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Abstract—Portable heart rate monitoring (HRM) systems
based on electrocardiograms (ECGs) have become increasingly
crucial for preventing lifestyle diseases. For such portable sys-
tems, minimizing power consumption and sampling rate is critical
due to the substantial data generated during long-term ECG
monitoring. The variable pulse-width finite rate of innovation
(VPW-FRI) framework provides an effective solution for low-
rate sampling and compression of ECG signals. We develop a
time-based sub-Nyquist sampling and reconstruction method for
ECG signals specifically designed for HRM applications. Our
approach harnesses the integrate-and-fire time-encoding machine
(IF-TEM) as a power-efficient, time-based, asynchronous sam-
pler, generating a sequence of time instants without the need
for a global clock. The ECG signal is represented as a linear
combination of VPW-FRI pulses, which is then subjected to
pre-filtering before being sampled by the IF-TEM sampler. A
compactly supported robust filter with a frequency-domain alias
cancellation condition is used to combat the effects of noise. Our
reconstruction process involves consecutive partial summations
of discrete representations of the input signal derived from
the series of time encodings, further enhancing the accuracy
of the reconstructed ECG signals. Additionally, we introduce
an IF-TEM sampling hardware system for ECG signals, im-
plemented using an analog filter device. The firing rate is 42-
80Hz, equivalent to approximately 0.025-0.05 of the Nyquist rate.
Our hardware validation bridges the gap between theory and
practice and demonstrates the robust performance and practical
applicability of our approach in accurately monitoring heart rates
and reconstructing ECG signals.

Index Terms—Analog-to-digital converter (ADC), Time-
encoding machine (TEM), ECG signal, time-based sampling,
integrate-and-fire, heart rate monitoring, sampling theory.

I. INTRODUCTION

Cardiovascular diseases represent a formidable global health
challenge, necessitating prompt detection and effective man-
agement of heart-related conditions [1], [2]. Electrocardiogram
(ECG) and heart rate monitoring (HRM) techniques play an
indispensable role in identifying and managing potentially
fatal cardiovascular indicators. Consequently, the development
of personalized and tailored HRM devices is of paramount
importance.

Current HRM methodologies, heavily reliant on contin-
uous ECG monitoring, face significant hurdles due to the
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Fig. 1. Example of standard ECG signal which is composed of five types of
pulses, labeled P, Q, R, S, T.

immense volume of data requiring processing, storage, and
transmission [3], [4]. Furthermore, portable ECG monitors
must handle power consumption constraints, as higher sam-
pling rates necessitate faster and more precise clocks during
analog-to-digital conversion, inevitably leading to increased
energy demands [5]–[7]. Addressing the limitations imposed
by traditional synchronous clock-based samplers is therefore
important. As a result, there is an urgent need for asyn-
chronous, power-efficient samplers and sub-Nyquist sampling
approaches capable of reducing power consumption and sam-
pling rates without compromising the signal accuracy of the
monitoring process, which are important for HRM.

Finite-rate-of-innovation (FRI) signals, commonly em-
ployed in time-of-flight applications like radar and ultrasound
imaging, offer a powerful framework for sub-Nyquist sampling
[8]. This approach, facilitated by tailor-made sampling kernels,
ADCs, and parameter estimation blocks, enables accurate
signal reconstruction at reduced sampling rates, thereby min-
imizing cost and power consumption. FRI theory showcases
the efficacy of sampling parametric signals, such as ECGs, at
rates equal to or higher than their innovation rate, ensuring
precise capture of essential signal features [8]–[11].

Sub-Nyquist FRI sampling techniques have been extensively
studied for ECG signals. However, the use of fixed pulse width
models faces challenges due to the varying shapes of ECG
pulses. ECG signals consist of five distinct pulse types (see
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Fig. 1), each corresponding to specific events in the cardiac
cycle. Recent research has focused on alternative models,
such as asymmetric pulses based on Gaussian, wavelet, or
Lorentzian functions, aimed at reducing model mismatch error
[12]–[16].

A variable-pulse-width (VPW) FRI model, introduced by
Baechler et al. [17], offers enhanced flexibility by incorpo-
rating pulse width and asymmetry parameters. However, the
VPW-FRI model exhibits instability in noisy environments.
Huang et al. [18] attempted to improve the VPW-FRI using
Particle Swarm Optimization (PSO), but encountered high
time complexity in the reconstruction algorithm. In a subse-
quent study, Huang et al. [19] proposed an extension to the
VPW-FRI model, employing signal differentiation to reduce
model mismatch error for ECG signals. Nevertheless, this
differentiation-based method compromises noise resistance.
Additionally, the sampling rate of this method is (R+1) times
the minimal theoretical sampling rate, where R is the highest
order of the derivative, as it necessitates more parameters than
the conventional VPW-FRI approach, potentially limiting its
efficiency.

The aforementioned techniques all utilize clock-based sam-
plers. Time-encoding ADCs, which are asynchronous sam-
plers, present a unique and promising approach by encoding
time intervals between events and directly converting them
into digital signals. This method not only simplifies the ADC’s
design but also reduces power consumption and can minimize
the required number of bits while ensuring accurate signal
recovery [20]. The Integrate-and-Fire Time Encoding Machine
(IF-TEM) is a time-based asynchronous sampler that elimi-
nates the need for a global clock [21]. Its operation involves
integrating an analog signal and comparing it with a threshold.
Whenever the threshold is crossed, the time instances are
recorded, effectively encoding the information contained in
the analog signal [21]. The IF-TEM’s ADC is specifically de-
signed to be low-power, compact, and high-resolution, making
it well-suited for continuous, ambulatory long-term monitoring
applications [22], [23]. Sampling and perfect reconstruction of
signals from TEM outputs have been extensively studied in the
literature [20]–[22], [24]–[30]. The authors in [23] proposed
a low-power hardware implementation of IF-TEM suitable
for ultra-low power body sensors. However, their approach
maintains the sampling rate at least at the Nyquist rate, limiting
the potential power savings. To address this limitation, the
authors in [22], [30] leveraged the sparse signal structure
inherent in ECG signals, successfully reducing the IF-TEM
sampling rate by a factor of four compared to the Nyquist
rate. Nonetheless, their approach focuses only on detecting
the middle part of each heartbeat, namely the QRS complex.

