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It is a fundamental problem to analyze the performance bound of multiple-input multiple-output dual-functional radar-
communication systems. To this end, we derive a performance bound on the communication function under a constraint on
radar performance. To facilitate the analysis, in this paper, we consider a simplified situation where there is only one downlink user
and one radar target. We analyze the properties of the performance bound and the corresponding waveform design strategy to
achieve the bound. When the downlink user and the radar target meet certain conditions, we obtain analytical expressions for the
bound and the corresponding waveform design strategy. The results reveal a tradeoff between communication and radar perfor-
mance, which is essentially caused by the energy sharing and allocation between radar and communication functions of the system.

1. Introduction

With the evolution of radar and wireless communication
technology, there is a growing shortage of spectrum resources
[1]. To alleviate this problem, many spectrum sharing strate-
gies have been proposed in recent years. These strategies are
roughly divided into two categories, i.e., spectrally overlaid
systems, wherein radar and communication systems jointly
use the same frequency band [2, 3, 4, 5], and dual-functional
radar-communication (DFRC) systems, wherein radar and
communication are designed in a joint manner [1, 6, 7, 8].

Due to the similarities in both signal processing algo-
rithms and hardware architecture [8, 9], there is a growing
demand for implementing radar and communication in one
system [1, 6, 7, 8]. To this end, DFRC technology has
attracted a lot of attention, as DFRC design reduces system
overhead and saves spectrum resources [1, 6, 7]. Among
typical DFRC schemes [10, 11, 12, 13], multiple-input
multiple-output (MIMO) DFRC is of great significance
because of the benefits introduced by transmitting diversity
[13, 14, 15]. Therefore, in this paper, we analyze a funda-
mental performance bound of MIMO DFRC systems.

Many previous works have shown that there are perfor-
mance tradeoffs between radar and communication in a
DFRC system [8, 16, 17]. However, the results are mostly
numerical and are achieved under specific signaling and
encoding schemes. Just as researchers study channel capacity
as a universal performance bound for pure communication
systems [18, 19, 20], it is important to find a fundamental
performance bound for a MIMO DFRC system.

While it is generally difficult to simultaneously analyze the
performance bounds of radar and communication, a com-
mon approach in existing works is to calculate the theoretical
performance bound of one function while constraining the
other [16, 21, 22, 23]. In [21, 23], the radar performance limit
is considered under a communication requirement that the
downlink user receives the exact desired symbols. Liu et al.
[16] and Chen et al. [22] used channel capacity to evaluate the
communication performance limit, not restricted to a certain
signaling scheme, under some constraints on radar perfor-
mance. In [21], a simplified single downlink communication
user scenario is considered, and an analytical solution to the
performance bound is given. However, the strict signaling
strategy in [21] causes radar performance degradation. While
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in [16, 22, 23], multiuser multitarget scenarios are considered.
In such complicated scenarios, the performance bounds are
obtained by solving complex optimization problems, and only
numerical solutions are obtained.

In this paper, we aim to provide an analytical expression
of a fundamental performance bound of a MIMO DFRC
system, such that the tradeoff between radar and communi-
cation functions is intuitively revealed. To facilitate the anal-
ysis, we consider a simplified situation where there is only one
downlink user and one radar target. Taking achievable com-
munication rate and radar signal-to-noise ratio (SNR) as the
communication and radar performance metrics, respectively,
we formulate an optimization problem by constraining the
radar SNR and optimizing communication performance. We
first theoretically analyze the properties of the optimal solu-
tions to the problem. Then, under some specific situations,
i.e., the downlink user has only one receive antenna or the
channel matrix and the radar transmit steering vector satisfies
certain interrelation, we obtain analytical solutions, which
imply an optimal transmit design strategy that achieves the
corresponding theoretical performance limit and also offers
insight to general MIMO DFRC systems. The main contribu-
tions of this work are summarized as follows:

(1) An optimization for formulating a performance
bound on MIMO DFRC systems. In the simplified
situation where there is only one downlink user
and one radar target, we formulate the optimization
by maximizing the achievable communication rate
under the constraint of radar SNR.

