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It is a fundamental problem to analyze the performance bound of multiple-input multiple-output dual-functional radar-
communication systems. To this end, we derive a performance bound on the communication function under a constraint on
radar performance. To facilitate the analysis, in this paper, we consider a simplified situation where there is only one downlink user
and one radar target. We analyze the properties of the performance bound and the corresponding waveform design strategy to
achieve the bound. When the downlink user and the radar target meet certain conditions, we obtain analytical expressions for the
bound and the corresponding waveform design strategy. The results reveal a tradeoff between communication and radar perfor-
mance, which is essentially caused by the energy sharing and allocation between radar and communication functions of the system.

1. Introduction

With the evolution of radar and wireless communication
technology, there is a growing shortage of spectrum resources
[1]. To alleviate this problem, many spectrum sharing strate-
gies have been proposed in recent years. These strategies are
roughly divided into two categories, i.e., spectrally overlaid
systems, wherein radar and communication systems jointly
use the same frequency band [2, 3, 4, 5], and dual-functional
radar-communication (DFRC) systems, wherein radar and
communication are designed in a joint manner [1, 6, 7, 8].
Due to the similarities in both signal processing algo-
rithms and hardware architecture [8, 9], there is a growing
demand for implementing radar and communication in one
system [1, 6, 7, 8]. To this end, DFRC technology has
attracted a lot of attention, as DFRC design reduces system
overhead and saves spectrum resources [1, 6, 7]. Among
typical DFRC schemes [10, 11, 12, 13], multiple-input
multiple-output (MIMO) DEFRC is of great significance
because of the benefits introduced by transmitting diversity
[13, 14, 15]. Therefore, in this paper, we analyze a funda-
mental performance bound of MIMO DFRC systems.

Many previous works have shown that there are perfor-
mance tradeoffs between radar and communication in a
DERC system [8, 16, 17]. However, the results are mostly
numerical and are achieved under specific signaling and
encoding schemes. Just as researchers study channel capacity
as a universal performance bound for pure communication
systems [18, 19, 20], it is important to find a fundamental
performance bound for a MIMO DFRC system.

While it is generally difficult to simultaneously analyze the
performance bounds of radar and communication, a com-
mon approach in existing works is to calculate the theoretical
performance bound of one function while constraining the
other [16, 21, 22, 23]. In [21, 23], the radar performance limit
is considered under a communication requirement that the
downlink user receives the exact desired symbols. Liu et al.
[16] and Chen et al. [22] used channel capacity to evaluate the
communication performance limit, not restricted to a certain
signaling scheme, under some constraints on radar perfor-
mance. In [21], a simplified single downlink communication
user scenario is considered, and an analytical solution to the
performance bound is given. However, the strict signaling
strategy in [21] causes radar performance degradation. While
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in [16, 22, 23], multiuser multitarget scenarios are considered.
In such complicated scenarios, the performance bounds are
obtained by solving complex optimization problems, and only
numerical solutions are obtained.

In this paper, we aim to provide an analytical expression
of a fundamental performance bound of a MIMO DFRC
system, such that the tradeoff between radar and communi-
cation functions is intuitively revealed. To facilitate the anal-
ysis, we consider a simplified situation where there is only one
downlink user and one radar target. Taking achievable com-
munication rate and radar signal-to-noise ratio (SNR) as the
communication and radar performance metrics, respectively,
we formulate an optimization problem by constraining the
radar SNR and optimizing communication performance. We
first theoretically analyze the properties of the optimal solu-
tions to the problem. Then, under some specific situations,
i.e., the downlink user has only one receive antenna or the
channel matrix and the radar transmit steering vector satisfies
certain interrelation, we obtain analytical solutions, which
imply an optimal transmit design strategy that achieves the
corresponding theoretical performance limit and also offers
insight to general MIMO DFRC systems. The main contribu-
tions of this work are summarized as follows:

(1) An optimization for formulating a performance
bound on MIMO DFRC systems. In the simplified
situation where there is only one downlink user
and one radar target, we formulate the optimization
by maximizing the achievable communication rate
under the constraint of radar SNR.

(2) Properties of the optimal solutions. By theoretically
analyzing the optimization, we derive properties the
optimal solution satisfies, which offers insights into
the optimal beamforming design and guidance for
solving the optimization.

(3) Analytical solutions to the optimization under some
specific situations. Since solving the optimization ana-
Iytically in general situations is difficult, we derive ana-
lytical solutions under the situations where the downlink
user has only one receive antenna and where the channel
matrix and the radar transmit steering vector satisfy
certain interrelation. The optimal solutions imply the
optimal transmit designs that achieve the theoretical
performance bound of MIMO DEFRC systems and
show that the optimal transmit designs essentially share
and allocate the transmit power between the radar target
and the downlink user.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the system model and formulates a
performance-bound analysis as the optimization problem.
Section 3 provides a theoretical analysis to the properties
of the optimal solution to the problem. In Section 4, we
derive analytical solutions to the optimization problem in
the specific situations mentioned above. Simulations are per-
formed to verify the analysis in Section 5. Section 6 draws
conclusions.
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FIGURE 1: System model of a MIMO DFRC system [13].

L.1. Notation. We use boldface lowercase letters for column
vectors and boldface uppercase letters for matrices. Super-
scripts (1), (-)*, and (-)" represent Hermitian transpose,
conjugate and Moore—Penrose inverse, respectively, and
tr(-) stands for the trace of a matrix. The N-dimensional
complex Euclidean space is expressed as CN. A complex
Gaussian distribution with mean g and covariance X is
expressed as €./ (u, L). The statistical expectation is repre-
sented by E[-]. || and ||-||, denote absolute value and Euclid-
ean norm, respectively.