In this paper, we present a robust time-based sub-Nyquist
sampling and recovery algorithm for analog ECG signals using
the IF-TEM ADC. Our approach uses a sampling kernel with
enhanced noise resilience and applying a frequency-domain
signal reconstruction method based on [9], [26], [31]. We
validate our method by applying it to heart rate monitoring
(HRM) calculations based on the recovered ECG signal. The
results demonstrate high accuracy compared to known HRM
evaluations obtained using synchronous ADCs and compared

Fig. 2. Time encoding machine with spike trigger reset. The input is biased by
b, scaled by κ, and integrated. A time instant is recorded when the threshold
δ is reached, after which the value of the integrator resets.

to existing methods [17], [19]. Specifically, our considered
sampling rate is only twice higher than the minimal theoretical
rate proposed by [17], and 66.66 times less than the Nyquist
rate of 2000 Hz for synchronous ADCs [32]. Our study
exhibits superior precision for HRM due to enhanced ECG
reconstruction compared to the techniques proposed by [17],
[19], as evidenced by various statistical metrics.

To bridge the gap between theory and practice, we de-
veloped an IF-TEM ADC, providing a hardware validation
of time-based sub-Nyquist sampling and reconstruction of
noisy ECG signals at only twice the minimal theoretical
rate. Our IF-TEM ADC differs from the one presented in
[33] by incorporating a different filter necessary for ECG
reconstruction and a distinct integrator implementation. Our
algorithm and hardware successfully monitor and recover ECG
signals while operating at significantly lower rates (20-40
times) than the Nyquist rate. The hardware experiments using
our IF-TEM sampler demonstrate the empirical robustness of
our method in a realistic, noisy setting, thereby validating its
practical utility.

This paper is organized as follows. In Section II we review
IF-TEM, followed by the problem formulation. Section III
presents our main result for robust sampling and recovery of
ECG signals from the IF-TEM measurements and simulation
results. Our hardware prototype is demonstrated in Section V.
Concluding remarks are presented in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Time Encoding Machine

IF-TEM is an asynchronous ADC that operates by encoding
the input analog signal into a sequence of time instants or
firing times. As illustrated in Fig. 2 and described in [34],
the IF-TEM takes a bounded analog signal y(t) as input,
where |y(t)| ≤ c for some positive constant c. The IF-TEM
is characterized by three positive real-valued parameters: b, κ,
and δ. The input signal y(t) is first offset by a bias value b,
where b > c, ensuring that the biased signal y(t)+b is strictly
positive. This biased signal is then integrated and scaled by a
factor κ. Whenever the integrated and scaled signal reaches a
predetermined threshold δ, the corresponding time instant tn
is recorded, and the integrator is reset to zero. This process
repeats, with the IF-TEM capturing the next time instant tn+1

such that the integral of the biased and scaled input signal over
the interval [tn, tn+1] equals the threshold δ, as expressed by

1

κ

∫ tn+1

tn

(y(s) + b) ds = δ. (1)
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Fig. 3. Illustration showcasing ECG signal decomposition into VPW-FRI asymmetric pulses: (a) a single pulse cycle of one second, (b) its division into five
distinct asymmetric VPW-FRI pulses; (c) the reconstructed ECG signal is achieved through the summation of the five pulses.

The time encodings tn, n ∈ Z obtained from the IF-TEM con-
stitute a discrete representation of the continuous-time analog
input signal y(t). The objective is to reconstruct the original
analog signal y(t) from these time encodings. Typically, the
reconstruction process involves utilizing an alternative discrete
representation {yn, n ∈ Z}, defined as [26], [29], [34]–[36]:

yn ≜
∫ tn+1

tn

y(s) ds = −b(tn+1 − tn) + κδ. (2)

These measurements {yn, n ∈ Z} are derived from the time
encodings {tn, n ∈ Z} and the IF-TEM parameters {b, κ, δ}.

While the reconstruction methods vary for different signal
classes, perfect recovery of any signal requires that the firing
rate, determined by the time encodings, satisfies a lower bound
that depends on the degrees of freedom of the signal [34].
Notably, the firing rate of an IF-TEM is bounded both from
above and below, with the bounds being functions of the IF-
TEM parameters and an upper bound on the signal amplitude.
By leveraging (2) and the fact that |y(t)| ≤ c, it can be shown
that for any two consecutive time instances [34]:

κδ

b+ c
≤ tn+1 − tn ≤

κδ

b− c
. (3)

Fig. 4. IF-TEM Sampling: Continuous-time ECG signal x(t) is filtered
through a sampling kernel g(t) and then sampled using an IF-TEM to generate
time-instants {tn} from which the ECG signal is recovered.

B. Problem Formulation

As illustrated in Fig. 1, an ECG signal is composed of a
series of pulses, which aligns with the concept of a pulse
train signal. Pulse train signals fall within the category of FRI
signals. This presents an opportunity to employ the principles
of FRI sampling theory for sub-Nyquist sampling of ECG
signals. Compliant with FRI theory, an ECG signal lends
itself to representation through a weighted combination of
pulse functions. These functions directly correspond to the
characteristic forms of the P, Q, R, S, and T waves embedded

within the ECG waveform; each corresponds to a specific
event within the cardiac cycle [37]. In Fig. 3, we provide
an illustration depicting the decomposition of an ECG signal
using five VPW-FRI asymmetric pulses.

