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Abstract—This paper addresses a near-field imaging problem
utilizing extremely large-scale multiple-input multiple-output
(XL-MIMO) antennas and reconfigurable intelligent surfaces
(RISs) already in place for wireless communications. To this
end, we consider a system with a fixed transmitting antenna
array illuminating a region of interest (ROI) and a fixed receiving
antenna array inferring the ROI’s scattering coefficients. Lever-
aging XL-MIMO and high frequencies, the ROI is situated in the
radiative near-field region of both antenna arrays, thus enhancing
the degrees of freedom (DoF) (i.e., the channel matrix rank) of
the illuminating and sensing channels available for imaging, here
referred to as holographic imaging. To further boost the imaging
performance, we optimize the illuminating waveform by solving
a min-max optimization problem having the upper bound of the
mean squared error (MSE) of the image estimate as the objective
function. Additionally, we address the challenge of non-line-of-
sight (NLOS) scenarios by considering the presence of a RIS
and deriving its optimal reflection coefficients. Numerical results
investigate the interplay between illumination optimization, ge-
ometric configuration (monostatic and bistatic), the DoF of the
illuminating and sensing channels, image estimation accuracy,
and image complexity.

Index Terms—Holographic Imaging, XL-MIMO, Illumination
design, Near-field, Reconfigurable Intelligent Surfaces.

I. INTRODUCTION

The rapid progress of wireless communication systems has

laid the foundation for the forthcoming generation of networks,

referred to as 6th Generation (6G) systems, which will inte-

grate and synergize localization, sensing, and communications.

This convergence is commonly referred to as integrated sens-

ing and communications (ISAC) [1], [2]. These capabilities are

enabled by high-frequency bands and electrically large antenna

arrays, e.g., based on metasurfaces and extremely large-scale

multiple-input multiple-output (XL-MIMO) antennas [3]–[6].

As a result, 6G systems are expected to mainly operate in

the radiative near-field region, enabling unprecedented levels

of communication and sensing performance, flexibility, and

resolution [7]–[9]. In this context, significant research contri-

butions have shed light on the potential of holographic commu-

nications [10]–[13], localization [14]–[17], sensing [18], and

imaging [19].

While the benefits of operating in the near-field propagation

regime have been extensively demonstrated for localization,

communication, and sensing, the potential advantages of per-

forming holographic imaging within wireless communication

networks have been largely unexplored to date. This work aims

to investigate the capabilities of near-field imaging, shedding

light on its potential in 6G scenarios where reconfigurable

intelligent surfaces (RISs) are also employed to cope with non-

line-of-sight (NLOS) channel conditions [20], [21].

With holographic imaging, we hereby refer to the possi-

bility of estimating the reflective properties of a region of

interest (ROI) using XL-MIMO systems operating in the near-

field. The procedure involves initially illuminating the ROI,

represented as a pixel-based image, and then capturing its

backscattered electromagnetic (EM) field through the receiving

array. Thanks to the near-field propagation regime, which

allows for the extraction of both depth and angular information

compared to the far-field and hence increasing the number of

exploitable degrees of freedom (DoF) [22], more informative

measurements can be collected from the ROI, thus leading to

improved imaging capabilities.

Conventional radio imaging techniques, typically employed

for medicine, biology, geology, and engineering, use EM

fields to create 3D images of physical entities using dedicated

infrastructures. The common approach is to address an inverse

scattering problem (ISP), where the primary objective is to

extract features related to potential scatterers in a given ROI

by analyzing the scattered EM field [23], [24]. The primary

challenge in such problems lies in their ill-posed nature, neces-

sitating the incorporation of regularization techniques for their

effective resolution [25]. Various technologies and transmis-

sion techniques have been systematically explored to minimize

reconstruction errors and enhance target images’ resolution.

Examples include synthetic aperture radar (SAR) [26]–[29],

classic holography [30], [31], MIMO antennas [32]–[34], com-

putational imaging [35]–[37], and others [38]–[40]. Notably,

many specialized algorithms have been devised for image

retrieval, each exhibiting advantages and disadvantages. For

instance, a range of methodologies exist in the domain of SAR-

based methods, including back-propagation [41], [42], range

migration [26], [43], range-Doppler [27], chirp-scaling [44],

as well as inverse/stripmap/tomographic/spotlight SAR algo-

rithms [45]–[47]. Furthermore, a multitude of widely adopted

strategies and approximations, such as Stolt interpolation [48],

stationary phase method [49], and many others, assume pivotal

roles in enhancing imaging precision and dependability across

diverse applications. Deep learning techniques have also re-

cently been applied to near-field imaging in [50]–[52].

Regarding the operational frequencies and devices, imaging

is frequently performed using microwaves or visible light

technologies, like lidars [53], [54]. In this regard, only a few

works have explored the use of systems primarily designed

for wireless communications to perform imaging of unknown
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objects [29], [39], [55]–[59]. Indeed, most imaging approaches

proposed in the literature require illuminating and sensing the

backscattered EM field from a large set of angles through

the deployment of a dedicated imaging infrastructure typically

working in the far-field region. Hence, their applicability in

next-generation wireless systems endowed with ISAC capa-

bilities is limited.

When addressing NLOS imaging, methods have been de-

vised to effectively illuminate stationary objects, such as walls,

to enable target reconstruction [60]. In light of the foreseen

6G scenarios, we explore the possibility of using RISs for

holographic imaging in line-of-sight (LOS) conditions by

optimizing their reflective characteristics to control the prop-

agation channel [61] and backscatter the illumination towards

the ROI. In [61], the authors present an approach for com-

putational imaging using a RIS, based on distributed antenna

systems and stochastic modulation of detecting signals. Their

work predominantly operates within the far-field regime, thus

neglecting the large number DoF available in the near-field

region facilitated by the spherical EM wavefront propagation.

In [62], the authors present a method for near-field computa-

tional imaging that integrates a RIS with holographic aperture

technology, where the RIS is used to generate multiple virtual

EM masks on the target ROI. This RIS operates as an active

reflector, amplifying and reflecting the impinging signals, thus

requiring a higher complexity and elevated hardware costs.

To the authors’ best knowledge, investigation of illumination

and RIS optimization strategies when operating in the near-

field region has not yet been tackled in the literature. To

fill this gap, in our paper, we consider near-field imaging

(holographic imaging) leveraging XL-MIMO, RIS, and high-

frequency bands within the context of next-generation wireless

systems. In particular, we propose an analytical framework

that captures the distinctive features of the available DoF of

the near-field channel and the presence of a RIS to enhance

imaging performance in NLOS scenarios. Our main contribu-

tions are as follows.

• Illumination Waveform Design: We enhance holographic

imaging by optimizing the transmitting waveform for im-

proved ROI illumination, particularly with signals tailored

for wireless communications and near-field propagation.

We propose an optimization approach that searches for

the illumination signal minimizing the mean squared error

(MSE) of the image estimate. To this end, we first derive a

closed-form expression for the MSE in image estimation.

Then, we perform a min-max operation to minimize the

MSE over the illumination signal by considering the

maximum value for the scattering coefficients charac-

terizing the ROI, hence determining the most effective

illumination signal to employ at the transmitter.

• RIS Configuration Design: We extend our model to

incorporate the presence of a passive RIS enabling mono-

static imaging in NLOS situations between the trans-

mitter/receiver and the ROI (“see around the corner”).

We investigate the optimal RIS configuration maximizing

the DoF of the cascade channel between the transmit-

ting/receiving antenna, RIS, and the ROI, thereby max-

imizing the total cascade channel’s gain and reducing

the MSE of the image estimate. Moreover, we derive a

closed-form expression for the optimal RIS phase profile

configuration for performing imaging in the absence of

visibility between the transmitter and the ROI.