2. System Model and Problem Formulation

We consider a theoretical performance bound of a MIMO
DFRC system. To this end, we first introduce the system
model, the communication and radar performance metrics
as well as the transmit power constraint. Then, we formulate
the fundamental performance bound as an optimization
problem.

A MIMO DFRC system simultaneously performs MIMO
communication and MIMO radar functions, whose wave-
form is optimized to meet the requirements of both radar
and communication [6]. To facilitate the theoretical analysis,
in this paper, we consider a simplified scenario where there is
only one communication user with K receive antennas, one
point-like radar target located at angle 6 and no clutter, as
illustrated in Figure 1. In addition, we assume that the trans-
mit signal is narrow-band, and the system uses the same
transmit antennas to receive radar returns. Denote the num-
ber of transmit antennas by M. The transmit waveform x €
CM is the sum of a series of linear precoded waveforms, given
by the following:

x=Ws, (1)

where s € CN represents N orthogonal waveforms and W €
CMXN s the precoding matrix to be designed. The orthogo-
nality of the waveforms s means that
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E[ss] = I. (2)

2.1. Single-User MIMO Communication Performance. The
received signal of the communication user y.€CK is
expressed as follows:

Ye=Hx+nc, (3)

where H € CK*M s the channel matrix, and n € CK is addi-
tive white Gaussian noise (AWGN) of the communication
receiver, i.e., ng ~ €4 (0, 6°I). Without loss of generality,
we normalize the power of the AWGN by setting 6% = 1.
The achievable rate is a fundamental bound of commu-
nication performance. It is determined by the covariance
matrix of the transmit signal, given by the following:

R = E[xx!] = WwH ¢ CMM, (4)

The achievable rate from the transmitter to the communica-
tion user is calculated as follows [18]:

C = log|Ix + N.HRH"| = log|Ix + HRH"|, (5)

where No=E[ncn] =Iy is the covariance matrix of the
AWGN vector nc.

2.2. MIMO Radar Performance. Given target direction 6, the
signal impinging on the target is al’ (0)x, where a,(0) € CM is
the transmit steering vector. For a uniform linear array
(ULA), a; is given by the following:

at(g) — [1 l2misin 0 eerz(M—l)%sinG]H’ (6)

where d is the interval between adjacent antennas and 4 is the
wavelength. The received signal y, € CM is expressed as fol-
lows:

yr = aoa,(0)a (0)x + np, (7)

where q is the target amplitude which is related to the radar
cross-section of the target and the path-loss of the signal,
a,(0) € CM is the receive steering vector, ny € CM is the
AWGN of the radar receiver, i.e., ng ~ €4/(0,1,;). We have
a,(0) =a,(0) if we use the same antenna array to receive
radar returns. We also note that since the radar performance,
such as ranging accuracy, is directly related to the SNR, the
Doppler frequency and time-delay of the target echo are
omitted here for simplicity. The received radar echo is beam-
formed to enhance the SNR, yielding

r=whyy = aywa,(0)al (0)x + wny, (8)
where w € CM is the receive beamforming vector.

We use SNR to evaluate the radar performance, which is
given by Imani et al. [24] as follows:

|agw'a, (0)a’ (0)x[?

SNR =E
|WH"R|2

©)

2. H o oH H
_ opw'a.a; Raa,’w

lwl3

Under the constraint ||w||3 = 1, the maximal SNR is achieved

when w= H:’HZ. Plugging it into Equation (9), we have the
following:

SNR = aj | a,[|3a;' Ra,. (10)

2.3. Transmit Power Constraint. We consider sum-power
constraint as follows:

E[||x[3] < P, (11)

where P is the maximal average transmit power. By substi-
tuting Equation (4) into Equation (11), we rewrite the power
constraint with respect to R as follows:

tr (R) <P, (12)

2.4. Problem Formulation. We formulate the fundamental
performance bound of a MIMO DFRC system as an optimi-
zation problem. To this end, we calculate the theoretical
performance bound of one function while constraining the
other. Particularly, in this paper, we calculate the communi-
cation capacity under the SNR constraint of the radar func-
tion. This yields the optimization problem as follows:

H
111{1;%( log|Ix + HRH"|, (13a)
s.t. a3||a,||3al’Ra, > SNR,, (13b)
tr (R) <P, (13¢)

where SNR is the allowed minimal radar SNR.

Since the radar SNR is directly proportional to al'Ra,,
which is the power of the signal impinging on the radar
target, the constraint (Equation (13b)) can be rewritten as

H SNRU _ . .. . . .
a;/Ra, > e =1 where y is the minimal power impinging

on the radar target. In addition, since larger transmit power
always leads to higher channel capacity, we let the sum-
power constraint (Equation (13c¢)) hold with equality. There-
fore, Equation (13) is equivalently expressed as follows:

H
max log|Ix + HRH"|, (14a)
s.t. alRa, >y, (14b)
tr (R) =P. (14¢)

Note that Equation (14a) is a logdet function, which is
concave, Equations (14b) and (14c) are linear; hence, the
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optimization problem (Equation (14)) is convex. By solving
Equation (14), we obtain the channel capacity and the cor-
responding waveform R=W W to achieve it.