We consider an ECG signal which is presented by a T -
periodic VPW-FRI signal of the form [17]:

x(t) =

K−1∑
k=0

xk(t), where, xk(t) = xs
k(t) + xa

k(t), (4)

xs
k(t) = ck

∑
p∈Z

rk

π
(
r2k + (t− Tk − pT )

2
) , (5)

xa
k(t) = dk

∑
p∈Z

t− Tk − pT

π
(
r2k + (t− Tk − pT )

2
) . (6)

In this model, each VPW-FRI pulse xk(t) is characterized by
four parameters: ck (symmetric amplitude), dk (asymmetric
amplitude), rk (pulse width), and Tk (temporal delay). The
signal components xs

k(t) and xa
k(t) represent the symmetric

and asymmetric parts of the pulse, respectively. Theoretically,
an ECG signal can be represented using the VPW-FRI model
with K = 5 pulses, corresponding to the five characteristic
waveforms. VPW-FRI pulses can be seen as an extension
of the FRI model. By allowing the asymmetrical amplitude
parameter dk to be zero and taking the limit of xk(t) as the
pulse width rk approaches zero, the result is equivalent to a
Dirac delta with an amplitude of ck at the time delay Tk.

To sample x(t) at a sub-Nyquist rate, we first pass it through
a designed sampling kernel g(t) and then measure low-rate
samples of the filtered signal y(t) using an IF-TEM ADC [33].
The sampling kernel g(t) should be designed such that the
VPW-FRI parameters {Tk, rk, ck, dk}K−1

k=0 can be accurately
computed from the IF-TEM samples, as depicted in Fig. 2.
In particular, it has been shown that using a classical clock-
based uniform sampler, 4K samples of x(t) in an interval T
are sufficient to determine {Tk, rk, ck, dk}K−1

k=0 uniquely [17].
The problem at hand is the perfect recovery of the ECG
signal’s VPW-FRI parameters {Tk, rk, ck, dk}K−1

k=0 using an
IF-TEM sampling scheme, as shown in Fig. 4. Specifically,
we aim to design the sampling kernel g(t) and the IF-
TEM parameters b, κ, δ such that the VPW-FRI parameters
are uniquely determined from the time-encodings obtained
from the IF-TEM. Additionally, we develop a reconstruction
algorithm capable of accurately recovering the ECG signal
based on the time-encoded measurements.
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III. ECG-TEM: SAMPLING AND PERFECT RECOVERY OF
VPW-FRI SIGNALS FROM IF-TEM MEASUREMENTS

In this section, we introduce a method to perfectly recover
VPW-FRI signals, which model ECG signals, from measure-
ments obtained using the IF-TEM. We leverage the fact that
the ECG signal x(t) in (4) can be perfectly reconstructed
from its 4K Fourier series coefficients (FSCs) [17]. We derive
conditions on the IF-TEM parameters and the sampling kernel
g(t) such that the 4K FSCs of the input VPW-FRI signal are
uniquely recovered from the IF-TEM output.

A. Fourier-Series Representation of VPW-FRI Signals

We begin by explicitly relating the ECG input signal x(t)
of (4) to its FSCs following [17].

Given that x(t) =
∑K−1

k=0 xk(t) in (4) forms a signal with
a periodicity of T (each xk(t) has period T ), it has a Fourier
series representation

x(t) =
∑
m∈Z

X[m]ejkω0t, (7)

where ω0 = 2π
T . The Fourier-series coefficients X[m] are

given by

X[m] =

K∑
k=1

Xs
k[m] +Xa

k [m]

=

K∑
k=1

ck − jdksgn(m)

T
e−2π(rk|m|+jTkm)/T ,

(8)

where,
Xs

k[m] =
ck
T
e−2π(rk|m|+jTkm)/T , (9)

represents the symmetric component, and

Xa
k [m] = −jdk

T
sgn(m)e−2π(rk|m|+jTkm)/T , (10)

represents the anti-symmetric component of the FSCs. Since
x(t) is real-valued, its FSCs X[m] are complex conjugate
pairs, that is,

X∗[−m] = X[m]. (11)

According to [17], [19], only the positive indices m ≥ 0 are
considered for the VPW-FRI spectrum. This restriction arises
due to the presence of a cusp at m = 0, which prevents
the annihilation of both positive and negative spectrum values
owing to the decaying nature of the VPW spectrum.

The sequence outlined in (8) represents a spectral estima-
tion problem. The parameters {uk, vk}Kk=1 can be uniquely
estimated employing high-resolution spectral estimation theory
[38]. A well-established technique like the annihilating filter
(AF) method [9] can be utilized to compute {uk, vk}Kk=1. A
series of 2K consecutive values of X[m] needs to be computed
to determine these parameters.

In the context of the VPW-FRI framework, if the number K
of VPW-FRI pulses is known, the 4K unknown parameters in
(4), denoted as {ck, dk, rk, Tk}Kk=1, can be estimated through
a parameter estimation algorithm that aligns with the FSCs
of the ECG signal. Consequently, our task is reduced to the

distinct determination of the desired number of FSCs from
the signal measurements. Given that x(t) typically comprises
a substantial number of FSCs, we discuss next a sampling
kernel design that removes unnecessary FSCs and thus reduces
the sampling rate.

B. Sampling Kernel

Since a minimum of 4K FSCs are sufficient for uniquely re-
covering the ECG signal, the sampling kernel g(t) is designed
to remove or annihilate any additional FSCs. The filtered
signal y(t) is given by [26]

y(t) = (x ∗ g)(t) =
∫ ∞

−∞
x(τ)g(t− τ)dτ

=
∑
m∈Z

X[m]

∫ ∞

−∞
g(t− τ)ejmω0τdτ

=
∑
m∈Z

X[m] ĝ(mωo) e
jmω0t.

(12)

Following the approach proposed in [26], [33], we define the
sampling kernel g(t) to exclude the zeroth Fourier coefficient
(DC component) of the filtered signal y(t), leading to a robust
reconstruction process. The kernel is designed to satisfy the
following condition in the Fourier domain:

ĝ(mω0) =

{
1 if m ∈M,

0 otherwise,
(13)

where
M = {−M, · · · ,−1, 1, · · · ,M}. (14)

Here, M is a set of integers such that |M| ≥ 4K, ensuring
that at least 4K FSCs are preserved for unique recovery of the
VPW-FRI parameters. Sampling kernels that fulfill the criteria
outlined in (13) include the sinc function as discussed in [9],
exponential and polynomial reproducing kernels as explored
in [39], sum-of-modulated spline kernels as described in [40],
sum-of-sincs (SoS) kernel as presented in [31] and more.