• Numerical Analysis: We corroborate the theoretical find-

ings through numerical simulations investigating the in-

terplay between the DoF of the near-field illuminating and

sensing channels, the geometry of the system (monostatic

vs. bistatic configuration), the illumination optimization

strategy, the RIS configuration, the image estimation

accuracy, and image complexity. We show how the per-

formance can be significantly improved when the number

of DoF of the channel is larger than the dimensionality

of the image and a suitable illuminating waveform is

employed. Moreover, results indicate that optimization

of the illuminating signal is effective only when the

transmitting antenna is in strong near-field conditions

with respect to the ROI. Finally, we demonstrate that

imaging is possible in NLOS only when the RIS is

optimally configured.

The remainder of the paper is organized as follows. Sec. II

introduces the system model for holographic imaging. In

Sec. III, we discuss the ISP analytical formulation and fea-

sible relaxation techniques, while Sec. IV deals with the

optimization of the transmitted illuminating signal in LOS

configurations. Sec. V extends the presented analysis to the

case of a RIS-aided system working in NLOS, and Sec. VI

illustrates the obtained numerical results. Finally, Sec. VII

concludes the paper.

Notation: Throughout the paper, we use the following

notation. Lowercase bold variables, e.g., x, denote vectors

in the three-dimesional (3D) space. Boldface capital letters

denote matrices, e.g., X. The identity and zero matrices with

size N ×M are written as IN×M and 0N×M . The transpose

operator is indicated by (·)T , the Hermitian operator is (·)H ,

and the Moore-Penrose pseudoinverse operator is represented

by (·)†. The L2-norm of a vector r is ‖r‖, the Frobenius

norm of a matrix X is ‖X‖F , and j is the imaginary unit.

Calligraphic fonts are used to denote sets, i.e., X , while

x ∼ CN (µ,Σ) is a complex random vector distributed

according to a complex normal distribution with mean vector

µ and covariance matrix Σ. The notation diag (x) denotes an

operator that generates a diagonal matrix whose main diagonal

is given by the vector x. Finally, σ1(A) ≥ σ2(A) ≥ . . . ≥
σK(A) denote the singular values of the matrix A ∈ CN×M ,

where K = min(N,M).

II. SYSTEM MODEL

Consider a holographic imaging system as illustrated in

Fig. 1. We discuss three distinct configurations: (i) a mono-

static setting (depicted in Fig. 1a), wherein the transmitting

and receiving discrete antenna arrays are colocated and are

in a free-space LOS condition in relation to the ROI1; (ii) a

bistatic setting (depicted in Fig. 1b), where the two XL-MIMO

antennas are spatially separated while still maintaining LOS

1Throughout the remainder of the paper, LOS imaging will henceforth
denote the imaging procedure conducted under free-space LOS conditions.
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(a) (b)

Fig. 1: (a) Monostatic configuration with a single XL-MIMO transceiver (TX/RX) performing LOS imaging of a ROI. The

generic target scattering point is indicated with γn. The distances between the XL-MIMO transceiver elements and the scattering

points are indicated with di,n and dn,r. (b) Bistatic setup, where the transmitting antenna (TX) illuminates the selected ROI

and a distinct receiving antenna (RX) collects the scattered EM signal. Both the TX and RX are modeled as XL-MIMO arrays.

Fig. 2: Monostatic RIS-aided setup for NLOS imaging of a

ROI, where the XL-MIMO transceiver (TX/RX) illuminates

the RIS, the RIS reflects the impinging EM signal toward

the ROI which reflects it back towards the RIS and the XL-

MIMO transceiver. The TX/RX-RIS and RIS-ROI channels

are indicated with G1 and G2, and the RIS reflection matrix

with Φ, respectively.

with the ROI under investigation; (iii) a RIS-aided monostatic

scenario in NLOS condition (shown in Fig. 2). Specifically,

with NLOS, we here refer to the case where the direct path

between the XL-MIMO transceiver and the ROI to be imaged

is obstructed, whereas there exists a free-space LOS condition

between the RIS and both the ROI and the transceiver. In this

manner, we consider that the overall XL-MIMO transceiver-

ROI link is a concatenation of two free-space LOS channels

connected through the RIS. The latter scenario with the RIS

will be discussed in Sec. V while, in the sequel of this section,

we will focus on the first two configurations.

The transmitting antenna array (TX) is composed of NT

antenna elements located at pT,i = [xT,i, yT,i, zT,i]
T

, with

i ∈ NT = {1, 2, . . . , NT}, and illuminates the ROI with

a signal having wavelength λ. The ROI is observed by a

receiving antenna array (RX) equipped with NR antenna

elements, each of them located at pR,r = [xR,r, yR,r, zR,r]
T

,

r ∈ NR = {1, 2, . . . , NR}. In the monostatic case, NR = NT

and pT,i = pR,i, ∀i ∈ NT,NR. For both configurations,

the positions of the transmitting and receiving arrays are

considered as known.

The ROI is divided into a grid of N square cells of size

∆, whose locations are pn = [xn, yn, zn]
T

, with n ∈ N =
{1, 2, . . . , N}. The nth cell is characterized by a scattering

coefficient, denoted γn, related to the radar cross section

(RCS) of the scatterer included in the cell (if any), i.e.,

RCSn = |γn|2λ2/4π. If the cell is empty, then γn = 0. The

magnitude of the scattering coefficient |γn| is upper bounded

by the maximum RCS from a scatterer of area ∆2, which

corresponds to the RCS of a perfect electric conductor (PEC)

having the same area given by RCSmax = 4 π
λ2 ∆2. Therefore,

|γn| ≤ γmax =
√

4π
λ2 RCSmax, ∀n ∈ N .

The values of the scattering coefficients are unknown and

should be estimated by the imaging process. Let us define

γ = [γ1, γ2, . . . , γN ]T ∈ C
N×1 as the unknown vector, i.e.,

the state vector, associated with the selected ROI [61]. In

the following, we assume that each scattering cell performs

a perfect isotropic reflection of the illumination signal, as

assumed in most of the existing literature [61].2

The TX antenna emits an illumination signal x =
[x1, x2, . . . , xi, . . . , xNT

]T ∈ CNT×1, with ||x||2 ≤ PT and

PT the available transmit power. At the RX antenna side, the

received signal y = [y1, y2, . . . , yr, . . . yNR
]T is expressed as

y = GR ΓGT x+w , (1)

2Thanks to the adoption of high frequencies, we neglect the presence of
any diffusive or multiple scattering effects. Moreover, we assume no coupling
occurs between the TX/RX antennas and the scatterers.
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where w ∈ CNR×1 ∼ CN (0, σ2INR
) is an additive white

Gaussian noise (AWGN) noise vector, whose elements are

independent, identically distributed (i.i.d.) complex Gaussian

random variables and σ2 is the noise variance. Moreover, we

define

Γ = diag(γ) = diag(γ1, γ2, . . . , γN ) ∈ C
N×N (2)

as the diagonal matrix containing the ROI’s scattering co-

efficients. Finally, GT = {gT,n,i} ∈ CN×NT and GR =
{gR,r,n} ∈ C

NR×N denote, respectively, the TX-ROI and ROI-

RX channel matrices. In our study, we assume that the channel

is known as typical for imaging problems. We consider the

performance under Rice fading propagation conditions in

Sec. VI-C. Further information for acquiring channel state

information (CSI) can be found [63]–[66]. In the presence of

RIS, GT and GR denote the cascade channels for establishing

a LOS link between the TX/RX and the ROI, as further

detailed in Sec. V.

In the following, we assume that the ROI is located in the ra-

diative near-field region of the TX and the RX, and/or the RIS,

when the distance between the ROI and the transceiver/RIS is

2D
√
2N ≤ d ≤

2
(

D
√
2N
)2

λ
, (3)

where d is the distance between the array/RIS and the ROI,

D is the size of the largest ROI/array, and N is the number

of antenna elements composing the array or, equivalently, the

number of ROI’s pixels. This definition is the array equivalent

of the Fresnel region of an antenna [67], which allows us to

identify the spatial region where both the amplitude and phase

variations of the EM spherical wavefronts cannot be neglected

when comparing local phases between antenna elements, even

if the wave is locally planar at each antenna. This corresponds

to a region where we are not in a strongly near-field condition,

i.e., almost close to the reactive near-field behaviors, nor in an

almost far-field condition, where only phase variations among

antenna elements are perceivable without amplitude variations.