(2) Properties of the optimal solutions. By theoretically
analyzing the optimization, we derive properties the
optimal solution satisfies, which offers insights into
the optimal beamforming design and guidance for
solving the optimization.

(3) Analytical solutions to the optimization under some
specific situations. Since solving the optimization ana-
lytically in general situations is difficult, we derive ana-
lytical solutions under the situationswhere the downlink
user has only one receive antenna andwhere the channel
matrix and the radar transmit steering vector satisfy
certain interrelation. The optimal solutions imply the
optimal transmit designs that achieve the theoretical
performance bound of MIMO DFRC systems and
show that the optimal transmit designs essentially share
and allocate the transmit power between the radar target
and the downlink user.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the system model and formulates a
performance-bound analysis as the optimization problem.
Section 3 provides a theoretical analysis to the properties
of the optimal solution to the problem. In Section 4, we
derive analytical solutions to the optimization problem in
the specific situations mentioned above. Simulations are per-
formed to verify the analysis in Section 5. Section 6 draws
conclusions.

1.1. Notation. We use boldface lowercase letters for column
vectors and boldface uppercase letters for matrices. Super-
scripts ð⋅ÞH , ð⋅Þ∗, and ð⋅Þ† represent Hermitian transpose,
conjugate and Moore–Penrose inverse, respectively, and
trð⋅Þ : stands for the trace of a matrix. The N-dimensional
complex Euclidean space is expressed as CN . A complex
Gaussian distribution with mean μ and covariance Σ is
expressed as CNðμ;ΣÞ :. The statistical expectation is repre-
sented by E½⋅� :. j⋅j : and k⋅jj2 denote absolute value and Euclid-
ean norm, respectively.

2. System Model and Problem Formulation

We consider a theoretical performance bound of a MIMO
DFRC system. To this end, we first introduce the system
model, the communication and radar performance metrics
as well as the transmit power constraint. Then, we formulate
the fundamental performance bound as an optimization
problem.

A MIMO DFRC system simultaneously performs MIMO
communication and MIMO radar functions, whose wave-
form is optimized to meet the requirements of both radar
and communication [6]. To facilitate the theoretical analysis,
in this paper, we consider a simplified scenario where there is
only one communication user with K receive antennas, one
point-like radar target located at angle θ and no clutter, as
illustrated in Figure 1. In addition, we assume that the trans-
mit signal is narrow-band, and the system uses the same
transmit antennas to receive radar returns. Denote the num-
ber of transmit antennas by M. The transmit waveform x2
CM is the sum of a series of linear precoded waveforms, given
by the following:

x ¼Ws; ð1Þ

where s2CN represents N orthogonal waveforms and W 2
CM×N is the precoding matrix to be designed. The orthogo-
nality of the waveforms s means that

Communication user Radar target

Shared transmit platform

FIGURE 1: System model of a MIMO DFRC system [13].
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E ssH½ � ¼ IN : ð2Þ

2.1. Single-User MIMO Communication Performance. The
received signal of the communication user yC 2CK is
expressed as follows:

yC ¼Hx þ nC; ð3Þ

where H 2CK×M is the channel matrix, and nC 2CK is addi-
tive white Gaussian noise (AWGN) of the communication
receiver, i.e., nC ∼CNð0; σ2IKÞ :. Without loss of generality,
we normalize the power of the AWGN by setting σ2 ¼ 1.

The achievable rate is a fundamental bound of commu-
nication performance. It is determined by the covariance
matrix of the transmit signal, given by the following:

R¼ E xxH½ � ¼WWH 2 CM×M: ð4Þ

The achievable rate from the transmitter to the communica-
tion user is calculated as follows [18]:

C ¼ log IK þ N†
CHRHH

�� ��¼ log IK þHRHHj j; ð5Þ

where NC ¼E½nCnHC �: ¼ IK is the covariance matrix of the
AWGN vector nC .

