

Duplex Joint Radar-Communications System Based on FMCW MIMO Radar

Yanhao Wang¹, Yihan Su¹, Dingyou Ma¹, Tianyao Huang¹, Yimin Liu¹, Oded Cohen², Shlomi Savariego², Nimrod Glazer², Eliya Reznitskiy² and Yonina C. Eldar²

Introduction

- Duplex DFRC Systems for Vehicular Applications Future cars implement both radar and communications on the same platform
- Two implementing approaches
 - Use individual systems
 - Jointly design a dual function radar-communications (DFRC) system
- Benefits of full-duplex DFRC systems
 - Improve the spectrum efficiency \bullet
 - Reduce system size, weight and power consumption
 - High real-time: Detect the target, transmit and receive the communication signal simultaneously

Theory

Index Modulation based duplex DFRC System

- Index modulation (IM)
 - Embed message into the combinations of radar waveform parameters
 - Possible domains: Spatial, spectral and time
 - Have minimal degradation to radar performance

Full-duplex technique

- Separate communication signals and radar echo from mixed echoes
- Two-way communication in every radar pulse

¹ Department of Electrical Engineering, Tsinghua University, Beijing, China ² Faculty of Math and CS, Weizmann Institute of Science, Rehovot, Israel Contact: wyh21@mails.tsinghua.edu.cn

Contributions

Contribution of This Prototype

- **Full-duplex** design, realizes real-time information sharing and detection between users
- Implementing IM based DFRC system using low-cost commercial automotive radar
- \triangleright Promising to be applied in future intelligent transportation applications

Hardware Implementation

• Architecture of the Prototype

• Overall of the Prototype

Car with DFRC system

Trade-off between Bit Rate & Radar Performance

T_{chirp}

Parameters in the prototype:

bit rate = $28.82Kbit/s \rightarrow Range resolution = 0.286m$

Simulation Results