Note that an ideal lowpass filter with an appropriate cutoff
frequency can also be applied to remove the FSCs. Following
the kernel design in (13), the filtered signal y(t) takes the
form:

y(t) =
∑

m∈M
X[m]ĝ(mω0)e

jmω0t =
∑

m∈M
X[m]ejmω0t.

(15)
The filtered signal y(t) is sampled by an IF-TEM, which
requires its input to be real-valued and bounded. The bound-
edness of y(t) is established in Appendix A.

C. ECG-TEM Sampling and Recovery Guarantees

The IF-TEM input is the filtered signal y(t), which is the
T -periodic signal defined in (15). The output of the IF-TEM is
a set of time instants {tn}n∈Z. Given {tn} one can determine
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the measurements {yn} by using (2). The relation between the
measurements yn and the desired FSCs is given by

yn =

∫ tn+1

tn

y(t) dt

=

∫ tn+1

tn

∑
m∈M

X[m]ejkω0tdt

=
∑

m∈M
X[m]

(
ejmω0tn+1 − ejmω0tn

)
jmω0

.

(16)

Partial summation of IF-TEM measurements is utilized to
enhance the robustness of signal reconstruction, as shown by
[33], which proves more effective than directly using the raw
IF-TEM measurements. The partial sums of the measurements
yn are defined as

zn =

n−1∑
i=1

yi =
∑

m∈M

X[m]

jmω0

(
ejmω0tn − ejmω0t1

)
, (17)

where n = 2, · · · , N . Note that (17) can be alternatively
expressed as

zn =
∑

m∈M

X[m]

jmω0
ejmω0tn + c, (18)

where
c = −

∑
m∈M

X[m]

jmω0
ejmω0t1 . (19)

Let z = [z2, · · · , zN ]T ∈ RN−1 denote the the vector of partial
sums, and let ẑ be the vector of FSCs, with c in the zeroth
place:

ẑ =

[
−X[−M ]

jMω0
, · · · ,−X[−1]

jω0
, c ,

X[1]

jω0
, · · · , X[M ]

jMω0

]⊤
.

(20)
Define B ∈ C(N−1)×(2M+1) as the matrix

B =


e−jMω0t2 · · · 1 · · · ejMω0t2

e−jMω0t3 · · · 1 · · · ejMω0t3

...
. . .

...
e−jMω0tN · · · 1 · · · ejMω0tN

. (21)

Then, (18) can be expressed in matrix form as follows:

z = B ẑ. (22)

In [33], it is established that, given the set of distinct time
instants {tn}Nn=2 and the Vandermonde structure of the matrix
B, the condition N − 1 ≥ 2M + 1 ensures that B has
full column rank. Consequently, B is left-invertible, enabling
perfect reconstruction of the FSCs vector ẑ via

ẑ = B† z, (23)

where B† =
(
B⊤B

)−1
B⊤ denotes the Moore-Penrose in-

verse of B. Once ẑ is obtained, the FSCs x̂[k] are uniquely
determined. Using the relation

ẑ[m] =

{X[m]
jω0m

, if m ∈M ,

−
∑

m′∈M

(
X[m′]
jm′ω0

)
ejkm

′ω0t1 if m = 0 ,
(24)

we have the vector of FSCs x̂:

x̂ = [ẑ[−M ], · · · , ẑ[−1], ẑ[1], · · · , ẑ[M ]]
⊤ ∈ C2M . (25)

By employing the vector ẑ and the relation in (25), the
vector of FSCs x̂ is uniquely determined. This indicates that,
within the modified kernel configuration and in the absence
of the zero frequency, the set of FSCs x̂[k] can be uniquely
determined from the time encodings if N − 1 ≥ 2M + 1.
This requirement implies a minimum of 2M+2 firing instants
within the interval T .

We next show that for the sampling kernel choice (13), we
can uniquely identify an ECG signal described as a VPW-
FRI signal, from the IF-TEM time instances. Our results are
summarized in the following theorem.

Theorem 1. Let x(t) be an ECG signal, described by a T -
periodic VPW-FRI model of the form x(t) =

∑K−1
k=0 xk(t),

as defined in (4). Consider the sampling mechanism shown in
Fig. 4. Let the sampling kernel g(t) satisfy

ĝ(mω0) =

{
1 if m ∈M = {−M, · · · ,−1, 1, · · · ,M},
0 otherwise.

Choose the real positive TEM parameters {b, κ, δ} such that
c < b <∞, and

b− c

κδ
≥ 8K + 2

T
. (26)

Then, the ECG parameters {Tk, rk, ck, dk}K−1
k=0 can be per-

fectly recovered from the IF-TEM outputs if M ≥ 4K.

Proof. Consider a positive integer K and a number T > 0. Let
0 ≤ t1 < t2 < · · · < tN < T for an integer N , and ω0 = 2π

T .
The IF-TEM input is the filtered signal y(t), which is the T -
periodic signal defined in (15). The output of the IF-TEM is a
set of time instances {tn}n∈Z. Given {tn} one can determine
the measurements {yn} by using (2). The relation between the
measurements yn, their partial sum, and the desired FSCs are
defined in (16) and (17), respectively. The Fourier coefficients
{X[m]}m∈M are uniquely determined using (23) and (25),
provided that there are at least N ≥ 2M + 2 time instances
{tn}Nn=1 in an interval T , where M should be at least the
number of degrees of freedom of the signal x(t). This implies
that M ≥ 4K and there should be a minimum of 8K + 2 IF-
TEM time instances within an interval of T to enable recovery
of the FSCs and subsequent reconstruction of the VPW-FRI
signal. To ensure this, the IF-TEM parameters are chosen such
that

b− c

κδ
≥ 8K + 2

T
. (27)

After computing the FSCs X[m]m∈M from (25), using (8),
we have:

X[m] =

K∑
k=1

ck − jdk
T

e−2π((rk+jTk)m)/T

=

K∑
k=1

vku
m
k m ∈M,

(28)

where vk = ck−jdk

T and uk = e(−2π(rk+jTk))/T . The re-
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construction of the parameters {ck, dk, rk, Tk}Kk=1 becomes a
spectrum estimation problem. In the absence of noise, Prony’s
method can be employed for perfect parameter estimation
when M ≥ 4K. Prony’s method involves constructing the
unique annihilating filter for the FSCs.