3. Properties of the Optimal Transmit
Covariance Matrix

Consider the eigenvalue decomposition of the transmit
covariance matrix as follows:

M‘t

r
R=UAU" = gliiuiufl = 1v,-v,H =VVvH, (15)

where v; = \/2u; (i=1,2,-+,7), V€ C™, and r is the rank
of R. Combining Equation (15) with Equation (4), let W =
V, we see that the rank of R denotes the number of orthogo-
nal waveforms needed and the eigenvectors of R are closely
related to the linear precoding scheme. Besides, in general
situations, it is difficult to obtain an analytical solution to
Equation (14). Hence, in this section, we conduct a prelimi-
nary analysis of Equation (14) to find out some properties of
the optimal transmit covariance matrix, which help us solve
Equation (14) analytically in some specific situations and
provide insights into the optimal beamforming design.

Proposition 1. The rank of the optimal transmit covariance
matrix R and the rank of the channel matrix H satisfy that

rank(R) <rank(H) + 1. (16)

Proof. Inspired by the analysis in [20], we start with the
Karush—Kuhn-Tucker (KKT) conditions of Equation (14).
The Lagrange function of the optimization problem is given
by the following:

L(R, A, p)= — log|I + HRH"| + A(y — al'Ra,)

u(tr(R) - P). 17

where 1 and u are dual variables. The KKT conditions of
Equation (14) imply that

VL(R. A, u) = 0, (18)

where

VL(R,2,u)=—H"(I + HRH")"'H - Ja,afl + ul.
(19)

By multiplying both sides of Equation (18) on the right with
R we have the following:

- HH(I + HRH")"'HR = (Ja,al’ — uI)R. (20)

When 4 #m, Aagall —ul is invertible. According to
Equation (20), we have the following:
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rank(R) = rank((la,al’ — uI)R)
=rank(-H"(I + HRH")"'HR) (21)
<rank(H).

When A=

H‘;:”Z) since

(Aa,afl — ul)a, =0, (22)
(Aaa — ul)u = —pu,Vu € CM, allu =0,

Aazal! — ul is a singular matrix whose rank is M — 1. Accord-
ing to the Sylvester inequality, we have the following:

rank((da,al’ — uI)R)
> rank(Aa;al! — ulI) + rank(R) - M (23)
=rank(R) - 1.

Thereby,

rank(R) <rank((Aa,all — uI)R) + 1
=rank(—-H"(I + HRH")"'HR) +1 (24)
<rank(H) + 1.

From the analysis above, we see that the rank of the
optimal transmit covariance matrix must be no more than
the rank of the channel matrix plus 1, and equality can be
obtained only when the dual variables satisfy the equation
A=k O

lla ][>

Furthermore, when the transmit steering vector a, is
orthogonal to the row space of the channel matrix H, which
means Ha; =0, we have the following:

(Aai'a,ai’ - pai' )R = (Alla;|* - p)ai’R =0, (25)

by multiplying both sides of Equation (20) on the left with
all. According to the radar SNR constraint (Equation (14b)),
al’R # 0, therefore A|a;||> —u =0, 1=-L. That is to say,

fla ]
when a, is orthogonal to the row space of H, there may exist
an optimal transmit covariance matrix R that satisfies
rank(R) =rank(H) + 1.

Proposition 2. There always exists an optimal transmit
covariance matrix R whose rank equals the rank of the chan-
nel matrix H.

Proof. To illustrate this point, we first consider the following
optimization problem:

H
max log|Ix + HRH

, (26a)

st.tr(QR)=P; (i=1,2,---,n), (26b)

where Q; (i=1,2, ---,n) are given Hermitian matrices and
the rank of H is k. 0
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Theorem 1. If the feasible set of the optimization variable R in
Equation (26) is nonempty, bounded, and closed, there must
be an optimal solution whose rank is no more than r, where r
satisfies as follows:

<k +n<(r+1)>% (27)

Furthermore, if we change some of the equality constraints to
inequality constraints, the result will still be true.
The proof is given in Appendix A.

As for the optimization problem (Equation (14)), rewrite
the constraints (Equations (14b) and (14c)) as tr (a,al’R) >y
and tr(IR) = P, respectively. Thus, Equation (14) is expressed
in the form of Equation (26) with n=2. According to Theo-
rem 1, Equation (14) has an optimal solution whose rank is no
more than r, where r satisfies r* <k* +2<(r + 1)2. Since r,
k € Z, we obtain that r = k, which means that there is always
an optimal transmit covariance matrix whose rank equals to
the rank of the channel matrix.

Proposition 3. The eigenvectors of the optimal transmit
covariance matrix R are linear combinations of the channel
matrix H and the transmit steering vector a;.

Proof. Since the transmit covariance matrix R is semidefinite,
assume that

R=CCH, (28)

where C € CM*M s an arbitrary M X M matrix, whose col-
umn space is the same as the column space of R.

By substituting Equation (28) into Equation (14), we
rewrite the optimization problem as follows:

max log|Ix + HCCHH"|, (29a)
s.t. allCCla, >, (29b)
tr (CCH) =P. (29¢)

The Lagrange function of Equation (29) is given by the
following:

L(C,C*, A, u)= — log|I + HRH"| + A(y — al'Ra,)
+ p(tr(R) = P),
(30)

where R=CC"H, 1 and y are dual variables. According to the
KKT conditions, the gradient of the Lagrange function
equals zero.

oL(C,C*, 2, p)

aC* (31)
= - H¥(I + HCC"H")'HC - Aa,al’C + uC
=0.

