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Hybrid beamforming for multiple-input/multiple-
output (MIMO) communications is an attractive 
technology for realizing extremely massive MIMO 
systems envisioned for future wireless communi-

cations in a scalable and power-efficient manner. Howev-
er, the fact that hybrid MIMO systems implement part of 
their beamforming in analog and part in digital makes the 

optimization of their beampattern notably more challeng-
ing compared with conventional fully digital MIMO. Conse-
quently, recent years have witnessed growing interest in 
using data-aided artificial intelligence (AI) tools for hybrid 
beamforming design. This article reviews candidate strat-
egies to leverage data to improve real-time hybrid beam-
forming design. We discuss the architectural constraints 
and characterize the core challenges associated with 
hybrid beamforming optimization. We then present how 
these challenges are treated via conventional optimization, 
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and identify different AI-aided design approaches. These 
can be roughly divided into purely data-driven deep 
learning models and different forms of deep unfolding 
techniques for combining AI with classical optimization. 
We provide a systematic comparative study between 
existing approaches, including both numerical evalua-
tions and qualitative measures. We conclude by present-
ing future research opportunities associated with the 
incorporation of AI in hybrid MIMO systems.

Introduction
Massive MIMO systems and high-frequency communica-
tions at millimeter wave (mmWave) and subterahertz 
bands are expected to play a key role in future 6G net-
works [1]. These technologies are naturally supportive of 
each other, as massive MIMO using large transmit and 
receive antenna arrays facilitates generating highly 
focused beams that are essential for reliable communica-
tions at high frequencies, while short wavelength signal-
ing enables packing MIMO configurations with a massive 
number of elements in a limited aperture. However, imple-
menting such massive MIMO transceivers gives rise to 
several challenges. One of these core challenges is asso-
ciated with the notable cost and power consumption of 
radio-frequency (RF) chains operating at high frequen-
cies, in which conventional fully digital MIMO arrays sep-
arately connect each antenna element to a digital signal 
processing unit.

Hybrid beamforming is considered a leading solution 
for coping with the above challenge, enabling high-frequen-
cy massive MIMO communications with a limited number 
of RF chains [2]. This is achieved by delegating part of the 
signal processing to the analog domain, thus dividing the 
beamforming task into digital and analog counterparts. 
The possible beampatterns achievable in analog are dic-
tated by the circuitry, with typical implementations based 
on phase shifters [3], vector modulators [4], and dynamic 
metasurface antennas (DMAs) [5]. Consequently, hybrid 
transceivers are inherently constrained in their beamform-
ing capabilities compared with fully digital ones.

While hybrid designs alleviate some of the cost and 
power issues of massive MIMO systems, their constrained 
form gives rise to algorithmic and signal processing chal-
lenges. Most notably, the beamforming task—i.e., the 
translation of channel state information (CSI) into a suit-
able beampattern—involves solving a typically noncon-
vex constrained optimization problem. Various iterative 
optimization algorithms have been proposed for tuning 
hybrid beamformers [6], differing in their considered 
hardware constraints and objective. A key limitation of 
these iterative solutions stems from their typically slow 
convergence, as the beampattern setting must be per-
formed in real time to cope with channel variations.

The emergence of deep learning as an enabler tech-
nology for AI has led to the proposal of AI-empowered 

hybrid beamforming designs. While deep learning typi-
cally deals with setting an inference rule based on data, 
one can also train deep neural networks (DNNs) to tack-
le challenging optimization problems [7]. Once trained, 
DNNs infer at fixed latency, dictated by the number of 
layers, and can thus be used to rapidly map CSI into 
beampatterns [8]. An alternative approach to leverage 
data for hybrid beamforming arises from model-based 
deep learning methodologies [9]. Here, deep learning 
techniques are used to enhance iterative hybrid beam-
forming optimizers rather than replacing them, while 
data are exploited to achieve rapid convergence [10], 
[11], [12]. The proliferation of different approaches for 
hybrid MIMO beamforming motivates a unified overview 
of these methods.