The unique annihilating filter A(z) for the revised FSCs
X[m] in (8) is given by:

A(z) =

K∑
k=0

A[k]z−k =

K−1∏
k=0

(1− ukz
−1). (29)

The convolution of A(z) with X[m] satisfies:

(A ∗X)[m] =

K∑
l=0

X[m− l]

=

K−1∑
k=0

(ck − jdk)

(
K∑
l=0

A[l]u−l
k

)
um
k = 0.

(30)

Given the roots {uk}K−1
k=0 of the annihilating filter A(z), the

delays Tk can be computed using Tk = −T∠uk

2π , and the
widths rk can be computed as rk = T log |uk|

2π . Finally, the
parameters ck and dk are then retrieved by solving (28), with
ck = T Re(vk) and dk = T Im(vk), completing the proof.

Based on Theorem 1, a reconstruction algorithm to compute
the VPW-FRI parameters from IF-TEM firings is presented in
Algorithm 1.

Algorithm 1 Reconstruction of an ECG signal using an IF-
TEM sampler

Input: N ≥ 8K + 2 spike times {tn}Nn=1 in a period T .
1: n← 1
2: while n ≤ N − 1 do
3: Compute yn = −b(tn+ 1− tn) + κδ
4: n← n+ 1
5: end while
6: Compute z = [z2, · · · , zN ]T ∈ RN−1 using (17)
7: Compute B using (21)
8: Compute the Fourier coefficients vector ẑ = B†z
9: Compute the Fourier coefficients vector

x̂ = [ẑ[−M ], · · · , ẑ[−1], ẑ[1], · · · , ẑ[M ]]⊤ ∈ C2M

using (25)
10: Construct the unique annihilating filter A for the FSCs

X[m], m ∈M using (29)
11: Denoise the Fourier coefficients vector x̂ (see Section

III-E)
12: Compute the roots uk = e(−2π(rk+jTk))/T of the annihi-

lating filter A(z) using (30)
13: Compute Tk = −T∠uk

2π

14: Compute rk = T log |uk|
2π

15: Compute vk = ck−jdk

T by solving linearly (28) with uk

16: Compute the amplitudes ck = T Re(vk)
17: Compute the amplitudes dk = T Im(vk)
18: return {Tk, rk, ck, dk}K−1

k=0

Output: {Tk, rk, ck, dk}K−1
k=0

Fig. 5. Comparison of denoising approaches for estimating the location of
VPW-FRI pulses. The estimation procedure utilizes 10 Fourier coefficients,
with results averaged over 5,000 repetitions. For the single VPW-FRI pulse
case, the Cramér-Rao bound on location estimation variance is plotted (dashed
line).

D. IF-TEM Parameter Selection

The IF-TEM parameters are selected such that there is a
minimum of N ≥ 2M+2 time instants {tn}Nn=1 within a time
interval T , where M ≥ 4K. Thus, the minimum firing rate
that enables accurate reconstruction is 8K+2

T . The maximum
firing rate is bounded by b+c

κδ . While the threshold δ, which is a
parameter of the comparator, is easier to control, the integrator
constant κ is a parameter of the integrator, and it is usually
fixed. Thus, assuming a fixed value of b and κ, choosing small
δ results in a large firing rate above the minimum desirable
value of 8K+2

T . In practice, both b and δ are generated through
a DC voltage source, and therefore large values of bias and
threshold require high power. Hence, to minimize the power
requirements, it is desirable for b and δ to be as small as
possible.

E. Denoisers

In practical scenarios, the acquired signals are often cor-
rupted by noise during the measurement process. Even if
the reconstruction model is accurate, the acquisition devices
themselves introduce noise, degrading signal quality. This
highlights the importance of incorporating a denoising step to
mitigate the effects of noise on the FSCs before estimating the
ECG signal parameters. We assume an additive white Gaussian
noise (AWGN) model with zero mean and independent and
identically distributed (i.i.d.) samples. Moreover, we consider
the noise to be introduced after the IF-TEM sampler acquisi-
tion stage.

Assume that AWGN is present. The Fourier series coeffi-
cients X[m] can then be expressed as:

X̃[m] = X[m] + ζ[m], (31)
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where ζ[m] represents the FSCs of the AWGN. Thus, the FSCs
X[m] contain a noise component, resulting in the annihilating
filter condition in (30) no longer being strictly satisfied:

(A ∗ x̃)[m] ≈ 0, (32)

where A(z) is the annihilating filter for the noise-free FSCs
x̂.

To minimize the approximation error in (32), a higher
sampling rate is necessary to obtain more Fourier coefficients
and construct a larger Toeplitz matrix for estimating the pa-
rameters uk [10]. Additionally, applying denoising techniques
to the observed FSCs x̃ can improve the accuracy of the
reconstruction by reducing noise interference.

Several denoising techniques have been considered for the
task of recovering the parameters of the VPW-FRI pulses from
noisy measurements, as illustrated in Fig. 5. One widely used
method is the Cadzow denoiser [41]. The annihilating filter
condition in (30) can be expressed in matrix form as:

Sh = 0, (33)

where S is a rank-deficient Toeplitz matrix formed from
consecutive values of the noisy DFT coefficients x̃, and h is
a vector containing the (K+1) annihilating filter coefficients.
The Cadzow algorithm is an iterative method that alternates
between enforcing a rank of K (the number of VPW-FRI
pulses) and a Toeplitz structure on the noisy matrix S̃. The
low-rank approximation is achieved through the singular value
decomposition (SVD) of S̃, retaining only its K largest
singular values. To maintain the Toeplitz structure, diagonal
averaging is employed.