Hereafter, we discuss LOS imaging in Secs. III-IV, and

NLOS imaging in Sec. V.

III. LOS IMAGING: PROBLEM FORMULATION

The primary objective of the imaging procedure is to

estimate the scattering coefficient γ starting from the received

signal in (1). To do so, we determine the best illumination

signal x that minimizes the estimation error with respect to γ.

In the following, we first focus on the LOS imaging case. In

Sec. V, we treat the NLOS RIS-aided scenario.

For LOS imaging, we can rewrite (1) as

y = GR Γ x̃+w = GR X̃γ +w , (4)

where X̃ = diag(x̃) ∈ C
N×N , with x̃ = GT x ∈ C

N×1 being

the vector describing the illumination signal as observed at

the ROI side. In LOS conditions, the elements of the channel

matrices GT and GR in (1) and (4) are given by

gT,n,i =
λ

4 π di,n

√

GT (Θi,n) e
−j 2 π

λ
di,n (5)

gR,r,n =
λ

4 π dn,r

√

GR (Θn,r) e
−j 2π

λ
dn,r , (6)

where {n, i, r} are, respectively, the nth cell of the ROI, the

ith element of the TX array, and the rth element of the RX

array. The quantities

[di,n,Θi,n] = [di,n, φi,n, θi,n] , (7)

[dn,r,Θn,r] = [dn,r, φn,r, θn,r] (8)

represent the distance and angles between the (pT,i,pn) and

the (pn,pR,r) pairs of TX/RX antennas and cell location.

Moreover, {GT (Θi,n) , GR (Θn,r)} are the transmitting and

receiving beam-pattern gains, evaluated in the direction of

arrival (i.e., Θn,r) and departure (i.e., Θi,n). The considered

received signal model accounts for the near-field propagation

regime by considering the exact distances and angles at each

antenna pair.

To decouple the estimation problem with that of the illu-

mination design, we denote by β = X̃γ ∈ CN×1 the signal

backscattered by the scatterers present within the ROI. As a

consequence, the received signal in (4) can be rewritten as

y = GR β +w , (9)

which appears as a conventional linear estimation problem.

In the following, we discuss a possible approach for es-

timating the parameter vector β and, thus, the scattering

coefficients γ. Given that the matrix GR can be rank-deficient

and create ill-posed problems, we introduce truncated sin-

gular value decomposition (TSVD) regularization of the GR

matrix. Subsequently, we analyze its associated MSE, which

constitutes the objective function targeted for minimization in

relation to the transmitted signal.

A. Scattering Coefficients Estimate

To determine an estimate of β from (9), we consider a least

squares (LS) estimator

β̂ = GR
† y = GR

†GR β +GR
† w , (10)

where β̂ is the LS estimate of β for NR ≥ N . To provide

an expression for GR
†, we first introduce the singular value

decomposition (SVD) of GR, which can be expressed as

GR = UΣVH =

K
∑

k=1

ξk ukv
H
k , (11)

where

Σ =

[

diag (ξ1, . . . , ξK) 0K×(N−K)

0(NR−K)×K 0(NR−K)×(N−K)

]

∈ C
NR×N

(12)

is a diagonal matrix with K = min(NR, N) diagonal elements

ξk = σk(GR) ∈ R
+
0 , R+

0 = [0,+∞), k ∈ K = {1, . . . ,K},

and where U ∈ CNR×NR and V ∈ CN×N are unitary matrices,

with uk and vk being the columns of U and V respectively,

i.e., the left-singular vectors and right-singular vectors of GR.

The SVD of GR
† is given by [68], [69]

GR
† = VΣ†UH =

K
∑

k=1

ξ−1
k vk u

H
k , (13)
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with GR
† ∈ CN×NR and Σ† ∈ CN×NR . In our specific case,

the multiple-input multiple-output (MIMO) wireless channel,

represented by the matrix GR, typically does not possess full

rank. Therefore, the presence of null or very small eigenvalues

ξk within the matrix Σ poses challenges in computing its

pseudoinverse, thus leading to numerical instability [24], [70].

To address this issue, a typical approach is to introduce

regularization resulting in [71]

Σ ≈ Σ̃ =

[

diag (ω1 ξ1, . . . , ωK ξK) 0K×(N−K)

0(NR−K)×K 0(NR−K)×(N−K)

]

,

(14)

where {ω1, ω2, . . . , ωK} are weights set according to the

adopted regularization technique, e.g., TSVD [55] or Tikhonov

[72].

Then, by denoting the pseudoinverse of (14) as Σ̃†, we have

G̃
†
R = VΣ̃†UH =

K
∑

k=1

ω−1
k ξ−1

k vk u
H
k . (15)

Therefore, β̂ can be computed as

β̂ = VΣ̃†UHy = VΣ̃†ΣVHβ + z = VΛVHβ + z , (16)

where z = G̃
†
Rw = VΣ̃†UHw, and Λ = Σ̃†Σ ∈ CN×N is a

diagonal matrix with its first K elements different from zero

and the remaining (N −K) elements are null, i.e.,

Λ = diag
(

ω−1
1 , ω−1

2 , . . . , ω−1
K , 0, . . . , 0

)

. (17)

Defining H = VΛVH ∈ CN×N , we obtain

β̂ = Hβ + z = HX̃γ + z = H diag(GTx)γ + z

= β + (H− I) diag(x̃)γ + z . (18)

Assume that X̃ is a full-rank square diagonal matrix, i.e., x̃

does not contain zero elements, which is generally reasonable.

Then, we can easily obtain an estimate of γ from β̂ by

multiplying both sides of (18) by X̃−1, leading to

γ̂ = γ + X̃−1 (H− I) X̃γ + X̃−1z . (19)

We can identify three distinct terms contributing to the LS

estimate γ̂: (i) the true original value of the estimated quantity

(i.e., γ); (ii) a distortion term due to the regularization process

(i.e., X̃−1 (H− I) X̃γ); and (iii) the noise contribution (i.e.,

X̃−1z).

B. Mean Squared Error

To evaluate the accuracy in estimating γ, we now derive a

closed-form expression for the MSE. Let us start by defining

the covariance matrix C ∈ CN×N of the error vector (γ − γ̂)

C = E
{

(γ − γ̂)(γ − γ̂)H
}

= E

{(

X̃−1 (H− I) X̃γ + X̃−1z
)

·
(

X̃−1 (H− I) X̃γ + X̃−1z
)H
}

. (20)

Assume that the only random vector is z and consider γ as

an unknown deterministic vector. After some computations,

reported in Appendix A, the MSE as a function of the signal

x̃ received at the ROI side can be calculated as the trace of

the covariance matrix C, hence resulting in

MSE(γ; x̃) = tr(C)

=

N
∑

n=1

∣

∣

∣

∣

∣

∣

∣

(hn,n − 1)γn + x̃−1
n

N
∑

i=1
i6=n

hn,i x̃i γi

∣

∣

∣

∣

∣

∣

∣

2

+

N
∑

n=1

σ2

|x̃n|2
K
∑

k=1

ω−2
k ξ−2

k |vn,k|2 , (21)

where hn,i are the elements of H and vn,k are the elements

of the vector vk. In (21), it is possible to identify two distinct

contributions: the first addend is the distortion in the estimation

procedure introduced by the regularization technique, whereas

the second term is associated with the AWGN noise.

Notably, (21) depends on γ, which is the objective of the

estimation process and depends on the physical scatterers

present within the ROI, thus being unmodifiable. At the

same time, the MSE depends on the illumination signal x,

and varying x might lead to different levels of estimation

accuracy (i.e., of distinct values of MSE). For this reason,

in the sequel, we formulate an optimization problem aimed at

minimizing the MSE across the vector x, while simultaneously

constraining γ to its maximum value, which corresponds to

the worst achievable MSE.