Rewrite Equation (31) as follows:

1 2
C=-HY(I1+ HCCHH")'HC + -a,allC
H H

1 2
= -HUX+ZaY,
7 H

where X = (I + HCC'H")"'HC and Y =af/C.

From Equation (32), we see that the columns of C belong
to the linear space spanned by the columns of H and 4.
Thus, the eigenvectors of the optimal transmit covariance
matrix R are linear combinations of the channel matrix H
and the transmit steering vector a;. I

4. Optimal Transmit Beamforming in
Particular Cases

By utilizing the properties provided in Section 3, we can solve
the optimization problem (Equation (14)) analytically under
particular situations. In this section, we consider two partic-
ular situations, offering insights into the MIMO DFRC
system.

4.1. Single-Antenna Downlink User. Consider the case where
the communication user has only one receive antenna, i.e.,
K =1. In this situation, the channel matrix becomes a row
vector:

H=h", (33)

where h is referred to as the channel vector. Accordingly, the
objective function (Equation (14a)) becomes the following:

log(1 + h*Rh). (34)

Since the value of Equation (34) monotonically increases
with kY Rh, which is the power of the signal transmitted to
the communication user, maximizing Equation (34) is equiv-
alent to maximizing h'Rh. Therefore, in this situation, we
rewrite the optimization problem as follows:

H
max k" Rh, (35a)
s.t. alRa, >y, (35b)
tr (R) = P. (35¢)

4.1.1. Optimal Beamforming Design. According to Proposi-
tions 2 and 3, there is an optimal solution whose rank is no
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more than 1, and its eigenvector is a linear combination of h
and a;. Thus, we assume that

R=cc", (36)

¢ =ah + ba,, (37)

where ¢ € CM and a, b € C. Substituting Equation (36) into
Equation (35) yields the following:

Hp 2
max [c"h?, (38a)
s.t. [cHa? >, (38b)
cfle=P. (38¢)

Solving the KKT conditions of Equation (38), we
find that

(i) When 0<y< Plﬁ';:"rz"z,
2

jal = VP
A1, (39)
6] =0,
where the phase of a is arbitrary.

(i) When 222l < < p||a,| 3,

(11113
la| =n,
VT |hHat| (40)
b =5 = T3 s
a3 a3
where
2 _
o [ Plafi- )

ka3 - " a,

and the phases of a and b should satisfy as follows:
arg(a) — arg(b) = arg(ha,), (42)

if ha, # 0 or can be arbitrary if h'’a, = 0.
(iii) When y > P||a,|[3, there is no feasible solution.

The derivation is provided in Appendix B.

The formation of ¢ indicates that the design of the opti-
mal waveform is actually power allocation between the radar
target and the communication user. The coefficients a and b
represent the amplitudes of resources allocated for
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communication and radar sensing, respectively. In case (i),
the requirement for the radar sensing SNR is low and |b| =0.
In this case, we do not need to particularly allocate power to
the radar target, as the signal transmitted to the communi-
cation user already sheds enough power on the radar target
to meet the SNR requirement. In case (ii), the requirement
for the radar sensing SNR is higher. In this case, as the SNR
requirement increases, y increases, thereby |a| decreases and
|b| increases, which means that we need to allocate more
power to radar sensing. When y = P||a,||3, |a| =0, the multi-
antenna transmitter works like a phased-array radar and the
radar SNR achieves its upper bound. In case (iii), there is no
feasible solution, since we can only achieve limited radar
SNR with limited transmit power.

When the radar target and the communication user are
in the same direction, which means that g, is parallel to h, the
communication waveform also serves as the radar sensing
waveform, and there is no need to allocate the transmit
power. When g, is orthogonal to h, radar sensing and com-
munication functions operate independently without any
energy sharing between each other. The expressions of the
power allocated for communication and radar sensing are
|al?||k||5 and |b|?||a,||3, respectively, which satisfy the
equation |af?|[|[3 + [b[*||a|3 = P.

4.1.2. Channel Capacity Analysis. By substituting the optimal
solution R into Equation (34), we obtain the channel capacity
with respect to radar SNR threshold y as follows:

(i) When 0<y< Pm‘l‘;‘z,
2

C = log(1 + P[h[3). (43)

The channel capacity is constant.

(if) When 28l <y < Pllay[ 2,
hH 2
C= log(l + (v7ih"a j vh) ) (44)
a3
where
B = (Pl = r)(IIhl3]|al3 - B a,[?). (45)

(iii) When y> P||a;||3, the transmit power is not enough
to meet the radar SNR requirement.

In case (i), since there is no dedicated radar signal (the
communication signal simultaneously serves as a probing
function), the channel capacity is constant and equals the
achievable capacity of the pure MIMO communication sys-
tem without radar function. In case (ii), we see that % <0,
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which means the channel capacity is negatively correlated
with the threshold y, which indicates the performance trade-
off between radar sensing and communication.

4.2. Multiantenna Downlink User with Specific Relationships
between the Channel Matrix and the Transmit Steering
Vector. Although it is difficult to solve Equation (14) analyti-
cally in general situations, the analytical solution is acquir-
able when the channel matrix H and the transmit steering
vector a; satisfy certain relationships, i.e., a; is either parallel
to one of the right-singular vectors of H or orthogonal to the
row space of H.

In these two cases, we find that the eigenvectors of the opti-
mal transmit covariance matrix R are parallel to the right-
singular vectors of H and a;. The corresponding eigenvalues
are chosen to meet the radar SNR constraint (Equation (14b))
first, and the rest of them are determined by using water-filling
algorithm [25] under the sum-power constraint (Equation (14c))
(the specific derivation is provided in Appendix C).