Another technique is the matrix pencil method [42], also
known as ESPRIT [43], which exploits the rotational invari-
ance of the signal subspace and is non-iterative. Due to its
non-iterative nature, the matrix pencil method can be applied
sequentially after Cadzow denoising. Additionally, Pisarenko’s
method [44] is considered. This technique estimates the anni-
hilating filter by extracting the last column of the matrix V ob-
tained from the SVD of the noisy Toeplitz matrix S̃ = UΛV∗.
The last columns of V form an orthogonal basis for the
nullspace of S̃, and in this case, the nullspace of the original
Toeplitz matrix S is one-dimensional. Pisarenko’s method or
the matrix pencil method can be employed sequentially after
applying the Cadzow denoiser.

The final method examined is the Pan denoiser, inspired by
IQML [45]. The annihilating filter h is derived iteratively by
solving the following minimization problem:

min
x̂,h

∣∣∣f̃ − Lx̂
∣∣∣2
2
, (34)

subject to h∗x̂ = 0, where L is a linear transformation
that maps the annihilatable signal to the measurements, and
h contains the (K + 1) annihilating filter coefficients. In
the case of VPW-FRI with uniform sampling, L transforms
the denoised DFT (Discrete Fourier Transform) coefficients
x̂ (corresponding to positive frequencies) to the discrete-
time noisy measured signal f̃ . When employing an IF-TEM
sampler, the denoising process is performed in the frequency
domain on the noisy FSCs X̃[m]. Unlike Pan denoiser ap-

Fig. 6. Reconstruction results of a single ECG pulse from [32]. Reconstruc-
tion is performed using 82 samples for each approach.

proach which directly denoise the signal measurements, the
IF-TEM approach only provides access to time measurements
rather than the signal samples themselves. Therefore, we adapt
a similar concept to the Pan denoiser technique, but instead
of denoising the noisy signal measurements directly, we focus
on denoising the noisy Fourier coefficients X̃[m] iteratively.

In Fig. 5, a comparison of different denoising methods’ per-
formance is presented for the VPW-FRI pulse under varying
noise levels. The matrix pencil and Cadzow approaches exhibit
similar performance characteristics. Notably, Pan’s technique
outperforms all the other methods by a substantial margin.
Additionally, the Cramer-Rao bound (CRB), which provides a
theoretical lower limit on the best achievable performance by
any unbiased estimator, derived in [17], is displayed. Based
on our evaluations, we opted for the Pan denoiser due to its
compelling performance improvements and direct application
to measured signals.

IV. SIMULATIONS AND HRM APPLICATION

This section evaluates the performance of the proposed
ECG-TEM approach for both ECG signal reconstruction
and HRM. It compares it with existing uniform sampling
techniques, namely the VPW-FRI method by [17] and the
Differential VPW-FRI method by [19]. The evaluation is per-
formed using real ECG recordings from 30 subjects obtained
from the dataset provided by [32]. Specifically, the resting
scenario described in [32] is considered, where participants
were lying on a table connected to several monitoring devices
and instructed to breathe calmly and avoid large movements
for at least 10 minutes.

The ECG signals are modeled as VPW-FRI pulses using the
model in (4), with K = 10, as suggested by [17] and [19].
Fig. 6 shows an example of a single ECG pulse reconstruction,
demonstrating the effectiveness of the proposed approach. As
presented in Table 1, the ECG-TEM method provides the best
reconstruction quality in terms of Root-Mean-Square Error
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(a)

(b)

Fig. 7. IF-TEM sampling and reconstruction example. (a): Sampling mech-
anism of a single filtered ECG pulse by IF-TEM. (b): Reconstructed ECG
signal.

TABLE I
HR RMSE ACCURACY

Method RMSE
ECG-TEM 0.005
VPW-FRI [17] 0.029
Differential VPW-FRI [19] 0.14

(RMSE) compared to [17] and [19]. Fig. 7 illustrates the sam-
pling and reconstruction process using the IF-TEM for an ECG
signal. Subplot (a) depicts the sampling mechanism of a single
filtered ECG pulse by the IF-TEM sampler, which generates a
sequence of time instants representing the signal. Subplot (b)
shows the reconstructed ECG signal obtained from the time
instants produced by the IF-TEM sampler, demonstrating the
capability of the proposed method to accurately recover the
ECG signal.

Fig. 8 depicts the ECG reconstruction for the first 4 seconds
of the resting mode of record GDN0021 from the database
[32]. Each patient in the dataset has 10 minutes of respiratory
data, sampled at a standard 60 bpm with a 1Hz heart rate
and 2000 samples per second. The selected signals were
all sampled in the ”rested” position. Subplot (a) shows the

Fig. 8. ECG signal reconstruction over a duration of four seconds: (a)
Original ECG signal; (b) VPW-FRI reconstruction with 5 pulses per heartbeat
(15 parameters/sec, K = 10); (c) Differential VPW-FRI reconstruction
with 5 pulses per heartbeat (15 parameters/sec, K = 10); (d) ECG-
TEM reconstruction with 5 pulses per heartbeat (15 parameters/sec, TEM
parameters: b = 0.78, δ = 0.99, and κ = 0.018, K = 10).

original ECG signal, while subplots (b), (c), and (d) display
the reconstructions obtained using different sampling and
reconstruction methods: (b) VPW-FRI estimation with 5 pulses
per heartbeat, employing uniform sampling. (c) Differentiated
VPW-FRI estimation, also employing uniform sampling. (d)
ECG-TEM estimation, employing the proposed IF-TEM non-
uniform sampling approach. The parameter K, representing
the number of pulses in the signal model, is set to 9 for
all methods. The IF-TEM parameters used are b = 0.78,
δ = 0.99, and κ = 0.018. Examining the results, it is evident
that the ECG-TEM estimation in subplot (d) provides the most
accurate reconstruction, closely matching the original ECG
signal. The differentiated VPW-FRI estimation, shown in sub-
plot (c), captures the overall shape reasonably well; however,
it exhibits some inaccuracies in the amplitude, particularly in
the R-peak region, which is crucial for HRM applications.