In this article, we provide a systematic tutorial of AI-
aided methodologies for hybrid MIMO beamforming. While 
successfully realizing hybrid MIMO transceivers inevitably 
combines hardware developments with signal processing 
algorithmic considerations, this work is concerned with 
the latter, without restricting our attention to a specific 
implementation. As opposed to previous works reviewing 
beamforming and AI (e.g., [13] and [14]), here we particu-
larly focus on the design of AI systems for hybrid beam-
forming and their relationship with optimization methods.

We start by discussing hybrid MIMO systems, review-
ing representative architectures and describing how 
their operation impacts the achievable beampatterns. 
We pinpoint the design challenges arising from hybrid 
beamforming, and identify the aspects that motivate in-
corporating AI. Next, we describe hybrid beamforming 
design approaches, dividing them into three main fami-
lies: optimization-based methods, which employ itera-
tive optimizers for setting the beampatterns; DNN-based 
schemes, where CSI is mapped into hybrid configura-
tions via a pretrained DNN; and deep-unfolded designs, 
where deep learning techniques are leveraged to facili-
tate iterative optimization. For the latter, we identify dif-
ferent types of unfolding approaches and discuss how 
each gives rise to a different design. Based on this divi-
sion, we provide a comparative study, including both a 
numerical study and a qualitative comparison, where we 
identify the interplay between the approaches in terms of 
several key figures-of-merit. We conclude by discussing 
research challenges that are left for future exploration, 
and are expected to pave the way toward harnessing the 
potential of AI for hybrid MIMO systems.

Hybrid beamforming is considered a leading 
solution for coping with the above 
challenge, enabling high-frequency massive 
MIMO communications with a limited 
number of RF chains.
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Hybrid Beamforming

Hybrid MIMO Transceivers
Massive MIMO transceivers are equipped with an antenna 
array comprised of a large number of elements, denoted M. 
In the current 5G base stations, M can be on the order of 
several tens. This number is expected to grow to possibly 
thousands of antennas in 6G, when evolving from massive 
MIMO to holographic MIMO [1]. In conventional fully digital 
MIMO architectures, the signal being fed to each antenna is 
processed separately digitally, by having a digital process-
ing unit connect to each antenna via a dedicated RF chain.

In hybrid MIMO systems, the number of RF chains, de-
noted K, is smaller than that of antennas. This is achieved 
via analog processing that interfaces the RF chains with 
the antennas, as illustrated in Figure 1. The analog pro-
cessor achieves different manipulations of the signals. A 
natural benefit of hybrid MIMO over fully digital architec-
tures stems from the fact that it uses fewer RF chains than 
antenna elements, which becomes a crucial factor when 
using large-scale arrays in high frequencies. In addition to 
reducing RF chains, hybrid designs can also facilitate in-
terference rejection as well as mitigate distortion induced 
by low-resolution analog-to-digital convertors [4].

Architectural Constraints
Hybrid MIMO systems combine digital and analog signal 
processing. The processing part carried out in the digital 

domain is highly flexible, allowing it to effectively apply 
different mappings to different spectral components. How-
ever, analog processing is highly constrained, and the set 
of different mappings it can realize is dictated by its hard-
ware, with several different hardware architectures pro-
posed in the literature. To exemplify the constraints 
associated with different designs, we briefly review a few 
representative analog architectures, focusing on their 
operation in transmission:

Phase Shifter Networks
The most commonly considered analog hardware employs 
phase shifters with controllable phases [2]. These are typi-
cally divided into fully connected architectures, where a 
dedicated phase shifter connects each RF chain with each 
antenna, and to partially connected structures, in which 
each RF chain is connected to a single antenna via a dedi-
cated phase shifter. Often in practice, the phases applied 
by each phase shifter cannot be arbitrarily set and must 
comply to some predefined phase resolution. Furthermore, 
phase shifters are typically designed to (approximately) 
preserve the same phase shift over a considered band. 
Thus, they are often modeled as applying the same map-
ping to each spectral component.