Since the eigenvalues of R denote the transmit power,
this result reflects the power allocation between radar and
communication in MIMO DFRC systems.

5. Numerical Results

In this section, we demonstrate the performance of MIMO
DFRC systems via numerical simulations.

Under the situation of a single-antenna downlink com-
munication user, we consider a ULA transmitter with half-
wavelength element spacing d =% and the number of the
transmit antennas M = 10. The radar target is located at
angle 6. The communication signal is transmitted directly
from the transmitter to the communication user. Given the
communication user direction 6, the channel vector h is
given by the following:

h= [ 1 ¢msinfc /9 sin Oc ]H‘ (46)

In the simulation, we use SNR loss to represent the SNR
threshold in Equation (13), given by the following:

SNR, )

— 47
SNRuax (47)

SNRloss = 101og;, <

where SNRyax = @3 ||a,||3P||a;||3 is the maximal achievable
SNR under the sum-power constraint.

We perform the first simulation to demonstrate the
channel capacity versus radar SNR loss with 6 set to —30°
and O set to —30°, 0°, and 30°. The transmit SNR P/¢? =
13dB. The results are shown in Figure 2. Since both
Equations (13) and (14) are convex and can be solved by the
CVX, a package for specifying and solving convex programs
[26, 27], we also compare the analytical expressions of the
optimal solutions given in Section 4.1 with the CVX results,
denoted by “analytical” and “CVX,” respectively. We find
that for the same 6, the CVX and analytical expressions
yield the same curve, verifying the correctness of the deriva-
tion in Section 4.1.

Capacity (bit/s/Hz)
=

Radar SNR loss (dB)

—+— Analytical, communication user at -30°
—®— Analytical, communication user at 0°
—— Analytical, communication user at 30°
-%- CVX, communication user at 30°

Fiure 2: Channel capacity versus radar SNR loss (single-antenna
downlink user).

From Figure 2, the channel capacity increases with the
radar SNR loss when the communication user and the radar
target are in different directions, 6 # 6, while the capacity is
fixed when 6 =6.. We explain the phenomenon under dif-
ferent locations of single-antenna downlink users and
targets.

(1) When @ = —30° and 0. = 30°, it holds that kf'a, = 0.
In this case, there is no energy sharing between radar
and communication functions. As a result, which is the
channel capacity reduces to 0 when the radar SNR loss
is 0, because all the transmit energy is allocated to the
radar. As the radar SNR loss becomes higher, the chan-
nel capacity increases and reaches its upper bound,
which is the channel capacity of a communication-only
system with all the transmit power allocated to
communication.

(2) When 6 =6, which means that a, is parallel to h,
the transmit power is shared between these two func-
tions. Consequently, by allocating all the transmit
power in the desired direction, the channel capacity
is fixed and achieves the upper bound, and the radar
SNR is maximized simultaneously.

(3) When 0: = 0°, the steering vector a, is neither par-
allel nor perpendicular to h. Part of the transmit
power for communication is also used for probing.
Therefore, even when the SNR loss is strictly 0, the
capacity is still positive. The capacity curve stays
between those of . = —30° and 30°.

In the second simulation, we show the transmit beam
patterns for different radar SNR losses in Figures 3(a) and
3(b), where @ is set to —30°, 6. is set to —30° and 0°,
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FiGure 3: Transmit beam pattern for different SNR loss (single-antenna downlink user): (a) radar target at —30°, communication user at

—30°; (b) radar target at —30°, communication user at 0°.

respectively. The beam patterns are normalized to the peak
value of the one obtained under 0dB radar SNR loss. In
Figure 3(a), when the communication user and radar target
are in the same direction, § = 0, the transmit beam pattern
is toward 6 for different radar SNR losses. In this case, there
is no power allocation between radar and communication,
because the communication signal simultaneously serves for
probing. In Figure 3(b), when 6 # 6, there are two beams
towards € and 6, respectively, indicating that the transmit
power is allocated between radar and communication func-
tions. As the radar SNR loss increases, less power is allocated
to the radar target.

Our third simulation verifies the achievability of the per-
formance bound by calculating the bit error rate (BER) of
communication using the proposed beamforming design.
We use a low-density parity-check (LDPC) code [28] whose
rate is 3/4, block length is 3,240, and a 64-QAM modula-
tion. Thus, the rate of communication is 4.5bits/s/Hz.
According to Figure 2, the rate is achieved when the radar
target is located at €= —30°, the communication user is
located at 8- = 30° and radar SNR loss is 0.5 dB. We obtain
the precoding matrix under this condition using the results
in Section 4.1.1. The relationship between BER and transmit
SNR is shown in Figure 4. From Figure 4, we see that as the
transmit SNR increases, the BER correspondingly decreases.
When the transmit SNR achieves 16 dB, the BER becomes
less than 107°. Since the results in Figure 2 are achieved
under the condition that the transmit SNR is 13dB, our
proposed beamforming design is about 3 dB from the capac-
ity limit. The gap is mainly caused by the performance of the
LDPC code we use.

