK			МхР
Fast time sub-Nyquist: F_N^K contains K out of the N rows of the DFT matrix		Slow time F_M^P contain rows of th	Slow time sub-Nyquist: F_M^P contains P out of the M rows of the DFT matrix	
Under-determined system of equations				
• The sparse represent by solving the l1 min $\min_{A} \left\{ \frac{1}{2} \ Y - F_N^K A \right\}$	ntation matrix A nimization proble $\ (F_M^P)^T\ _F^2 + \lambda\ $	is estimated from $M = A \ _1$, $Y = $	n the measure XH^{-1}	ements
Validation				
 Using synthetic echocardiographic sequences[5] Geometries extracted from 3D ultrasound scans 				
(m) eret of the ered of the er		-60 -40 -40 0 20 40 60 0 20 40 Axi	RV Septum LV 60 80 100 al (mm)	120
A demo version was a Verasonics Vanta	implemented or ge 256™ system	in and it		

Depth-Doppler Maps - Quantification

The representation matrices present the velocities at different depths:

TDI Plots

Results

Spectral estimations from specific depths can be concatenated to produce spectral Doppler images

Depth = 6.2 cm; 40% fast time

- The proposed signal model was supported by our results
- TDI signals can be reconstructed from sub Nyquist samples:

Verasonics

- Only subset of the fast time frequencies are used
- Non-uniformly space stream of pulses transmitted
- Time gaps between pulses can be used for scanning in different directions
- Current performance is satisfactory, and can still be improved
- Future research directions includes:
- Extension to vector Doppler
- Extension to color Doppler
- Optimization of the reconstruction algorithm and the selection of transmitted pulses

References

1. T. H. Marwick, C. Yu, J. P. Sun, Myocardial Imaging: Tissue Doppler and Speckle Tracking," 2007.

- 2. D. Cohen, A. Dikopoltsev and Y. C. Eldar, "Extensions of Sub-Nyquist Radar: Reduced Time-on-Target and Cognitive Radar," 2015.
- 3. M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, "Xampling: Analog to digital at sub-Nyquist rates," 2011.
- 4. T. Chernyakova, Y.C. Eldar, "Fourier Domain Beamforming: The Path to Compressed Ultrasound Imaging," 2014.
- 5. M. Alessandrini et al., "A Pipeline for the Generation of Realistic 3D Synthetic Echocardiographic Sequences: Methodology and Open-Access Database," 2015.

hanks!

We thank Regev Cohen, Shai Yagil, Ido Cohen and Ariel Rosenberg for their work on the demo. We also thank Verasonics for their support.