Discrete Vector Modulators
While phase shifters only affect the phase of the signal, 
vector modulators are analog circuits that can realize 
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Figure 1 Schematic illustration of different hybrid MIMO transceiver architectures and their corresponding analog processing model, 
including partially and fully connected phase shifter networks, vector modulators, and DMAs.
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different combinations of phase shifting and signal attenu-
ation. Such forms of analog circuitry provide additional 
flexibility compared with phase shifters, due to the ability 
to also affect the magnitude of the signals in a controllable 
fashion. Nonetheless, low-power vector modulators are 
typically constrained to realize only a predefined finite 
number of different phase-attenuation combinations [4].

DMAs
An emerging technology for realizing holographic MIMO 
designs antennas using metasurfaces that are planar con-
figurations of controllable metamaterial elements. Unlike 
the aforementioned architectures, which rely on the incor-
poration of dedicated analog circuitry, DMAs implement 
configurable analog processing as an inherent byproduct 
of their antenna structure [5]. When transmitting, the sig-
nal at the output of each RF chain propagates along a 
waveguide, and is radiated from the elements connected to 
that waveguide, where each element can realize a form of a 
frequency-selective Lorentzian filter. Consequently, DMAs 
inherently implement frequency-selective analog signal pro-
cessing, which is constrained to take the Lorentzian form.

Hybrid Beamforming Design Challenges
Hybrid beamforming design is concerned with the joint 
setting of the analog and digital processing to optimize a 
predefined communication metric for the current channel 
realization. Typical metrics are the achievable rate or the 
minimal signal-to-interference-and-noise ratio (SINR) in 
multiuser communications. Focusing on downlink trans-
mission with the common setting of linear beamforming, 
the task boils down to designing the precoders applied to 
the outgoing symbols in digital (where each spectral com-
ponent can be precoded separately), along with the con-
figuration of the analog processing.

Hybrid beamforming design is associated with mul-
tiple core challenges, including:

	■ Core challenge 1 (C1): The resulting optimization prob-
lem based on which the digital precoders and the ana-
log configuration are determined is rarely convex. 
Even when the design objective takes a quadratic 
form, e.g., the achievable rate of a linear Gaussian 
channel, the need to divide the processing into digital 
and analog parts, as well as the hardware constraints 
imposed on the analog processing, typically results in 
nonconvex optimization.

	■ Core challenge 2 (C2): Since hybrid beamforming is 
designed for a given channel realization, it needs to be 
carried out each time the channel conditions change, 
i.e., on each coherence duration (which can be as small 
as 125 μs by 3GPP Release 17). As the coherence dura-
tion of wireless communication channels typically 
decreases with carrier frequency, the design procedure 
must be performed rapidly to enable reliable communi-
cations within each coherence duration.

	■ Core challenge 3 (C3): Hybrid beamforming design 
uses CSI, which is typically obtained from pilot signal-
ing, and is thus likely to be noisy. Consequently, hybrid 
beamforming design should be able to cope with some 
level of error in its available CSI.
The above challenges, and particularly C1 and C2, moti-

vate AI-aided designs, as discussed in the following section.

AI-Aided Hybrid Beamforming Design
We next detail leading frameworks for designing hybrid 
precoders. The first utilizes iterative optimizers that are 
specific to the problem at hand. The second employs 
DNNs, i.e., abstract architectures that are tuned from 
data to map CSI into a hybrid beamformer configuration. 
The last framework utilizes deep unfolding, which com-
bines iterative optimization with deep learning via dif-
ferent forms of model-based deep learning [9]. The latter 
constitutes a middle ground between the first two tech-
niques by balancing specificity and data-driven learning 
capabilities, as illustrated in Figure 2.