We demonstrate the communication BER and the radar
pulse compression performance with respect to different
directions of communication user and radar target in our

BER

13 13.5 14 14.5 15 15.5 16
Transmit SNR (dB)

FIGURE 4: BER versus transmit SNR.

fourth simulation. We set the transmit SNR P/¢? to 13 dB,
radar SNR loss to 3 dB, and the direction of radar target 6 to
—30°. Figure 5(a) shows the relationship between the BER of
communication and the direction of the downlink user using
the proposed beamforming design. For communication, we
use an LDPC code [28] whose rate is 5/6, block length is 648,
and a 64-QAM modulation. As shown in Figure 5(a), the
BER is related to the relationship between h and a;. In par-
ticular, when 6. is around 6, the BER achieves its minimum.
The relationship between the amplitude of radar pulse com-
pression and the direction of the downlink user is shown in
Figure 5(b). We see that when 6 is around 6, the radar pulse
compression amplitude achieves the maximum value. Oth-
erwise, the amplitude is constant due to the constraint on
radar SNR. Since h and a; are nearly parallel to each other
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FiGure 5: The communication BER and the radar pulse compression performance with respect to different downlink user’s directions: (a)
BER versus 0¢; (b) normalized radar pulse compression amplitude versus 0.
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Ficure 6: Channel capacity versus radar SNR loss (multi-antenna downlink user): (a) a; parallel to one of the right-singular vectors of H; (b)

a; orthogonal to the row space of H.

when 6. is around 6, most of the transmit power is shared
between radar and communication. As a result, the optimal
communication performance and the radar SNR constraint
are achieved at the same time.

We note that our results are different from those in [21],
which states that there is SNR loss for radar when the com-
munication user and the radar target are in the same direc-
tion. The reason is that in this paper, we use the capacity to
evaluate the communication performance, not restricting to
using a certain coding strategy for communication. However,
the signaling scheme in [21] constrains that the downlink
user receives desired signals, which causes SNR loss for
radar.

Under the situation of a multiantenna downlink commu-
nication user, we consider a transmitter with M = 10 anten-
nas and a communication user with K =2, 3,4 antennas,
respectively. The transmit SNR P/¢? is 13 dB. The commu-
nication channel is Rayleigh fading, i.e., the entries of H obey
independent standard complex normal distribution. The
transmit steering vector a; is set either parallel to one of
the right-singular vectors of H or orthogonal to the row
space of H.

We perform the fifth simulation to demonstrate the rela-
tion between the channel capacity and the radar SNR loss
when the communication user has multiple receive antennas.
The results are shown in Figure 6. The analytical solution

85U8017 SUOWWOD @AREaI 3(dedl|dde au Aq peusenob ake sapiife YO ‘8sn Jose|ni Joy Areiq1T8ul|uO 8|1 UO (SUORIPUD-PUB-SWBHLI0D" A3 1M ARIq | BU1|UO//SA1Y) SUOTPUOD PUe SWB | 8L 88S " [7202/0T/90] U0 ArelqiauliuO A8|IM ‘80UBIOS JO 3InIisuU | UUewz B A £8£2588/v202/6V0T 0T/I0P/W0D A8 | Afe.q1|Bul U0 "Uoeesa e 1//:Sany Wiy papeojumod ‘T ‘vZ0zZ ‘dsiel



10

TasLE 1: Runtime of solving the optimization.
Number of receive antennas CvX Analytical solution
K=1 0.915s 3.64%x107%s
K=4 1.40s 2.44x107%s

given in Section 4.2 is compared with the CVX results when
K =4, denoted by “analytical, K=4" and “CVX, K=4" in
Figure 6, respectively.

From Figure 6, the channel capacity increases with radar
SNR loss, and the number of communication user’s receive
antennas. We note that there are some differences and simi-
larities in Figures 6(a) and 6(b), which are explained in the
following discussion.

(1) When a; is parallel to one of the right-singular vectors
of H, there is energy sharing between radar and com-
munication. The amount of energy shared depends on
the corresponding singular value of H. Thus, even when
the radar SNR loss achieves 0, the capacity is still posi-
tive, and when radar SNR loss is high enough, the capac-
ity achieves a maximum value, which is the channel
capacity of a communication-only system with all the
transmit power allocated to communication.

(2) When g, is orthogonal to the row space of H, there is
no energy sharing between radar and communica-
tion. Therefore, when the radar SNR loss is 0, the
channel capacity reduces to 0 at the same time. The
maximum value of capacity is achieved only when
the radar SNR reaches 0.

(3) In both situations, when radar SNR loss achieves 0, the
capacity is almost identical regardless of K. This is
because when radar SNR loss is low, the transmit energy
is mainly allocated to radar. And when radar SNR loss is
high, the maximum value of capacity increases with K
and is irrelevant to a; because the transmit energy is
mainly allocated to communication.

We also compared the runtime of solving the optimiza-
tion using CVX and the analytical solutions given in Section
4. Performed on a personal computer with Intel (R) Core
(TM) i7-9750H CPU @ 2.60 GHz and 16.0 GB RAM. The
average runtime is given in Table 1. The results show that by
using the analytical solutions in this work, the time con-
sumption of solving the problem is significantly reduced.

6. Conclusion

In this paper, we consider a simplified scenario of a MIMO
DFRC system where there is only one downlink user and one
radar target. We take achievable communication rate as the
communication performance metric and radar SNR as the
radar performance metric. By constraining radar perfor-
mance and optimizing communication performance, we for-
mulate an optimization problem to study the performance
bound of the system. Through theoretical analysis, we pro-
vide properties of the optimal transmit covariance matrix.
Then, in the situation where the downlink user has only one
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receive antenna, we find the analytical expressions of the
optimal waveform design and corresponding channel capac-
ity. When the transmit steering vector is either parallel to one
of the right-singular vectors of the channel matrix or orthog-
onal to the row space of the channel matrix, we also provide
analytical solutions to the problem. The analysis and solu-
tions show that the DFRC system essentially shares and allo-
cates transmit power between radar target and downlink
users, reveal the performance tradeoff between these two
functions and facilitate the discussion on the performance
bound of MIMO DFRC systems.