2.2. MIMO Radar Performance. Given target direction θ, the
signal impinging on the target is aHt ðθÞ :x, where atðθÞ : 2CM is
the transmit steering vector. For a uniform linear array
(ULA), at is given by the following:

at θð Þ ¼ 1 ej2π
d
λsin θ ⋯ ej2π M−1ð Þdλsin θ

Â Ã
H ; ð6Þ

where d is the interval between adjacent antennas and λ is the
wavelength. The received signal yR 2CM is expressed as fol-
lows:

yR ¼ α0ar θð ÞaHt θð Þx þ nR; ð7Þ

where α0 is the target amplitude which is related to the radar
cross-section of the target and the path-loss of the signal,
arðθÞ : 2CM is the receive steering vector, nR 2CM is the
AWGN of the radar receiver, i.e., nR ∼CNð0; IMÞ :. We have
arðθÞ : ¼ atðθÞ : if we use the same antenna array to receive
radar returns. We also note that since the radar performance,
such as ranging accuracy, is directly related to the SNR, the
Doppler frequency and time-delay of the target echo are
omitted here for simplicity. The received radar echo is beam-
formed to enhance the SNR, yielding

r ¼ wHyR ¼ α0wHar θð ÞaHt θð Þx þ wHnR; ð8Þ

where w2CM is the receive beamforming vector.
We use SNR to evaluate the radar performance, which is

given by Imani et al. [24] as follows:

SNR¼E
α0wHar θð ÞaHt θð Þxj j2

wHnRj j2
� �

¼ α20w
HaraHt Rata

H
r w

wk k22
:

ð9Þ

Under the constraint kwjj22 ¼ 1, the maximal SNR is achieved
when w¼ ar

kar jj2. Plugging it into Equation (9), we have the
following:

SNR ¼ α20 ark k22aHt Rat : ð10Þ

2.3. Transmit Power Constraint. We consider sum-power
constraint as follows:

E xk k22½ � ≤ P; ð11Þ

where P is the maximal average transmit power. By substi-
tuting Equation (4) into Equation (11), we rewrite the power
constraint with respect to R as follows:

tr Rð Þ ≤ P; ð12Þ

2.4. Problem Formulation. We formulate the fundamental
performance bound of a MIMO DFRC system as an optimi-
zation problem. To this end, we calculate the theoretical
performance bound of one function while constraining the
other. Particularly, in this paper, we calculate the communi-
cation capacity under the SNR constraint of the radar func-
tion. This yields the optimization problem as follows:

max
R⪰ 0

log IK þHRHHj j; ð13aÞ

s:t: α20 ark k22aHt Rat ≥ SNR0; ð13bÞ

tr Rð Þ ≤ P; ð13cÞ

where SNR0 is the allowed minimal radar SNR.
Since the radar SNR is directly proportional to aHt Rat ,

which is the power of the signal impinging on the radar
target, the constraint (Equation (13b)) can be rewritten as
aHt Rat ≥

SNR0
α20kar jj22 ¼ γ, where γ is the minimal power impinging

on the radar target. In addition, since larger transmit power
always leads to higher channel capacity, we let the sum-
power constraint (Equation (13c)) hold with equality. There-
fore, Equation (13) is equivalently expressed as follows:

max
R⪰ 0

log IK þHRHHj j; ð14aÞ

s:t: aHt Rat ≥ γ; ð14bÞ

tr Rð Þ ¼ P: ð14cÞ

Note that Equation (14a) is a logdet function, which is
concave, Equations (14b) and (14c) are linear; hence, the
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optimization problem (Equation (14)) is convex. By solving
Equation (14), we obtain the channel capacity and the cor-
responding waveform R¼WWH to achieve it.

3. Properties of the Optimal Transmit
Covariance Matrix

Consider the eigenvalue decomposition of the transmit
covariance matrix as follows:

R¼ UΛUH ¼ ∑
r

i¼1
λiuiuHi ¼ ∑

r

i¼1
vivHi ¼ VVH ; ð15Þ

where vi ¼
ffiffiffiffi
λi

p
ui ði¼ 1; 2;⋯; rÞ:, V 2CM×r , and r is the rank

of R. Combining Equation (15) with Equation (4), let W ¼
V , we see that the rank of R denotes the number of orthogo-
nal waveforms needed and the eigenvectors of R are closely
related to the linear precoding scheme. Besides, in general
situations, it is difficult to obtain an analytical solution to
Equation (14). Hence, in this section, we conduct a prelimi-
nary analysis of Equation (14) to find out some properties of
the optimal transmit covariance matrix, which help us solve
Equation (14) analytically in some specific situations and
provide insights into the optimal beamforming design.