Optimization-Based Hybrid Beamforming
As explained earlier, hybrid beamforming design is 
inherently an optimization problem. As such, it is tradi-
tionally tackled using optimization tools, commonly via 
iterative solvers. Broadly speaking, there are two main 
approaches to cope with the nonconvexity (C1):

	■ A leading approach applies convex relaxation, i.e., for-
mulates an alternative problem that is convex. Most 
commonly, the nonconvex sum-rate objective in the 
hybrid configuration is often replaced with seeking the 
hybrid setting that best approximates the fully digital 
rate-maximizing precoder [3], [15]. Compared to direct-
ly maximizing the sum-rate, the relaxed formulation is 
often simpler to tackle, typically using iterative meth-
ods based on alternating optimization. Yet, it may still 
result in a nonconvex formulation, depending on the 
hardware constraints. The resulting solution can be 
shown to approach the rate-maximizing setting in some 
regimes, and particularly when the number of RF 
chains K is not smaller than the number of receive 
antennas [3].

	■ An alternative approach directly tackles the noncon-
vex objective, typically by aiming to identify a suitable 
initial setting of the precoders and refine it using local-
convex optimization techniques, e.g., projected gradi-
ent ascent (PGA) [10].

Hybrid beamforming design is concerned 
with the joint setting of the analog and 
digital processing to optimize a predefined 
communication metric for the current 
channel realization.
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While iterative optimizers can often recover useful hy-
brid beamformers, they tend to require a large number 
of iterations to converge. As iterations are translated into 
delay and complexity, this property limits their applica-
bility in time-varying settings by C2. While optimization 
theory provides techniques for reducing the number of 
iterations via, e.g., backtracking, such techniques involve 
additional lengthy computations during inference.

DNN-Based Hybrid Beamforming
Deep learning provides tools for tuning machine learning 
models parameterized as DNNs to learn a desirable com-
plex mapping from data. DNNs can also be trained to 
tackle challenging optimization problems, such as those 
encountered in hybrid beamforming design [7]. Architec-
tures, such as convolutional neural networks (CNNs), 
were shown to be capable of learning to map MIMO CSI 
into analog and digital precoders [8].

DNN-based inference rules are typically designed in a 
supervised manner, i.e., by providing data comprised of 
inputs and their desired outputs, which the model learns 
to produce during training. However, for hybrid beam-
forming, they are often trained unsupervised—namely, 
by providing a dataset comprised solely of channel re-
alizations—without specifying the desired beamformer 
for each channel. This is possible because the optimiza-
tion objective, e.g., sum-rate or SINR, can be evaluated 
for each selected precoders, while being differentiable 
with respect to them. Consequently, one may apply con-
ventional gradient-based learning to training DNN-based 
hybrid beamformers using the (negative) optimization 
objective as an unsupervised training loss [10].

DNNs are often computationally complex, comprised 
of a large number of parameters, and their training can 
be lengthy. Yet, their latency during inference is fixed 
based on the number of layers, and various software 
and hardware tools facilitate their parallelization. Con-
sequently, using pretrained DNNs for hybrid beamform-
ing design is often more rapid compared with iterative 
optimizers. However, the usage of generic highly pa-
rameterized models trained from data to replace opti-
mization solvers gives rise to several drawbacks. First, 
the training of DNNs is often a lengthy task, requiring 
large volumes of data (i.e., channel realizations) and 
tedious experimentation to learn a suitable mapping. 
Furthermore, while their inference latency is fixed, the 
complexity of applying DNNs in terms of, e.g., floating 
point operations, is typically large compared with itera-
tive optimizers, being dictated by the number of param-
eters. Moreover, DNNs are far less flexible compared 
with optimization methods, and each modification in 
the task, e.g., the incorporation of an additional user to 
the network, requires time-consuming retraining. Final-
ly, DNNs are hardly interpretable, in the sense that one 
can assign operational meaning only to their input and 
their output, and are typically treated as black boxes.