Appendix
A. Proof of Theorem 1

Inspired by the derivation in [29], we prove Theorem 1
mainly by assuming there is an optimal solution with rank
r first and then discussing whether we can construct a new
optimal solution with lower rank.

If the feasible set of the optimization problem (Equation (26))
is bounded and closed, an optimal solution of Equation (26)
must exist. Suppose that there is an optimal solution R, whose
rank is r. Perform an eigenvalue decomposition on R;:

R, = UAUH =

1

liuiu{{ = ) Vile = VVH, (Al)

"
=1 i

Tt

where v;=/Au; (i=1,2,--,r), V€ CM", Construct the
matrix

R,=V(I+ ad)VH, (A.2)

where A € C™" is a Hermitian matrix.
Assume that A satisfies the following:

HVAVHEHH =,
(A.3)

tr(Q;VAVH) =0, i=1,2,,n.
According to Equation (A.3),

log|/I + HR,H"| = log|I + HV(I + aA) VI H"|
= log|lI + HVVYH"|
= log|I + HRH"|.
(A.4)

The value of the objective function remains the same when
we change the value of the optimization variable from R, to
R,. According to Equation (A.3),

tr(Q;R,) = tr(Q; V(I + aA) V)
=tr(Q;VVH) (A.5)
=tr(QRy), i=1,2,-,n,

which means all the constraints hold for R,,. Therefore, R, is
also an optimal solution to Equation (26) as long as it satis-
fies Equation (A.3).
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Take the real and imaginary parts of each element in A as
a real variable. Since A is Hermitian, there are r? real vari-
ables in A in total. According to Theorem 1, the rank of H is
k; thus, Equation (A.3) is equivalent to k? real linear
equations, and Equation (A.3) is equivalent to k*> 4+ n real
linear equations with all the constant terms equal to 0. If
2> k? + n, then the equation set (Equation (A.3)) has a non-
zero solution A, # 0. Denote the eigenvalue with the largest
absolute value of A, as 4y, and let

a=—-—. (A6)

In this case, R, > 0 and rank (R,) <r - 1.

In conclusion, if there is an optimal solution to
Equation (26) with rank r and r*>k? + n, then there must
be an optimal solution whose rank is no more than r — 1.
Therefore, Equation (26) has an optimal solution whose rank
is no more than r, where r satisfies as follows:

<k +n<(r+1)>% (A7)

If we change some of the equality constraints into inequality
constraints, the conclusion remains true, as can be proved in
a similar manner.

B. Solving the optimization (Equation (38))

Before solving Equation (38), we analyze the feasibility of the
optimization problem. According to Equation (38¢), we have

ai'cclla, < c|3]| a5 = Plla|3. (B.1)

where the equality is achieved when ¢ is parallel to a,. Thus, y
in Equation (38b) must satisty the following:

v <Plaj. (B2)

Otherwise, there is no feasible solution for Equation (38),
which proves the result of case (iii) in Section 4.1.1.

Since Equation (38) satisfies Slater’s condition, we solve it
by considering its KKT conditions. The Lagrange function of
Equation (38) is given by the following:

L(c,c*, A, u)

B.3
= — hflecBh + A(y — allec?a,) + u(tr(ec?) — P), (B.3)

where 1 and p are dual variables. Then, its KKT conditions
are as follows:

11
oL(c, c*, A, p) . .
T:_h ch - Jag ca; + pc =0,
tr(cc) — P =0,
y —allecta, <0, (B.4)
A>0,
Ay — af'ecfla,) = 0.
Rewrite Equation (B.4) as follows:
hH Jall
c="Cp cat, (B.5)
U

To solve Equation (B.4), we need to calculate a and b in the
assumption (Equation (37)) by substituting Equation (37)
into Equation (B.4).

According to Equation (B.4), at least one of A and y —
allcc’a, equals 0. Consider the case that A=0. Then,
Equation (B.5) becomes the following:

hc

c=—-1~nh. (B.6)
U

Substituting Equation (37) into Equations (B.4) and (B.6)
yields the following:

|a|*h®h + a*bhPa, + ab*al'h + |b|*alla, = P,
hh + b
ah + ba, = TN Ay
;4

(B.7)
According to Equation (B.7), we find that

b=0. (B.8)

By substituting Equation (B.8) into Equation (B.7), we obtain
that

VP
|al =Tl (B.9)

where the phase of a is arbitrary. Substitute the solution of ¢
into Equation (B.4). We then find that

P|hta,|?
y<——, (B.10)
1h]13
which proves the result of case (i) in Section 4.1.1.
Next, consider the case that
y —afcctla, = 0. (B.11)

By substituting Equation (37), we rewrite Equations (B.11)
and (B.5) as follows:
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|a|*al’hhfa, + a*balla,h a,
+ab*al'hala, + |b|*alla,alla, =y,
ah + ba,
B ah’h + bhta, b A(aal'h + balla,)
! !

a;.

(B.12)

Combining Equations (B.7) and (B.12), we obtain that

Pladi—7
al=n:= . B.13
ol =n \/||h||§|at|%—|hHat2 (513

From Equation (B.12), we find the relationship between the
phases of a and b:

{ arg(a) = arg(ahh + bh"a,), (B.14)

arg(b) = arg(aal’h + balla,).