Proposition 1. The rank of the optimal transmit covariance
matrix R and the rank of the channel matrix H satisfy that

rank Rð Þ ≤ rank Hð Þ þ 1: ð16Þ

Proof. Inspired by the analysis in [20], we start with the
Karush–Kuhn–Tucker (KKT) conditions of Equation (14).
The Lagrange function of the optimization problem is given
by the following:

L R; λ; μð Þ¼ − log I þHRHHj j þ λ γ − aHt Ratð Þ
þμ tr Rð Þ − Pð Þ; ð17Þ

where λ and μ are dual variables. The KKT conditions of
Equation (14) imply that

∇L R; λ; μð Þ ¼ 0; ð18Þ

where

∇L R; λ; μð Þ¼ −HH I þHRHHð Þ−1H − λataHt þ μI:

ð19Þ

By multiplying both sides of Equation (18) on the right with
R we have the following:

−HH I þ HRHHð Þ−1HR¼ λataHt − μIð ÞR: ð20Þ

When λ ≠ μ
kat jj2, λata

H
t − μI is invertible. According to

Equation (20), we have the following:

rank Rð Þ ¼ rank λataHt − μIð ÞRð Þ
¼ rank −HH I þHRHHð Þ−1HRð Þ
≤ rank Hð Þ:

ð21Þ

When λ¼ μ
kat jj2, since

λataHt − μIð Þat ¼ 0;

λataHt − μIð Þu¼ −μu; ∀u 2 CM; aHt u¼ 0;

(
ð22Þ

λataHt − μI is a singular matrix whose rank isM − 1. Accord-
ing to the Sylvester inequality, we have the following:

rank λataHt − μIð ÞRð Þ
≥ rank λataHt − μIð Þ þ rank Rð Þ −M

¼ rank Rð Þ − 1:

ð23Þ

Thereby,

rank Rð Þ≤ rank λataHt − μIð ÞRð Þ þ 1

¼ rank −HH I þHRHHð Þ−1HRð Þ þ 1

≤ rank Hð Þ þ 1:

ð24Þ

From the analysis above, we see that the rank of the
optimal transmit covariance matrix must be no more than
the rank of the channel matrix plus 1, and equality can be
obtained only when the dual variables satisfy the equation
λ¼ μ

kat jj2. □

Furthermore, when the transmit steering vector at is
orthogonal to the row space of the channel matrix H, which
means Hat ¼ 0, we have the following:

λaHt ata
H
t − μaHtð ÞR¼ λ atk k2 − μð ÞaHt R¼ 0; ð25Þ

by multiplying both sides of Equation (20) on the left with
aHt . According to the radar SNR constraint (Equation (14b)),
aHt R ≠ 0, therefore λkat jj2 − μ¼ 0, λ¼ μ

kat jj2. That is to say,

when at is orthogonal to the row space of H, there may exist
an optimal transmit covariance matrix R that satisfies
rankðRÞ : ¼ rankðHÞ : þ 1.

Proposition 2. There always exists an optimal transmit
covariance matrix R whose rank equals the rank of the chan-
nel matrix H.

Proof. To illustrate this point, we first consider the following
optimization problem:

max
R⪰ 0

log IK þHRHHj j; ð26aÞ

s:t: tr QiRð Þ ¼ Pi  i¼ 1; 2;⋯; nð Þ; ð26bÞ
where Qi (i¼ 1; 2;⋯; n) are given Hermitian matrices and
the rank of H is k. □

4 IET Signal Processing
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Theorem 1. If the feasible set of the optimization variable R in
Equation (26) is nonempty, bounded, and closed, there must
be an optimal solution whose rank is no more than r, where r
satisfies as follows:

r2 ≤ k2 þ n< r þ 1ð Þ2: ð27Þ

Furthermore, if we change some of the equality constraints to
inequality constraints, the result will still be true.

The proof is given in Appendix A.