Deep Unfolded Hybrid Beamforming
Both principled iterative algorithms and data-driven 
deep learning models possess inherent limitations for 
hybrid beamforming. This motivates designs that are 
both model-based and data-driven, capitalizing on the 
strengths of each approach. Model-based deep learning 
[9] offers a promising avenue for combining principled 
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Figure 2 Illustration of different approaches for hybrid beamforming design.
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mathematical models with deep learning techniques. 
Among model-based deep learning approaches, deep 
unfolding is highly suitable for tasks that typically involv-
ing iterative methods.

A deep unfolding model is constructed based on the 
similarity between the sequential operation of an itera-
tive optimizer with L iterations and the forward path of 
a DNN with L layers. The fundamental idea behind this 
approach is to treat the iterations of a principled itera-
tive algorithm as an inductive bias of a machine learning 
model. Consequently, the optimizer with L iterations in 
transformed into a trainable discriminative model with 
fixed complexity. This gives rise to three different forms 
of deep unfolded optimizers [9]:

	■ Learned hyperparameters (U1): The efficiency of itera-
tive optimizers depends on hyperparameters, such as 
step sizes in projected gradient ascent/descent meth-
ods, which are often tuned manually. With a substantial 
number of iterations, these optimizers can converge to 
a good objective value and reliable solutions. However, 
when constrained to a fixed (and limited) number of 
iterations, the choice of hyperparameters becomes cru-
cial for achieving good performance. Deep unfolding 
offers a solution by converting the hyperparameters of 
the iterative solver into trainable parameters and lever-
age data to train and tune them within a predefined 
number of iterations.

	■ Learned objective (U2): Iterative optimizers are designed 
to optimize an objective function, e.g., the system sum-
rate, through updating the solution over successive iter-
ations until a convergence criterion is met. Deep 
unfolding contributes to this procedure via parameteriz-
ing the objective function employed in each iteration. 
This enables learning from data to tune the intermediate 
solutions based on a different objective, such that the 
final output is most suitable for the original objective.

	■ DNN conversion (U3): In the third deep unfolding tech-
nique, a DNN is designed to facilitate the operation of 
an iterative optimizer. This is typically accomplished 
by replacing certain operations, especially those 
involving computationally intensive tasks like matrix 
inverse or decomposition, in each iteration with train-
able layers. This technique enables varying levels of 
abstraction. One approach is to maintain the core oper-
ation of the iterative optimizer by replacing only specif-
ic computations with trainable layers. Alternatively, a 
highly parameterized DNN can be designed, inspiring 
by the operation of the original principled optimizer.
In hybrid beamforming, deep unfolded models share 

the ability of DNNs to train unsupervised. Furthermore, 
the similarity between the unfolded architecture and 
iterative optimizers introduces additional factors that 
can facilitate training. First, the conventional solution 
acquired through iterative optimizers can serve as the 
input of the unfolded model. This allows the model to 

commence with a reliable solution and further improve 
it over layers though the training process. Moreover, in 
unfolding models, the output of each layer is associated 
with the optimization variable, suggesting that the train-
ing loss cannot solely be based on the final output after 
L iterations/layers, as in conventional DNNs, but can also 
account for the intermediate features in hidden layers. 
Such training losses, which are not applicable in black-
box architectures, encourage the model to produce valid 
settings at each iteration/layer, and thus constitute a reg-
ularization known to facilitate learning.

The above methodologies, especially U1 (e.g., [10] and 
[11]) and U3 (e.g., [12]), ensure fixed latency hybrid beam-
forming designs. Specifically, deep unfolding with learned 
hyperparameters fully preserves the operation of the it-
erative optimizer, maintaining its flexibility and interpret-
ability. Nonetheless, by learning different step sizes for 
each iteration [10], and even for the optimized precoder 
variable [11], notably latency reduction can be attained. 
Furthermore, the learned hyperparameters can be incor-
porated into multiobjective designs, such as the robust 
optimization for coping with CSI uncertainty C3 [10].

Comparative Study
In this section we compare the hybrid beamforming 
approaches detailed earlier. We present a numerical study 
comparing representative schemes from each design 
approach, after which we provide a qualitative comparison.