IV. OPTIMIZATION OF THE ILLUMINATION SIGNAL FOR

LOS IMAGING

As highlighted in the previous section, a fundamental aspect

of performing imaging is to identify the optimal illumination

signal x⋆ that minimizes the MSE defined in (21). To facilitate

the analysis, we decompose the problem into two subsequent

steps. First, we estimate the illumination signal x̃⋆ = GT x
⋆

that should be received at the ROI, i.e., after propagating

through the TX-ROI channel GT. Secondly, we derive the cor-

responding transmit signal x⋆ to enable a received illumination

signal that closely approximates x̃⋆. Since the MSE depends

on the actual value of γ, which is unknown, we formulate our

problem as follows

x̃⋆ = arg minimize
x

maximize
γ

MSE(γ; x̃) (22)

s.t. ||x||2 ≤ PT

|γn| ≤ γmax, n = 1, 2, · · · , N ,

where we recall that x̃ can be expressed as a function of x as

x̃ = GT x, and that the maximum magnitude of the scattering

coefficient is γmax as defined in Sec. II.

Given the complexity of globally solving the optimization

problem described in (22) due to the dependence of the

MSE on both γ and x̃, we opt to tackle a fundamentally

different analytical problem. This approximates the original

optimization problem, enabling us to derive a closed-form

solution, whose performance will then be compared with that

achieved through numerical optimization. To this end, we

first establish an upper bound of the cost function in (22).

By applying the sub-multiplicative property, asserting that

‖Ab‖2F ≤ ‖A‖2F ‖b‖2F for any matrices A and b, to the
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first term on the right hand of (21), we obtain the following

inequality

maximize
γ

MSE(γ; x̃) ≤ f(γmax; x̃) + g(x̃) , (23)

which provides the upper-bound value for the MSE(γ; x̃) in

regards to the unknown parameter γ. Notably, this upper-

bound encompasses two distinguishable terms, i.e., f(γmax; x̃)
and g(x̃), which are associated, respectively, with the trunca-

tion error and the AWGN noise and given by

f(γmax; x̃) = Nγ2
max

N
∑

n=1

∣

∣

∣

∣

∣

∣

∣

(hn,n − 1) + x̃−1
n

N
∑

i=1
i6=n

hn,ix̃i

∣

∣

∣

∣

∣

∣

∣

2

,

(24)

g(x̃) =

N
∑

n=1

σ2

|x̃n|2
K
∑

k=1

ω−2
k ξ−2

k |vn,k|2 . (25)

According to (23), we can reformulate the problem (22) as per

x̃⋆ = arg minimize
x̃

f(γmax; x̃) + g(x̃) (26)

s.t. ||x||2 ≤ PT .

Due to the non-linear and non-convex nature of the objective

function presented in (26), solving it directly poses a substan-

tial challenge. To address this difficulty, we propose a two-

step algorithm for its effective solution. In the first step, we

temporarily ignore the term f(γmax; x̃) and focus solely on

g(x̃). Given this simplification, (26) can be written as follows

minimize
x̃

g(x̃) =

N
∑

n=1

σ2

|x̃n|2
K
∑

k=1

ω−2
k ξ−2

k |vn,k|2 (27)

s.t. ||x||2 ≤ PT .

While still retaining its non-convex nature, it is feasible to

obtain a closed-form solution for the simplified problem in

(27), as validated by the following theorem.

Theorem 1: The optimal solution to problem (27) is given

by

x̃⋆
n =

√

bn e
jφn , n = 1, 2, · · · , N, (28)

where

bn =
P
√
αn

∑

n

√
αn

(29)

denotes the magnitude of the optimal x̃⋆
n, φn can be any

arbitrary phase, and

αn , σ2
K
∑

k=1

(ωk ξk)
−2 |vn,k|2, (30)

P = PT ·
∑

n

gT,ng
H
T,n , (31)

with P denoting the upper bound of the term
∑

n|x̃n|2.

Proof: See Appendix B.

Theorem 1 indicates that the optimal solution to problem

(27) is independent of the phase of each x̃n. This indepen-

dence arises because the magnitude squared operation in (25)

eliminates the phase information. Consequently, commencing

with the solution x̃⋆
n =

√
bne

jφn obtained in the first step,

the subsequent optimization involves adjusting the phase φn

of each component to minimize f(x̃, γmax), while keeping bn
fixed. Indeed, optimizing only the phase does not compromise

the optimality of the solution found for g(x̃). Thus, by

substituting x̃⋆
n =

√
bne

jφn into (24), the second step entails

solving the following optimization problem

minimize
{φn∈[0,2π)}

f(γmax; {φn})

=Nγ2
max

N
∑

n=1

∣

∣

∣

∣

∣

∣

∣

(hn,n − 1) +
e−jφn

√
bn

N
∑

i=1
i6=n

hn,i√
bi
e−jφi

∣

∣

∣

∣

∣

∣

∣

2

. (32)

Determining directly the optimal φn for (32) is challeng-

ing due to the complexity of the absolute value operation,

which introduces non-differentiable points. To overcome this,

we employ an alternating optimization method, wherein we

optimize each phase term φn while keeping all other phases

fixed. After optimizing φn, we proceed to optimize φn+1, and

so forth, in an alternating manner. Specifically, for a fixed n,

the optimization problem (32) can be formulated as

minimize
φn∈[0,2π)

∣

∣

∣

∣

∣

∣

∣

(hn,n − 1) +
e−jφn

√
bn

N
∑

i=1
i6=n

hn,i

e−jφi

√
bi

∣

∣

∣

∣

∣

∣

∣

2

. (33)

By leveraging the geometric nature of the problem (33), its

optimal solution can be expressed as

φ∗
n = [arg (dn)− arg (cn)− δnπ] mod 2π , (34)

for n = 1, 2, · · · , N , where

cn = (hn,n − 1), (35)

dn =
1√
bn

N
∑

i=1
i6=n

hn,i

e−jφi

√
bi

, (36)

and

δn ,

{

+1 if arg (cn) ∈ [0, π)

−1 if arg (cn) ∈ [π, 2π) .
(37)

Notably, the combination of (28) and (34) provides the

most suitable illumination that is required at the ROI side to

minimize the MSE given worst-case magnitudes for γ.

Algorithm 1 Proposed Algorithm for Solving Problem (26)

1: Initialize the phase parameters {φn}Nn=1.

2: Calculate {bn}Nn=1 according to (29);

3: Repeat

4: Update the phases {φn}Nn=1 in an alternating (element-

wise) manner according to (34);

5: Until the objective function value in (32) converges.

6: Output:
{

x̃⋆
n =

√
bn e

jφ∗
n

}N

n=1
.

The proposed two-step algorithm for solving the problem

in (26) is summarized as Algorithm 1, whose computational

complexity is analyzed as follows. The complexity for cal-

culating {bn}Nn=1 is O(N). The complexity for updating N
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phases is O(TN), where T denotes the number of iterations

required for convergence. Therefore, the overall computational

complexity of Algorithm 1 is O((T + 1)N).
As a final step, to obtain the corresponding illumination

signal to be employed at the TX side, we compute

x⋆ = GT
† x̃⋆ . (38)

Since, in general, GT is not a full-rank matrix, the result

obtained is the minimum norm solution given the limited N
(c)
DOF

of the TX-ROI channel GT.

V. RIS-AIDED NLOS IMAGING

According to the existing literature, passive walls have

mostly been employed to assist the TX in conventional NLOS

imaging problems [39], [53]. However, introducing a RIS

allows for the design of a smarter reflection, potentially en-

hancing imaging performance. As illustrated in Fig. 2, we now

extend the previous analysis to the case where the illuminating

link (GT) used to illuminate the target ROI and/or the sensing

link (GR), delivering the scattered EM field, is in NLOS

condition and is supported by a RIS whose parameters have

to be optimized.