As for the optimization problem (Equation (14)), rewrite
the constraints (Equations (14b) and (14c)) as tr ðataHt RÞ : ≥ γ
and trðIRÞ: ¼ P, respectively. Thus, Equation (14) is expressed
in the form of Equation (26) with n¼ 2. According to Theo-
rem 1, Equation (14) has an optimal solution whose rank is no
more than r, where r satisfies r2 ≤ k2 þ 2<ðr þ 1Þ2. Since r,
k2Zþ, we obtain that r¼ k, which means that there is always
an optimal transmit covariance matrix whose rank equals to
the rank of the channel matrix.

Proposition 3. The eigenvectors of the optimal transmit
covariance matrix R are linear combinations of the channel
matrix H and the transmit steering vector at .

Proof. Since the transmit covariance matrix R is semidefinite,
assume that

R¼ CCH ; ð28Þ

where C 2CM×M is an arbitrary M ×M matrix, whose col-
umn space is the same as the column space of R.

By substituting Equation (28) into Equation (14), we
rewrite the optimization problem as follows:

max
C

log IK þHCCHHHj j; ð29aÞ

s:t: aHt CC
Hat ≥ γ; ð29bÞ

tr CCHð Þ ¼ P: ð29cÞ

The Lagrange function of Equation (29) is given by the
following:

L C;C∗; λ; μð Þ¼ − log I þHRHHj j þ λ γ − aHt Ratð Þ
þ μ tr Rð Þ − Pð Þ;

ð30Þ

where R¼CCH , λ and μ are dual variables. According to the
KKT conditions, the gradient of the Lagrange function
equals zero.

∂L C;C∗; λ; μð Þ
∂C∗

¼ −HH I þHCCHHHð Þ−1HC − λataHt C þ μC

¼ 0:

ð31Þ

Rewrite Equation (31) as follows:

C¼ 1
μ
HH I þHCCHHHð Þ−1HC þ λ

μ
ataHt C

¼ 1
μ
HHX þ λ

μ
atY ;

ð32Þ

where X¼ðI þHCCHHHÞ−1HC and Y ¼ aHt C.
From Equation (32), we see that the columns of C belong

to the linear space spanned by the columns of HH and at .
Thus, the eigenvectors of the optimal transmit covariance
matrix R are linear combinations of the channel matrix H
and the transmit steering vector at . □

4. Optimal Transmit Beamforming in
Particular Cases

By utilizing the properties provided in Section 3, we can solve
the optimization problem (Equation (14)) analytically under
particular situations. In this section, we consider two partic-
ular situations, offering insights into the MIMO DFRC
system.

4.1. Single-Antenna Downlink User. Consider the case where
the communication user has only one receive antenna, i.e.,
K ¼ 1. In this situation, the channel matrix becomes a row
vector:

H ¼ hH ; ð33Þ

where h is referred to as the channel vector. Accordingly, the
objective function (Equation (14a)) becomes the following:

log 1þ hHRhð Þ: ð34Þ

Since the value of Equation (34) monotonically increases
with hHRh, which is the power of the signal transmitted to
the communication user, maximizing Equation (34) is equiv-
alent to maximizing hHRh. Therefore, in this situation, we
rewrite the optimization problem as follows:

max
R⪰ 0

hHRh; ð35aÞ

s:t: aHt Rat ≥ γ; ð35bÞ

tr Rð Þ ¼ P: ð35cÞ

4.1.1. Optimal Beamforming Design. According to Proposi-
tions 2 and 3, there is an optimal solution whose rank is no

IET Signal Processing 5
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more than 1, and its eigenvector is a linear combination of h
and at . Thus, we assume that

R¼ ccH ; ð36Þ

c ¼ ahþ bat ; ð37Þ

where c2CM and a; b2C. Substituting Equation (36) into
Equation (35) yields the following:

max
C

cHhj j2; ð38aÞ

s:t: cHatj j2 ≥ γ; ð38bÞ

cHc ¼ P: ð38cÞ

Solving the KKT conditions of Equation (38), we
find that

(i) When 0≤ γ< PjhHat j2
khjj22 ,

aj j ¼
ffiffiffi
P

p

hk k2
;

bj j ¼ 0;

8><
>: ð39Þ

where the phase of a is arbitrary.