Numerical Evaluation
To compare the considered hybrid beamforming approach-
es, we simulate hybrid MIMO systems with fully connect-
ed phase shifter network for analog processing. (The 
source code is available at https://github.com/ortalagiv/ 
AI-Empowered-Hybrid-MIMO-Beamforming.) While hybrid 
beamforming can be carried out on both the transmit and 
the receive side, we focus our evaluation on multiuser 
downlink systems, where a base station equipped with a 
hybrid antenna array transmits to multiple single antenna 
users. We compare the following methods for determining 
the precoders:

	■ For optimization-based methods, we evaluate the Rie-
mannian manifold optimizer of [3] and the alternating 
optimizer of [15], which are both based on convex 
relaxation of the sum-rate objective.

	■ For DNN-based designs, we use a CNN following the 
architecture of [8], referred to as black-box CNN. This 
architecture is comprised of three convolutional lay-
ers (with 3 × 3 kernel) followed by three fully connect-
ed layers. The CNN was trained to produce both the 
analog and digital precoders, as well to produce only 
the analog precoder, while the digital precoder was 
tuned accordingly to best match the fully digital beam-
former. As both implementations yielded similar 
results, only the latter is reported here.
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	■ For unfolded optimizers, we consider both the ManNet 
model of [11], that unfolds the convex-relaxed optimiza-
tion, as well as the unfolded PGA of [10], which augments 
simple PGA steps applied to the nonconvex sum-rate 
objective. Both of these unfolded methods use merely 10 
iterations while preserving the operation of the iterative 
optimizers from which they originate following U1.

	■ To represent an upper bound on the achievable sum-rate, 
we evaluate that achieved using fully digital beamforming.
In Figures 3–5, the considered MIMO transmitter has 

M = 12 antennas, and serves four single-antenna users by 
signaling over 16 frequency bins. For training the deep 
learning models, we generated a dataset of 1,000 mmWave 
channel realizations with central frequency of 30 GHz us-
ing the QuaDRiGa model.

We first set the number of RF chains to K = 4. The re-
sulting sum-rates versus signal-to-noise ratio (SNR), de-
picted in Figure 3, demonstrate that all optimizers based 
on convex relaxation—i.e., the iterative optimizers of [3] 
and [15] and the AI-aided ManNet [11]—approach the 
sum-rate of fully digital beamforming. The black-box CNN 
and the unfolded PGA are both within a small gap from 
fully digital beamforming. Nonetheless, the gains of the 
unfolded designs over purely optimization-based meth-
ods are revealed when observing the number of iterations 
needed to achieve this performance. The sum-rate versus 
iteration for each iterative method at SNR of 10 dB is re-
ported in Figure 4. There, we observe that the unfolded 
methods achieve their suitable settings with much less 
iterations compared with conventional iterative optimiz-

ers, indicating the ability of AI-aided 
designs in notably reducing latency 
and computational complexity.

We next set the number of RF 
chains to K = 2, i.e., less than the num-
ber of users, indicating a challenging 
regime for hybrid beamforming. The 
results, reported in Figure  5, dem-
onstrate that the gap in this setting 
between the fully digital precoder 
and the hybrid beamformers is more 
dominant compared to that in Fig-
ure 3. While both the unfolded and 
optimization-based methods achieve 
approximately the same performance, 
the unfolded schemes do it with much 
fewer iterations, with an reduction by 
a factor of 5 to 8× compared with the 
iterative optimizers of [3] and [15].