Denote with G the cascade channel of interest (therefore,

it could be equally to G = GT and/or G = GR). It can be

decomposed into

G = G1 ΦG2 , (39)

where G2 is the TX-RIS (RX-RIS) channel matrix, G1 is

the RIS-ROI matrix, and Φ the matrix characterizing the

RIS phase shifts configuration. We do not restrict Φ to be

diagonal to ensure general applicability. Given the passive

and lossless nature of the RIS, it follows that ΦHΦ = I,

indicating unitarity. The scenario in which the reflection is

not attributed to the RIS but rather arises from a natural

reflector, characterized by a specular reflection (e.g., a wall),

can be straightforwardly represented by defining Φ = ηI,
where 0 < |η| ≤ 1 denotes the reflection coefficient (η = 1
corresponds to a PEC).

As evident from the previous analysis and the numerical

results, the imaging quality depends on the rank (i.e., the DoF)

of the cascade channel matrix G as well as its total gain ‖G‖2F.

In general, being

rank(G1 ΦG2) ≤ min(rank(G1), rank(Φ), rank(G2)) ,
(40)

the rank of the cascade channel is dominated by the channel

with minimum rank. Since the number of elements of the RIS

is typically larger than rank(G1) or rank(G2) and the RIS

phase matrix is full rank, it does not concur in determining

the rank of the cascade channel. More precisely, the rank of

the cascade channel cannot be increased through a specific

RIS design. Therefore, to improve the image quality we seek

the optimal RIS’s configuration Φ which maximizes ‖G‖2F =
∑

n ξ
2
n, where ξn = σ(G) are the singular values of G, under

the constraint ΦHΦ = I (passive RIS) and for fixed G1 and

G2 matrices. To this end, we recall the following Theorem

[73]:

Theorem 2: Given Hermitian matrices A1 ∈ CN×N , A2 ∈
C

N×N and A3 ∈ C
N×N with singular values, respectively,

σn(A1), σn(A2) and σn(A3), we have
∑

n

σ2
n(A) ≤

∑

n

σ2
n(A1)σ

2
n(A2)σ

2
n(A3) , (41)

where A = A1 A2 A3. The equality is true when

σn(A) = σn(A1)σn(A2)σn(A3), ∀n . (42)

Let us define

A1 = GH
1 G1, A2 = ΦHΦ, A3 = GH

2 G2 . (43)

We perform the SVD decomposition G1 = U1Σ1V
H
1 and

G2 = U2Σ2V
H
2 . Since A2 = ΦHΦ = I, the right hand side

of (41) does not depend on the RIS’s configuration Φ and

hence achieving the equality in (41) ensures that
∑

n σ
2
n(A)

is maximized. We can thus write

G = U1Σ1V
H
1 ΦU2Σ2V

H
2 . (44)

Let us now define Φ = V1ZU
H
2 , with Z being a generic

unitary matrix. Then, we can rewrite (44) as

G = U1Σ1ZΣ2V
H
2 = U1ΣtV

H
2 , (45)

having defined the matrix Σt = Σ1ZΣ2. Note that Σt is in

general not diagonal because of Z.

If we choose Z = I, Σt becomes diagonal and (45) takes

the form of the SVD of the matrix G. As a consequence, in

(41) it is σ2
n(A) = σ2

n(A1)σ
2
n(A3), ∀n, being σ2

n(A2) = 1.

This translates in

ξ2n = σ2
n(G) = σ2

n(G1)σ
2
n(G2) , ∀n , (46)

by considering that σ2
n(Φ) = 1 being Φ unitary. According to

Theorem 2, we obtain the equality in (41), thus maximizing

the quantity
∑

n ξ
2
n. As a result, the optimal RIS configuration

is given by

Φ = V1U
H
2 . (47)

Incidentally, this is the same result achieved in [74] through

an alternative method for maximizing the mutual information

between a TX and a RX communicating via a RIS. Note that,

in general, the optimal Φ configuration is not in a diagonal

form.

VI. NUMERICAL RESULTS

A. Simulation Setup

In the proposed setup, imaging is performed over a narrow

frequency band ∆f = 120 kHz centered at fc = 28GHz,
with a wavelength of λ ≃ 0.01m. This choice can correspond

to adopting a sub-carrier or a resource block in a orthogonal

frequency division multiplexing (OFDM) signal used also for

communication. We set the noise power spectral density to

σ2 = −170 dBm/Hz, and the transmitted power PT to

30 dBm. The XL-MIMO TX and RX arrays are configured as

uniform squared arrays with the same size of (10λ×10λ)m2,

with antenna elements spaced apart of λ/2 (i.e., 20 × 20 an-

tennas in the considered settings). The ROI spans dimensions

of (750λ×750λ) m2, with 8×8 cells equally distributed with
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Fig. 3: NMSE as a function of the truncation index R selected when applying the TSVD to GR and different optimization

techniques for the monostatic LOS setup. The TX/RX XL-MIMO array is located at (0, 0, 0)m and three distinct locations

for the ROI are tested, namely yROI ∈ {10, 15, 23}m. Dotted (◦) and continuous (−) lines correspond to the E-NMSE and

T-NMSE, respectively, while the square markers denote the non-regularized case for benchmarking.
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Fig. 4: Estimated images (γ̂) for R = 60, yROI = 23m, different optimization approaches, and reference image with N
(i)
DOF = 2.

an inter-spacing of ∆ = 93.75λ, if not otherwise indicated. In

the simulations, in the presence of a scatterer in the nth cell,

γn has been set equal to M = 10−1γmax considering that,

in realistic scenarios, objects typically exhibit a RCS smaller

than those observed in the case of a PEC. Specifically, the

magnitude of the scattering coefficients γ, i.e., the image, to

be estimated is depicted in Fig. 4-(top,left). When present, the

RIS has dimensions equal to (60λ×60λ)m2 and is in paraxial

configuration with respect to the TX/RX. The RIS’s elements

are separated by a distance equal to λ/2 (i.e., 120× 120 RIS

elements in the setup in Fig. 2).

For each simulation, we evaluated both the empirical and

theoretical MSE together with its normalized mean squared er-

ror (NMSE) version. In particular, these metrics are computed

as

E-MSE =

∑NMC

m=1‖γ − γ̂m‖2
NMC

, E-NMSE =
E-MSE

NM2
, (48)

where NMC represents the number of Monte Carlo iterations

that were set to 100. Likewise, the theoretical MSE (T-MSE)

is given by (21) and its normalized version is denoted with

T-NMSE. Notably, the relationship between the peak signal
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to noise ratio (PSNR) and NMSE is expressed as PSNR =
NMSE−1.3 In our results, the following cases were considered:

• No regularization, No optimization (NO REG-NO OPT):

This represents the worst-case scenario, where we con-

sidered neither the GR matrix regularization nor the opti-

mization of the transmit illuminating vector. This scenario

is incorporated in our simulations as a benchmark. In the

following cases, it is presumed that GR regularization is

always performed.

• Regularization, No optimization (NO OPT): In this case,

we considered the regularization of the matrix GR but

we did not apply the optimization of the transmitting

signal, setting it equal to x =
√
Pt

2NT
(1NT×1 + j1NT×1).

This choice corresponds to a uniform ROI illumination.

• Uniform Interior-Point Optimization (U-IP-OPT): We

applied the optimization of the transmitting vector by

running an interior-point method [75] to search for

x̃⋆ starting from a guess solution equal to x̃0 =√
Pt

2NT
GT (1NT×1 + j1NT×1) and γ⋆ = γmax 1N×1. To

compute the transmitted vector, we applied x⋆ = G̃
†
Tx̃

⋆,

with G̃T being the regularized version of GT.