When h'la, =0, Equation (B.14) always holds, and the
phases of a and b are arbitrary. When hfa, # 0, we have the
following:

arg(a) — arg(b) = arg(h'’a,). (B.15)

This results from the facts that '’k in Equation (B.14) is a
real number and arg(a) =arg(ah'’h), which implies arg(a)
=arg(bhfa,). Similarly, arg(b) = arg(aal’h).

Substituting Equation (B.13) and the relationship
between the phases of a and b into Equation (B.7) yields
the following:

| |: \/77 |hHat| (B.16)

a3l ™

P|h"a,?

[EE
Equations (B.13), (B.15), and (B.16), we prove the result of
case (ii) in Section 4.1.1.

From

In addition, since [b|>0, we have y>

C. Solving the optimization (Equation (14))
under the situation of Section 4.2

To better depict the relationship between a; and H, we first
perform a singular value decomposition (SVD) on the chan-
nel matrix H:

H=UyxvVH, (C.1)

where

EVII-_; = [hlel hzez hKeK]H, (C2)

IET Signal Processing

hy, hy, +++, hx are the singular values of H and ey, e,, -+, ex €
CM are the corresponding right-singular vectors.

Substituting Equation (C.1) into the objective function
(Equation (14a)) yields the following:

log|Ix + HRHY| = log|UU* + UTZVHRVEHUH|
= log|Ix + EVHRVEH|.
(C.3)

Using the assumption R = CC" in the proof of Proposition 3,
we rewrite the optimization problem (Equation (14)) as
follows:

max log|Ix +XVHCCHVEH|, (C.4a)
s.t. alCCHa, >, (C.4b)
tr(CCH) = P. (C4c)

The KKT conditions of Equation (C.4) give that

OL(C.C*, A,u) 0
aC* - (C.5)
tr(CC") = P=0,

where

oL(C,C*, A, )
oC*
= - VyEH(I+zviEcchvyst)-1zviic
—Aa,al’C + ucC,

(C.6)

and 4, p are dual variables.

C.1 When a, Is Parallel to One of the Right-Singular Vectors
of H. Without loss of generality, assume that a, is parallel
to e;

a, = ae,. (C.7)

Inspired by the derivation in [25] and the properties
provided in Section 3, we speculate that in this situation
the rank of the optimal transmit covariance matrix R equals
that of H and the eigenvectors of R are parallel to the right-
singular vectors of H. Thus the optimal C can be expressed as
follows:

C=[ce e ckex 0 -+ 0] (C.8)

First, we consider the case in which y — al’CC"a,<0. In
this case, the radar SNR constraint (Equation (C.4b)) is inac-
tive. Thus the optimal solution is obtained by solving
Equation (C.4) without regard to Equation (C.4b), in which
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le1|?, [ea]?, +++, |ck | are obtained by utilizing the water-filling
algorithm [25].

If the optimal solution obtained in this way does
not satisfy that y —al’CCHa,<0, then there must be the
following:

y —alCCla, =0. (C.9)

Substituting Equations (C.7) and (C.8) into Equation (C.9)
and solving the equation we have the following:

4
2

Combining Equations (C.8), (C.8), and (C.5), the KKT con-
ditions are rewritten as follows:

[ae; aze, agex ] =0,
K
y (C.ll)
Slef=P-laf=p- "
i=2 |al

where ay, a,, -+, ag are given by the following:

2 .
A=, i=1,
(" L+ [hf?ef?)

(o)
1+ [hPel?)

According to Equations (C.11) and (C.12), |¢,|?, |cs]?, -,
|cx|* are solved by using the water-filling algorithm:

i=2,3,-,K.

(C.12)

1 1
Icilz—max(ﬂ—w, 0>, i=2,3,K. (C.13)

The dual variables 4 and u are solved by substituting
Equations (C.10), (C.12), and (C.13) into Equation (C.11).

In conclusion, the optimal transmit covariance matrix is
as follows

K
R= CCH = Z |Ci|ze,»ef'1, (C14)
i=1
where |¢;|?, |c,]?, -+, |ck|* are given by previous derivation.

C.2 When a; Is Orthogonal to the Row Space of H. Assume
that

a:
€x41 :m7 (C.15)
t

13
and the optimal C is in the form of
C=[cie; - cxex Cxii€ki1]- (C.16)

Similar to the derivation in Section C.1, the KKT condi-
tions are rewritten as follows:

[0131 ae aK+1eK+1] =0,
K
y (C.l7)
Z|Ci|2 =P- |CI<+1|2 =P-—,
i=1 |al
where
</4 _ %)Ci, i=1,2, K,
a; = 1+ [hy[c] (C.18)
(u = Aagl*)ci, i=K+1

Solving the KKT conditions, we obtain that the optimal
transmit covariance matrix is given by the following:

R=CCH = Ij§+11|c,-|2eiefl , (C.19)
where
ek |* = Ia% (C.20)
and
|ci|2:max(/%—ﬁ, 0), i=1,2,-,K. (C.21)

The dual variables 4 and p are solved by substituting
Equations (C.18), (C.20), and (C.21) into Equation (C.17).

Although we assumed the form of the optimal transmit
covariance matrix in the derivation, the optimal solutions we
obtained in Sections C.1 and C.2 satisfy the original KKT
conditions, which means the results are exactly the optimal
solution under the corresponding cases. In addition, the opti-
mal solutions we obtained in these two cases conform to the
properties we provided in Section 3.
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