While the results in Figures 3–5, 
consider a MIMO setting without a 
large number of antennas. In Figure 6 
we consider a massive MIMO system 
with M = 128 transmit antennas, K = 
2 RF chains, and 128 frequency bins, 
based on the channel model detailed 
in [11]. It is observed that compared 
to Figure  3, the hybrid beamform-
ing schemes have more significant 
performance loss with respect to 
the fully digital one. Among the 
compared hybrid beamformers, the 
deep unfolded optimizers are supe-
rior, with ManNet offering the best 
performance. The black-box DNN, 
which struggles in learning such 
complicated tasks from limited da-
tasets, performs far worse than the 
conventional optimizers and deep 
unfolding schemes.
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Qualitative Comparison
The approaches detailed earlier for optimizing hybrid 
beamformers are each suitable for different types of sce-
narios. The above numerical study allows to compare the 
approaches in achievable rate. To evaluate additional 
meaningful comparative aspects, we next discuss five key 
figures-of-merit: design latency, computational complexi-
ty, data requirements, flexibility, and interpretability. The 
comparison detailed below is summarized in Table 1.

Latency
A core challenge in hybrid beamform-
ing is the need to update the beam-
pattern on each coherence duration 
C2. Conventional iterative optimizers 
are typically lengthy, inducing nota-
ble latency due to their multiple itera-
tions. This can be mitigated via deep 
unfolding, particularly via hyperpa-
rameter learning U1, as demonstrated 
in Figure 4. Using DNNs for hybrid 
beamforming design typically has low 
latency, as computing the forward 
pass of a neural network with several 
layers is of fixed delay, which is 
reduced with parallelization and 
hardware accelerators, though not 
necessarily to the order of the coher-
ence duration of wireless channels.

Complexity
While DNNs often support rapid and 
fixed-latency hybrid beamforming 
design, they are computationally com-
plex, being comprised of a large num-
ber of parameters, and their limited 
latency is typically due to paralleliza-
tion and hardware acceleration. Itera-
tive optimizers are of a much smaller 
complexity, as each iteration typically 
involves a small number of opera-
tions, yet this complexity is not trans-
lated into low latency due to their 
sequential operation. Deep unfolded 
designs, particularly with learned 
hyperparameters U1, share both the 
low complexity of iterative optimiz-
ers while supporting rapid inference 
due to their inherently fixed number 
of iterations. We refer readers to [11] 
for a detailed complexity analysis 
and comparison of the unfolded 
PGA, ManNet, black-box CNN, and 
alternating and manifold optimiza-
tion methods.

Data
AI-aided hybrid beamforming design leverages data to 
learn how to map CSI into hybrid precoders. While such 
learning can be done in an unsupervised manner, training 
DNNs for such tasks still requires large volumes of data, 
i.e., channel realizations from the same distribution as 
that expected at deployment. Deep unfolding balances the 
dependence on data by imposing an inductive bias on the 
learned model, trading parameterization for specificity [9], 
with abstract parameterizations (U3) requiring more data 
compared with lesser parameterized models (U1).
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Flexibility
Hybrid beamforming design requires some level of flexibil-
ity, as channel configuration, e.g., the number of users, 
can change over time. Iterative optimizers are extremely 
flexible, and the same optimizer can be applied in differ-
ent settings. Similarly, unfolded methods that fully pre-
serve the iterative optimizer (U1) operation also share 
this flexibility. However, conventional black-box architec-
tures, such as DNNs and CNNs, are trained for a fixed con-
figuration, and are thus highly nonflexible as they have to 
be retrained when the configuration changes over time.

Interpretability
An important property of hybrid beamforming design is 
the ability to understand how it maps the CSI into a 
hybrid precoder, and to track its processing chain. Itera-
tive optimizers are fully interpretable, and so are unfold-
ed optimizers that do not alter their operation (U1). More 
abstract forms of unfolding that deviate from the opti-
mizer (U3) are less interpretable, yet one can still track 
their procedure as each iteration is still associated with 
an operational meaning. For black-box DNNs, only the 
input and output have an interpretable value.

Summary and Future Research Directions
AI-aided design and model-based deep learning bear the 
potential of notably facilitating real-time high-throughput 
hybrid beamforming, which in turn can pave the way toward 
sustainable and scalable massive MIMO deployments. 