• Analytical Solution (A-OPT): In this case, we applied the

optimization of the transmitting vector by implementing

(28) with γ⋆ = γmax 1N×1. Then, as before, to derive the

transmitted vector, we applied x⋆ = G̃
†
Tx̃

⋆.

• Analytical Interior-Point Optimization (A-IP-OPT): It is

the same approach as U-IP-OPT but with a different

initial guess x̃0, which is set equal to the analytical

solution in (28).

Notably, the number of DoF associated with the wireless

channel, particularly GR, impacts the imaging accuracy and

the capability of estimating the scattering features of the ROI.

Specifically, recalling the results obtained in [10, Eq. 31], it

can be shown that

N
(c)
DOF ≃ 2L2

λ2





S tan−1
(

S√
4d2+S2

)

√
4d2 + S2

+
S tan−1

(

S√
4d2+S2

)

√
4d2 + S2



,

(49)

where L = Lx = Ly denotes the side of the device

having the smallest area, e.g., the TX/RX, S = Sx = Sy

denotes the side of the larger entity, i.e., the ROI, and d
represents the distance between their centers. Notably, such

a number approximates the rank of the channel matrix of the

considered link. Particularly, the geometric setup is favorable

for holographic imaging if it is close to K = min(NR, N),

i.e., N
(c)
DOF → K . This also hints that no regularization is

required to estimate γ if the channel matrices are full-rank.

Conversely, as the number of DoF diminishes (with the far-

field condition representing the most challenging scenario,

wherein N
(c)
DOF = 1), there is a substantial deterioration in the

imaging performance. In such cases, regularization is pivotal

in facilitating the resolution of the ill-posed ISP. Nevertheless,

3The PSNR, a commonly utilized metric in image processing, denotes the
ratio between the maximum attainable power of the generic pixel and the
power of the estimation noise influencing the fidelity of its representation
[35].

the imaging performance is influenced not only by N
(c)
DOF but

also by the complexity of the image. A rough estimate of

such complexity could be given by the number of the most

significant principal components, denoted as N
(i)
DOF, derived

using the principal component analysis (PCA) [76]. Through

simulations, we will explore the interplay between these two

quantities.

To investigate the impact of regularization on imaging per-

formance, we employ a TSVD approach with a fixed threshold

to retain only the first R eigenvalues of GR. Conversely, in

the case of the GT matrix, we adopt TSVD by retaining all

eigenvalues whose cumulative sum does not surpass 99% of

the total transmit power PT, being the illuminating channel

not subject to any noise enhancement.

B. Monostatic LOS Imaging Performance

Let us consider a monostatic LOS configuration as per

Fig. 1a, with the center of the TX/RX array set in

(0, 0, 0) m and the ROI center in (0, yROI, 0) m, with yROI ∈
{10, 15, 23} m. These distances correspond to different chan-

nel DoF, i.e., N
(c)
DOF ∈ {54, 26, 10}, evaluated as per (49).

In Fig. 3, the curves depicting the E-NMSE and T-NMSE

are presented for different values of the selected truncation

index R, with R ≤ K . In this setup, it is K = N = 64.

Let us analyze this figure from left to right, progressing

from a strong near-field to an almost far-field regime as the

link distance between the TX/RX and the ROI increases. Fig.

3-left corresponds to a specific scenario where regularization is

unnecessary due to the full-rank nature of the channel matrix

GR, resulting in good imaging performance (N
(c)
DOF = 54).

Similarly, as shown in Fig. 3-center, this geometric config-

uration still yields quite satisfactory imaging performance

even in the absence of regularization and/or optimization.

This outcome is attributed to the specific N
(i)
DOF of the image

evaluated through PCA as specified above. Indeed, for the L-

shaped image of Fig. 4-(top,left), N
(i)
DOF = 2, and hence, since

N
(c)
DOF ≫ N

(i)
DOF, regularization is unnecessary. Consequently,

for truncation indices R < N , a decline in performance

is observed for all the cases depicted through solid lines

due to intrinsic information loss. In fact, when performing

regularization, we are discarding GR elements that are in-

formative and contain valuable information for optimal ROI

image reconstruction. However, for R = N , some performance

enhancement can still be obtained, as shown for the A-OPT,

U-IP-OPT, and A-IP-OPT curves in both Fig. 3-left and Fig.

3-center. These improvements are mainly attributed to the

illumination optimization, as opposed to the NO-OPT case

(red curve and markers), which somehow allows us to obtain

improvements in the image reconstruction procedure. Finally,

Fig. 3-right depicts the results when the ROI is placed at

a larger distance. In this case, provided that the number of

channel’s DOF decreases (i.e., N
(c)
DOF → N

(i)
DOF), both regular-

ization and optimization play a crucial role in improving the

performance.

In fact, in this case, there is a trade-off between the joint

effect of the thermal noise and image distortion leading to

an optimal truncation index of R = 60. Considering this last
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Fig. 5: Estimated images (γ̂) in the NO REG-NO OPT and IP-OPT cases for the selected reference image. The first row refers

to the configuration yROI = 15m and R = 64, and the second one to the case yROI = 23m and R = 58. The reference image

has N
(i)
DOF = 4.
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Fig. 6: NMSE as a function of the truncation index R selected

for TSVD regularization for the monostatic setup and for

different κ values, i.e., κ = {2, 5, 100}. Two cases are shown,

namely NO REG-NO OPT and A-IP-OPT.

scenario and fixing R = 60, Fig. 4 displays the estimated

images, i.e., the γ̂ values, for the various optimization ap-

proaches. As anticipated, illumination design plays a pivotal

role in enhancing performance for this configuration, and the

proposed U-IP-OPT approach outperforms the others.

In Fig. 5, we assess the imaging performance using a differ-

ent reference image, characterized by an increased irregularity

and complexity, having N
(i)
DOF = 4. Specifically, we examine

the cases where yROI = 15m and yROI = 23m, selecting

R = 64 and R = 58 as the truncation indices corresponding

to the minimum NMSE values. The illustration includes the

worst-case scenario (NO REG-NO OPT) and the one yielding

improved reconstruction for this particular image, i.e., U-IP-

OPT. Remarkably, the scenario corresponding to y = 23m,

which provided satisfactory reconstructions in Fig. 4, yields

unsatisfactory results for this more complicated image having

a higher N
(i)
DOF. This underscores the fundamental interdepen-

dence between N
(c)
DOF and N

(i)
DOF. In particular, to reconstruct

highly complex images characterized by a high N
(i)
DOF, a

channel with a correspondingly high rank, and thus a large

N
(c)
DOF is essential, e.g., N

(c)
DOF = 26 as in Fig. 3-center.

C. Imaging Performance under Rician Fading Conditions

Given that, in realistic radio environments, additional scat-

tered paths coexist with the direct LOS component, we have

examined the monostatic setup under Rician fading conditions

for the TX/RX-ROI link of interest. In this specific scenario,

we have incorporated the effects of the Rician fading as

follows

y = GR ΓGT x+w , (50)

where

GT =

√

κT

κT + 1
GT +

√

1

κT + 1
ST , (51)



HOLOGRAPHIC IMAGING WITH XL-MIMO AND RIS: ILLUMINATION AND REFLECTION DESIGN 11

20 30 40 50 60
10−7

10−4

10−1

102

R

N
M

S
E

N
(c)
DOF = 26, yTX = 0m

NO REG-NO OPT

NO OPT

U-IP-OPT

A-OPT

A-IP-OPT

20 30 40 50 60
10−7

10−4

10−1

102

R
N

M
S

E

N
(c)
DOF = 5, yTX = 20m

NO REG-NO OPT

NO OPT

U-IP-OPT

A-OPT

A-IP-OPT

20 30 40 50 60
10−7

10−4

10−1

102

R

N
M

S
E

N
(c)
DOF = 4, yTX = 40m

NO REG-NO OPT

NO OPT

U-IP-OPT

A-OPT

A-IP-OPT

Fig. 7: NMSE as a function of the truncation index R selected when applying the TSVD to GR and different optimization

techniques for the bistatic LOS setup. In this case, the receiver is located at (0, 0,−2)m, while the transmitting device is placed

at (0,−yTX, 2)m and three different distances from the ROI are tested, namely yTX ∈ (0, 20, 40)m. Dotted (◦) and continuous