The reconstructed ECG signal is utilized to perform HRM,
which is an application calculated from the R-peaks of the
reconstructed ECG signal. The HRM results are compared to
the HR calculated from a known synchronously sampled ECG
signal at 2000 Hz [32], which serves as the ground truth (GT)
reference. To conduct HRM, we sample the ECG signal using
the ECG-TEM approach and then recover it. Subsequently,
every half a second, an FFT-based peak selection [46]–[50] is
applied to the R-peaks obtained from the last 40 seconds of the
reconstructed signal, based on the resting heartbeat frequency
range. With these settings for 10-minute monitoring, 450 HR
data points are obtained for each participant, which are then
compared to the GT. Fig. 9 demonstrates that the proposed
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(a) VPW-FRI (b) Diff. VPW-FRI

(c) ECG-TEM

Fig. 9. HR monitoring performance for SNR = 2 [dB] (a): VPW-FRI [17].
(b): Differentiated VPW-FRI. (c) ECG-TEM. [19].

HRM method using IF-TEM exhibits a close resemblance to
the reference ECG, outperforming other techniques.

To evaluate the quality of the estimates, the following
statistical metrics are used: 1. Success rate, defined as the
percentage of time when the HR estimate differs from the
reference output by less than 2 beats per minute (b.p.m.),
2. Pearson Correlation Coefficient (PCC), 3. Mean-Absolute
Error (MAE), and 4. Root Mean Square Error(RMSE). Various
signal-to-noise ratio (SNR) cases are investigated, where the
SNR is defined as the inverse of an independent and identically
distributed Gaussian noise variance. Each SNR case involves
ECG data of 30 individuals from [32]. For each statistical
metric and SNR value, the performance score is calculated as
the median across all 30 participants.

Fig. 10 shows the Success-Rate, PCC, MAE, and RMSE
for HR estimation by all examined methods as a function
of SNR. The HRM based on IF-TEM outperforms other
compared methods in all four metrics for every SNR value.
Detailed median accuracy scores for SNR = 2 dB in Table 2
demonstrate superior HRM results of IF-TEM.

Compared to [17], note that while we use the same re-
construction method after calculating the FSCs, our ECG-
TEM method achieves superior reconstruction quality. This
improvement is attributed to two key factors: 1) the filter
employed in IF-TEM excludes the zero frequency (DC term),
and 2) the FSCs are calculated from the time instances using
partial summation, enhancing the overall robustness of the
method [26]. When the filter used in IF-TEM is applied to
the VPW-FRI method [17], the results do not improve. This
observation indicates that the better performance of IF-TEM
is not solely due to the filter itself. Rather, the combined effect
of the filter excluding the DC term and the partial summation
technique used in the reconstruction contributes to the superior
reconstruction quality and overall performance achieved by the
IF-TEM method compared to [17].

(a) (b)

(c) (d)

Fig. 10. HRM performance vs. SNR. (a) HR RMSE. (b) HR MAE. (c) HR
PCC. (d) HR Success Rate.

V. IF-TEM ANALOG BOARD AND HARDWARE
EXPERIMENTS

A. ECG-TEM Analog Board

This section describes the proposed ECG-TEM hardware
prototype specifications. We begin by discussing the key
components of the ECG-TEM hardware implementation, as
well as various circuit design considerations. As shown in
Fig. 11, the analog board comprises three sequential stages:
the generation of an ECG signal, band-pass filtering, and an
IF-TEM sampler.

In [33], we introduced an IF-TEM hardware board designed
for FRI signals. The IF-TEM circuit presented in this paper
differs from the IF-TEM sampler in [33] by three main
components: here, we designed a signal generator for injecting
the ECG input, the filter is designed for ECG signals and not
for FRI, and the RC values of the integrator component in the
IF-TEM sampler are different. Specifically, for an ECG signal,
a smaller capacitor and a larger resistor are required. Next, we
specify the details of each component.

The ECG signal generator is a vital component responsible
for generating the desired ECG waveform, which is a funda-
mental step in the overall functionality of the hardware system.
The generated ECG signal possesses realistic amplitude and
frequency characteristics, typically ranging from 0.05 Hz to
100 Hz. The filter also referred to as the sampling kernel, is
employed to eliminate the zero-frequency component from the
signal. The precise positioning of the sampling kernel, which
essentially acts as a band-pass filter (BPF), is critical for the
sub-Nyquist sampling and subsequent reconstruction of ECG
signals using an IF-TEM (see Section III-B). The output of
the filter, denoted as y(t) (15), is then fed into the IF-TEM
sampler. A prototype of the IF-TEM sampler is illustrated in
Fig. 12 [33].

The core components of the IF-TEM sampler comprise the
bias b, an integrator, a comparator with threshold level δ,
and a reset function. To ensure sufficient samples for signal
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Fig. 11. Block diagram of the ECG-TEM hardware prototype. The system consists of a signal generator, a sampling kernel (40 Hz BPF), and an IF-TEM
sampler. The signal generator produces a realistic ECG signal, which is then filtered by the BPF to remove the zero-frequency component. The BPF in this
setup is designed specifically for ECG signals, while the one in [33] was designed for FRI signals. The filtered signal is then sampled by the IF-TEM sampler
board, which has been modified from the one in [33] by adjusting the RC values of the integrator component to accommodate ECG signal characteristics.
The ECG signal, modeled as a VPW-FRI signal, is recovered from the sub-Nyquist samples obtained by the IF-TEM sampler using Algorithm 1.

Fig. 12. IF-TEM hardware board [33].

reconstruction, it is crucial to guarantee that the threshold
δ is attained at least as many times as the desired number
of samples. By introducing the bias b to the input signal
y(t), the integrator receives a signal that is always non-
negative. In this scenario, the integration of a non-negative
signal results in a positive function, ensuring that the threshold
is consistently reached. It is essential to carefully select an
appropriate bias value to ensure the proper functioning of the
IF-TEM system. The output of the integrator is then sent to the
comparator, which compares the integrator voltage against a
predefined threshold δ. The threshold is a constant DC voltage
that is implemented in hardware using a manually adjustable
potentiometer.