However, several research directions are to be explored to 
fully realize the potential of AI-aided beamforming. We 
next review some candidate topics.

Hybrid MIMO With Integrated Sensing
The 6G networks are envisioned to utilize MIMO trans-
ceivers not solely for communications, but also for sens-
ing. Such operation induces various considerations on 
beamforming design, ranging from coexistence between 
sensing and communicating spectrum-sharing devices to 
dual-function signaling. These considerations notably 
complicate the setting of hybrid beamforming, as the 
optimization procedure has to account for additional 
aspects associated with the sensing functionality. This 
further motivates the exploration of AI-aided techniques 
for hybrid MIMO with integrated sensing.

Power and Hardware Oriented Designs
While the majority of studies on hybrid MIMO consider 
phase shifter-based analog circuitry, there are in fact var-
ious forms of hybrid architectures, each giving rise to 
different constraints affecting beamforming design. Fur-
thermore, existing hybrid beamforming methods often 
overlook the fact that different configurations of the ana-
log circuitry consume different power. For instance, the 
ability to turn off a subset of the vector modulators in 
hybrid designs was shown to notably reduce power con-
sumption [4]. This motivates the exploration of hybrid 
beamforming algorithms that incorporate power and 
hardware considerations into their optimization proce-
dure, and the associated excessive complexity motivates 
the usage of the advocated AI-aided strategies.

Distributed Hybrid MIMO
Future wireless communications are expected to deviate 
from conventional cellular architectures, utilizing multi-
connectivity and cell-free topologies [1]. This operation 

Table 1  Qualitative comparison between the considered approaches for hybrid beamforming. 

Method Latency Complexity Data Flexibility Interpretability 

Iterative  
optimizers 

High: numerous 
iterations 

Low: few opera-
tions in numer-
ous  
iterations 

None: no data 
needed 

Fully flexible: applicable 
with different configura-
tions 

Fully interpretable 

DNNs Medium: fixed by 
forward pass of 
DNN 

High: complex 
high parameter-
ized models 

High: massive 
datasets needed 
for training 

None: retraining is needed 
to switch configuration 

Not interpretable 

Deep unfolded 
optimizers, U1 

Lowest: few pre-
defined  
iterations of low 
complexity 

Lowest: few  
operations in 
few iterations 

Low: few  
parameters 
trained with 
small datasets 

Flexible: applicable with 
different configurations 
though performance may 
be affected 

Fully interpretable: 
preserve operation 
as iterative  
optimizers 

Deep unfolded 
optimizers, U3 

Low: few pre-
defined iterations 
with moderate 
complexity 

Medium: com-
plex parameter-
ized mappings in 
few iterations 

Medium:  
relatively large 
number of 
parameters to 
train 

None: retraining typically 
is needed to switch  
configuration 

Partially interpre-
table as one can 
track intermediate 
features 

An important property of hybrid 
beamforming design is the ability to 
understand how it maps the CSI into  
a hybrid precoder, and to track its 
processing chain.
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extends conventional centralized beamforming into dis-
tributed beamforming using a deployment of multiple 
collaborative MIMO transmitters. The reduced cost of 
hybrid architectures makes them suitable candidates for 
massive deployments. The usage of AI in such cases can 
notably facilitate real-time collaborative hybrid beam-
forming setting, possibly exploiting distributed machine 
learning paradigms, such as federated learning and mul-
tiagent reinforcement learning.

From Far-Field to Near-Field
An additional consideration impacting beamforming in 
future wireless communications is the expected transition 
from far-field communications to near-field. This brings 
forth new forms of beamforming, as the ability to generate 
focused beams that can notably mitigate interference. Ini-
tial studies have unveiled that focused beams can also be 
achieved with different forms of hybrid beamforming 
using lengthy optimization. Future studies are left to 
explore the ability to simultaneously support far-field and 
near-field users, and the ability of AI-aided hybrid beam-
forming in enabling real-time and accurate forming of 
focused beampatterns for near-field communications.
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