(−) lines correspond to the E-NMSE and T-NMSE, respectively, while the square markers denote the non-regularized case for

benchmarking. N
(c)
DOF refers to the illuminating channel GT.

with ST = {sT,n,i} ∈ CN×NT and sT,n,i ∼ CN (0, |gT,n,i|2).
Similarly, it is

GR =

√

κR

κR + 1
GR +

√

1

κR + 1
SR , (52)

with SR = {sR,r,n} ∈ CNR×N and sR,r,n ∼ CN (0, |gR,r,n|2).
Given the monostatic setup, we set the Ricean factor κT =
κR = κ ≥ 0 to be identical for the TX/RX-ROI link and the

reciprocal one. In Fig. 6, we reported the numerical results for

the monostatic setup, having the same geometrical parameters

as per Sec. VI-B and when the reference L-shaped image

of Fig. 4 has to be reconstructed. The center of the TX/RX

array is set in (0, 0, 0) m and the ROI center is located in

(0, 10, 0) m. We assumed κ ∈ {2, 5, 100} and, for each of

these values, we considered the NO REG-NO OPT and A-

IP-OPT cases. Notably, at lower values of κ, imaging perfor-

mance is significantly influenced by strong fading. However,

for κ = 100, improvements are more pronounced, despite not

achieving the same level of NMSE as depicted in Fig. 3-left

under LOS conditions. For instance, in the case of NO REG-

NO OPT for κ = 100, the NMSE reaches approximately 10−3,

whereas in Fig. 3-left, NMSE values around 10−7 are attained.

As intuitively predictable, fading strongly impacts the image

reconstruction process, given that our approach is tailored for

LOS conditions.

D. Imaging Performance for Randomly Generated Images

Dataset

To further generalize our findings, and hence mitigate

potential biases stemming from the specific reference image

chosen, we have conducted additional simulations mirroring

the configuration depicted in Fig. 3. This involved employing

a monostatic LOS setup with three distinct link distances

(yROI ∈ {10, 15, 23} m). In this additional analysis, we have

generated a diverse dataset of images for reconstruction, all

possessing the same DoF, that is, N
(i)
DOF = 4. Then, we exe-

cuted NMC Monte Carlo experiments wherein each experiment

utilized a different image from the dataset alongside a new

realization of AWGN. Consequently, at each iteration, the

illumination signal optimization was repeated to accommodate

the updated γ parameters corresponding to the current image.

For comparison, we also examined the scenario where a unique

reference image is utilized, mirroring the approach adopted

in Fig. 3. However, in this instance, the selected reference

image corresponds to the one illustrated in Fig. 5, maintaining

an equivalent number of degrees of freedom (N
(i)
DOF = 4) as

the images within the dataset. The findings of this study are

illustrated in Fig. 8, showcasing the standard deviation of the

NMSE, i.e., σ (NMSE), as a function of the truncation index R
for both the image dataset case (dashed lines) and the single

reference image case (continuous lines). The plot reveals a

clear trend: as the distance between the TX/RX and the ROI

expands, there is a corresponding increase in the standard

deviation across all depicted scenarios. Specifically, the blue

markers representing the case with no regularization and no

optimization (NO REG-NO OPT) exhibit substantial variabil-

ity, ranging from approximately 10−8 for y = 10m in Fig. 8-

left to around 101 for y = 23m in Fig. 8-right. This variability

underscores the significant error fluctuations observed when

transitioning from a strong near-field condition to the far-

field regime in the absence of regularization or illumination

optimization. Conversely, the scenarios in which illumination

optimization at the TX/RX is employed demonstrate minimal

variations as the link distance increases. This highlights the

crucial role of selecting the optimal ROI illumination for

ensuring high accuracy in the image reconstruction process

and mitigating estimation errors. Remarkably, disregarding

the case y = 10m, wherein the high rank of the channel

renders both regularization and optimization futile, for the

remaining two cases depicted in Fig. 8-center and 8-right,
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Fig. 8: Standard deviation of the NMSE as a function of the truncation index R selected when applying the TSVD to GR

and different optimization techniques for the monostatic LOS setup. The TX/RX XL-MIMO array is located at (0, 0, 0)m and

three distinct locations for the ROI are tested, namely yROI ∈ {10, 15, 23}m. The use of the random images dataset is indicated

by dashed lines (−−), while the use of a single reference image is denoted by solid lines (−).

it is distinctly observable how the standard deviation for

cases A-OPT and A-IP-OPT is markedly lower compared to

the non-optimized cases, hence highlighting the usefulness of

the proposed approaches. This is particularly evident for the

y = 15m scenario, corresponding to a favorable propagation

regime for our imaging purposes. Apart from this, for a fixed

link distance, when comparing the dataset scenario with the

utilization of a single image, it becomes evident that we

achieve nearly identical performance concerning σ (NMSE),
resulting in comparable —sometimes almost overlapping —

accuracy levels in the estimation process. The primary dispar-

ity lies in the enhanced stability of the curves associated with

the dataset employment, where the oscillations are slightly

reduced compared to the single image case. However, this

improvement comes at the expense of significantly height-

ened computational time (almost threefold) and complexity.

Consequently, a trade-off emerges between performance and

execution time. Therefore, it is clear that the fundamental

factor influencing the system’s ability to reconstruct a given

image more or less accurately is not so much associated with

the number of ROI’s images tested, but rather with the number

of DoF of the image itself that we can calculate through PCA.

E. Bistatic LOS Imaging Performance

We now assess the influence of the propagation regime

on the effectiveness of the proposed optimization techniques

for the illumination signal by considering a bistatic LOS

configuration. To this purpose, we locate the TX array center in

(0, yTX, 2) m, with yTX ∈ (0, 20, 40)m to test three distances

from the ROI, which corresponds to N
(c)
DOF ∈ {26, 5, 4}, with

N
(c)
DOF now referring to the TX-ROI link. The RX center was

placed in (0, 0, −2) m, as per Fig. 1b and corresponding to

N
(c)
DOF = 26 for GR. In this setup, the ROI was kept in a fixed

position centered in (0, 15, 0) m. In the following, we will

refer to the case where the transmitted image corresponds to

the L-shaped picture as in Fig. 4.

Fig. 7 illustrates the E-NMSE and T-NMSE as a function of

the truncation index R and the distance between the TX and

the ROI. In these three cases, the best performance is obtained

for the truncation index R = 64. As it can be noticed, when

moving from a strong near-field to almost far-field regime

(from left to right), the impact of the optimization of the

illuminating signal becomes decreasingly important because

of the reduced N
(c)
DOF of GT available for the optimization

process. This result indicates that the most critical channel for

imaging purposes is GR, whose DoF must be commensurate

with the complexity of the image and, hence, it must be in the

near-field. In contrast, imaging is still possible when the illu-

minating channel GT experiences the far-field. However, the

benefits of optimizing the illuminating signal are appreciable

only when GT is also in the near-field.