The comparator is responsible for comparing the voltage
generated by the integrator against a predefined threshold
value. When the integrator voltage reaches or exceeds the
threshold, the comparator’s output changes state. If the com-
parator’s input is below the threshold, it will output a logical
’0’, whereas if the input is above the threshold, the output will
be ’1’. In other words, the comparator will produce a sequence
of logical ’1’ values whenever the integrator voltage hits
the threshold. This change in the comparator’s output signal
indicates that the threshold has been reached and triggers the

TABLE II
HR ESTIMATION - MEDIAN ACCURACY

Method Success rate PCC MAE RMSE
ECG-TEM 95.1% 0.78 0.60 1.7
VPW-FRI [17] 91.1% 0.63 0.83 2.19
Differential VPW-FRI [19] 78.7% 0.25 2.92 6.03

subsequent stage in the IF-TEM process.
The output of the comparator is then fed into a differentiator,

which generates a short pulse that activates the fast reset
function. The reset function consists of an amplifier and a
field-effect transistor (FET) that work together to rapidly and
completely discharge the integrator capacitor.

Next, we present the hardware experiments for ECG signal
reconstruction and HRM.

B. Hardware Experiments

To evaluate the potential and feasibility of our system, we
conducted experiments on the proposed ECG-TEM hardware
system that we constructed. As illustrated in Figure 14(a), we
considered a real ECG input signal, denoted x(t), consisting of
five pulses with varying widths. The sampling kernel discussed
in Section III-B was employed in these experiments. The
parameters for the IF-TEM circuit were set to a value of
κ = 3 × 10−8, with a bias of b = 3V and a threshold
of δ = 1.5V and K = 10. The IF-TEM parameters were
carefully selected to comply with the constraints outlined in
(26).

As demonstrated in Figures 13(b) and 14(b), the filtered
signal y(t) was fed into an IF-TEM sampler, which produced
49 and 46 time instances tn, respectively, resulting in a firing
rate of 49 Hz and 46 Hz, which is approximately 2.5 times
the rate of innovation and 0.025 times the Nyquist rate.
Figures 13(c) and 14(c) illustrate a comparison between the
original input signal and the estimated signal. This comparison
demonstrates that the parameters of the ECG system can be
robustly estimated while operating at a rate lower than the
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Fig. 13. (a). ECG input signal x(t) (b) BPF output y(t) (green), and the IF-TEM output resulting in 49 samples (blue). (c). sampling and reconstruction
using IF-TEM hardware: the input signal x(t) (black) and its reconstruction (red). (d). HR estimate (red) with the reference output (black). (e). Different
evaluation metrics used to assess the quality of our heart rate monitoring.

Fig. 14. (a). ECG input signal x(t) (b) BPF output y(t) (green), and the IF-TEM output resulting in 46 samples (blue). (c). sampling and reconstruction
using IF-TEM hardware: the input signal x(t) (black) and its reconstruction (red). (d). HR estimate (red) with the reference output (black). (e). Different
evaluation metrics used to assess the quality of our heart rate monitoring.

Nyquist rate. Figures 13(d) and 14(d) show the calculation of
the HRM, which is derived from the R peaks of the ECG
signal. Finally, Figures 13(e) and 14(e) present the different
metrics that were used to evaluate the quality of our HRM
estimates: 1. Success rate, defined here as the percentage of
time in which the HR estimate differed from the reference
output by less than 2 b.p.m., 2. Pearson Correlation Coefficient
(PCC), 3.MAE, and 4. RMSE.

Our TEM hardware enables efficient sub-Nyquist sampling
and recovery of ECG signals, benefiting heart rate monitoring

applications. The ECG signal is filtered to remove its zero-
frequency component, improving noise resilience.

As we demonstrate with one reconstruction example for
proof of concept, the processed filtered signal, y(t), is sampled
using an IF-TEM sampler, resulting in a firing rate of 42-
80Hz, equivalent to approximately 1/20-1/40 of the Nyquist
rate. While we can share more examples, this single example
illustrates that we can robustly recover the ECG signal using
an IF-TEM sampler.
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VI. CONCLUSION

In this paper, we studied sampling and reconstruction frame-
works for ECG signals utilizing IF-TEMs. We provided theo-
retical guarantees for reconstruction of ECG signals modeled
as VPW-FRI signals and presented an approach to portable
HRM based on the TEM-ECG framework. The proposed
method employs the IF-TEM as a power-efficient, time-based,
asynchronous sampler, addressing the critical need for low
power consumption and sampling rate in long-term ECG
monitoring. Numerical experiments validate the effectiveness
of our approach, demonstrating accurate reconstruction of
ECG signals and heart rate estimation. Furthermore, hardware
validations bridge the gap between theory and practical im-
plementation, showcasing the potential for real-world applica-
tions.

APPENDIX

The filtered signal y(t) is defined in (15) as

y(t) =
∑

m∈M
X[m]ejmω0t,

where ω0 = 2π
T , m ∈ M = {−M, · · · ,−1, 1, · · · ,M} with

finite M and X[m] denotes the FSCs of x(t). From (4),

X[m] =

K−1∑
k=0

Xk[m], (35)

where Xk[m] are the Fourier coefficients of xk(t) which are
T -periodic. Substituting this representation into the expression
for y(t) from (15), we get:

y(t) =

K−1∑
k=0

∑
m∈M

Xk[m]ejmω0t. (36)

Given that M is a finite set, k ≤ K, and Xk[m]
are the FSCs of xk(t), we conclude that the sum over
k and m of Xk[m] is real and finite. Consider the set
{Xk[m]ejmω0t}m∈M, all of its elements are finite since they
are composed of the finite FSCs Xk[m] multiplied by the
complex exponential term ejmω0t. Moreover, the set is finite
since M is finite. Let MX,k denote the maximum magnitude
of the set {Xk[m]ejmω0t}m∈M. Thus, we have:

|Xk[m]ejmω0t| ≤MX,k, ∀m ∈M. (37)

Now, considering the sum over k and m, we have:

|y(t)| ≤
K−1∑
k=0

∑
m∈M

|Xk[m]ejmω0t| ≤
K−1∑
k=0

∑
m∈M

MX,k. (38)

Since both K andM are finite sets, the bound in (38) is finite.
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