F. RIS-aided NLOS Imaging Performance

Finally, we analyze a monostatic NLOS scenario aided by

a RIS. Specifically, we considered the system geometry of

Fig. 2, where the XL-MIMO TX/RX is placed in (0, 0, 0) m,

the RIS is located in (0, yRIS, 0) m, with yRIS ∈ (4, 8, 15)m,

while the ROI’s center is positioned in (0, 0, −9.5) m. These

distances correspond to N
(c)
DOF,G2

∈ {25, 5, 2} for the TX-

RIS link, N
(c)
DOF,G1

∈ {3, 7, 13} for the RIS-ROI link, hence

resulting in N
(c)
DOF,G ∈ {3, 5, 2} for the cascade channel,

being N
(c)
DOF,G = min

(

N
(c)
DOF,G1

, N
(c)
DOF,G2

)

. In this setting,

we considered a ROI having the same size and L-shape

image as before but with N = 16 scattering points, resulting

in ∆ = 420λ. Moreover, three distinct RIS configurations

are tested: (i) matched, which corresponds to the optimal

configuration as per (47), (ii) PEC, i.e., the RIS acts like

a perfect reflecting mirror, (iii) random, according to which

independent random phase shifts are imposed at each RIS

element. Analyzing Fig. 9, it becomes evident that the matched

case yields superior performance compared to the other two
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Fig. 9: NMSE as a function of the truncation index R selected when applying the TSVD to GR and different optimization

techniques for the NLOS monostatic setup aided by a RIS. In this case, the TX/RX center is located at (0, 0, 0)m, while the

RIS is placed at (0, yRIS, 0) m with yRIS ∈ (4, 8, 15)m. The legend delineates distinct RIS configurations in each column,

arranged sequentially from left to right as matched, PEC, and random, respectively.

RIS configurations, hence enabling the attainment of NMSE

values several orders of magnitude smaller. This analysis

underscores the fundamental importance of configuring the

phase shift matrix Φ, governing the behavior of the signal

reflected by the RIS, to be perfectly adapted to wireless

channels interconnecting the TX/RX to the ROI. In particular,

as depicted in Fig. 9-left, the A-IP-OPT case, initialized with

the analytical solution found in Sec. IV and featuring the RIS

matched to both the incident (TX-RIS) and reflected (RIS-

ROI) channels, facilitates the attainment of good imaging per-

formance. Instead, no image reconstruction is possible when

considering other RIS configurations (i.e., PEC or random).

Regarding the channels DoF, N
(c)
DOF,G2

substantially de-

creases as the RIS approaches the far-field region, while

N
(c)
DOF,G1

progressively increases. This discrepancy arises be-

cause, in the former case, the TX-RIS link approaches the

far-field limit, where N
(c)
DOF,G2

= 1, whereas, in the latter

case, the RIS assumes a geometric configuration that enables

more frontal, rather than oblique, illumination of the ROI.

Consequently, it is evident that: (i) in Fig. 9-left, despite

the small N
(c)
DOF,G for the cascade channel, the joint impact

of the optimal illumination performed by the TX and the

RIS configuration tailored to the TX/RX-RIS and RIS-ROI

channels leads to exceptionally low NMSE values; (ii) as the

RIS moves away and approaches the far-field region, as shown

in Figs. 9-(center, right), optimizing the RIS illumination at

the TX no longer provides substantial benefits due to the

small N
(c)
DOF,G2

. Therefore, the RIS configuration plays a

primary role in achieving low NMSE values, which, when

matched, still allows for low errors in reconstructing the ROI

scene. Given these considerations, the TX/RX-RIS channel G2

emerges as the most critical component within the cascade

channel G, constituting the principal bottleneck for the NLOS

imaging problem. In summary, in this NLOS scenario, the

key factor for an effective imaging reconstruction lies in

optimizing the Φ matrix of the RIS to direct the reflected

EM beam accurately toward the ROI.

VII. CONCLUSION

We proposed a framework addressing the near-field imaging

problem of a given ROI in a XL-MIMO communication

scenario at millimeter-wave frequencies. Regularization tech-

niques were applied to overcome ill-conditioning of the ISP.

A min-max optimization approach was introduced to find a

suitable illumination waveform minimizing an upper bound of

the MSE on imaging estimation. Further, we derived the opti-

mal RIS configuration for handling NLOS imaging scenarios.

Numerical results demonstrated the feasibility of accurately

estimating the ROI scattering coefficients, emphasizing the

crucial interplay of factors like the DoF of the channels, system

geometry (monostatic and bistatic), illumination optimization,

RIS configuration, and image complexity.
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APPENDIX A

MSE DERIVATION

Assuming that the only random vector is z and by treating

γ as an unknown deterministic vector, we can derive a closed-

form expression of the MSE by starting from the covariance

matrix definition in (20), i.e.,

C = E

{

(

X̃−1 (H− I) X̃γ
)(

X̃−1 (H− I) X̃γ
)H
}

+ E

{

X̃−1 z
(

X̃−1 (H− I) X̃γ
)H
}

+ E

{

(

X̃−1 (H− I) X̃γ
)(

X̃−1 z
)H
}

+ E

{

X̃−1 z
(

X̃−1 z
)H
}

, (53)

where we recall that z = G̃
†
Rw = VΣ̃†UHw. By applying the

expectation only to the random vectors and being E {z} = 0,

E
{

wwH
}

= σ2 I and UUH = I, we obtain

C =
(

X̃−1 (H− I) X̃γ
)(

X̃−1 (H− I) X̃γ
)H

+ σ2 X̃−1VΣ̃†
(

Σ̃†
)H

VH
(

X̃−1
)H

. (54)

Let

q = X̃−1 (H− I) X̃γ (55)

=











(h11 − 1)γ1 +
∑

i6=1 x̃
−1
1 h1ix̃i γi

(h22 − 1)γ2 +
∑

i6=2 x̃
−1
2 h2ix̃i γi

...

(hNN − 1)γN +
∑

i6=N x̃−1
N hN,ix̃i γi











. (56)

Then

tr(qqH) =

N
∑

n=1

∣

∣(hn,n − 1)γn +

N
∑

i=1

i6=n

x̃−1
n hn,ix̃i γi

∣

∣

2
, (57)

where

hn,i = [H]ni =
[

VΛVH
]

ni
=

[

K
∑

k=1

ω−1
k vkv

H
k

]

ni

, (58)

with ω−1
k being the elements along the diagonal of Λ as

per (17), i.e, its eigenvalues, and vk = [v1k, v2k, . . . , vNk]
T

being the k-th eigenvector of V.

Let us now consider the second term in (54) related to the

receiver noise. We can express it as

N = σ2 X̃−1VΣ̃†
(

Σ̃†
)H

VH
(

X̃−1
)H

= σ2 X̃−1

(

K
∑

k=1

1

(ωk ξk)
2 · vkv

H
k

)

(

X̃−1
)H

, (59)

and its trace is given by

tr (N) =

N
∑

n=1

σ2

|x̃n|2

[

K
∑

k=1

1

(ωkξk)2
vkv

H
k

]

n,n

=

N
∑

n=1

σ2

|x̃n|2
K
∑

k=1

1

(ωkξk)2
|vn,k|2 . (60)

Finally,

MSE(x) = tr(C) = tr(qqH ) + tr(N), (61)

resulting in (21).

APPENDIX B

OPTIMIZATION OF THE ILLUMINATION TRANSMIT SIGNAL

In this appendix, we solve the minimization problem in

(27). To this end, we can write g(x) =
∑N

n=1
αn

bn
, where

bn = |x̃n|2 and αn , σ2
∑K

k=1 (ωk ξk)
−2 |vn,k|2. Moreover,

let us write x̃n as x̃n = gT,nx, where gT,n denotes the

n-th row of GT. Consequently, the sum
∑

n bn becomes
∑

n bn =
∑

n|x̃n|2 =
∑

n x̃nx̃
∗
n =

∑

n(gT,nx)(gT,nx)
H =

∑

n gT,nxx
HgH

T,n. Hence, the optimization problem becomes

b⋆n = argminimize
bn

g(bn) (62)

s.t.
∑

n

bn ≤ P , (63)

where P represents the upper bound of the term
∑

n|x̃n|2
given by P = PT ·∑n gT,ng

H
T,n.

By considering the Karush–Kuhn–Tucker (KKT) condi-

tions, the solution is given by

bn =
P
√
αn

∑

n

√
αn

, (64)

and it corresponds to the following MSE expression associated

to the noise presence only

MSE
opt
(noise) =

1

P

∣

∣

∣

∣

∣

∑

n

√
αn

∣

∣

∣

∣

∣

2

. (65)
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