(ii) When PjhHat j2
khjj22 ≤ γ ≤ Pkat jj22,

aj j ¼ η;

bj j ¼
ffiffiffi
γ

p
atk k22

−
hHatj j
atk k22

η;

8<
: ð40Þ

where

η¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P atk k22 − γ

hk k22 atk k22 − hHatj j2
s

; ð41Þ

and the phases of a and b should satisfy as follows:

arg að Þ − arg bð Þ ¼ arg hHatð Þ; ð42Þ

if hHat ≠ 0 or can be arbitrary if hHat ¼ 0.

(iii) When γ>Pkat jj22, there is no feasible solution.

The derivation is provided in Appendix B.
The formation of c indicates that the design of the opti-

mal waveform is actually power allocation between the radar
target and the communication user. The coefficients a and b
represent the amplitudes of resources allocated for

communication and radar sensing, respectively. In case (i),
the requirement for the radar sensing SNR is low and jbj : ¼ 0.
In this case, we do not need to particularly allocate power to
the radar target, as the signal transmitted to the communi-
cation user already sheds enough power on the radar target
to meet the SNR requirement. In case (ii), the requirement
for the radar sensing SNR is higher. In this case, as the SNR
requirement increases, γ increases, thereby jaj : decreases and
jbj : increases, which means that we need to allocate more
power to radar sensing. When γ¼Pkat jj22, jaj : ¼ 0, the multi-
antenna transmitter works like a phased-array radar and the
radar SNR achieves its upper bound. In case (iii), there is no
feasible solution, since we can only achieve limited radar
SNR with limited transmit power.

When the radar target and the communication user are
in the same direction, which means that at is parallel to h, the
communication waveform also serves as the radar sensing
waveform, and there is no need to allocate the transmit
power. When at is orthogonal to h, radar sensing and com-
munication functions operate independently without any
energy sharing between each other. The expressions of the
power allocated for communication and radar sensing are
jaj2khjj22 and jbj2kat jj22, respectively, which satisfy the
equation jaj2khjj22 þ jbj2kat jj22 ¼P.

4.1.2. Channel Capacity Analysis. By substituting the optimal
solution R into Equation (34), we obtain the channel capacity
with respect to radar SNR threshold γ as follows:

(i) When 0≤ γ< PjhHat j2
khjj22 ,

C ¼ log 1þ P hk k22ð Þ: ð43Þ

The channel capacity is constant.

(ii) When PjhHat j2
khjj22 ≤ γ ≤ Pkat jj22,

C ¼ log 1þ
ffiffiffi
γ

p
hHatj j þ ffiffiffi

β
pÀ Á

2

atk k42

� �
; ð44Þ

where

β ¼ P atk k22 − γð Þ hk k22 atk k22 − hHatj j2ð Þ: ð45Þ

(iii) When γ>Pkat jj22, the transmit power is not enough
to meet the radar SNR requirement.

In case (i), since there is no dedicated radar signal (the
communication signal simultaneously serves as a probing
function), the channel capacity is constant and equals the
achievable capacity of the pure MIMO communication sys-
tem without radar function. In case (ii), we see that ∂C

∂γ ≤ 0,

6 IET Signal Processing
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which means the channel capacity is negatively correlated
with the threshold γ, which indicates the performance trade-
off between radar sensing and communication.

4.2. Multiantenna Downlink User with Specific Relationships
between the Channel Matrix and the Transmit Steering
Vector. Although it is difficult to solve Equation (14) analyti-
cally in general situations, the analytical solution is acquir-
able when the channel matrix H and the transmit steering
vector at satisfy certain relationships, i.e., at is either parallel
to one of the right-singular vectors of H or orthogonal to the
row space of H.

In these two cases, we find that the eigenvectors of the opti-
mal transmit covariance matrix R are parallel to the right-
singular vectors of H and at . The corresponding eigenvalues
are chosen to meet the radar SNR constraint (Equation (14b))
first, and the rest of them are determined by using water-filling
algorithm [25] under the sum-power constraint (Equation (14c))
(the specific derivation is provided in Appendix C).

Since the eigenvalues of R denote the transmit power,
this result reflects the power allocation between radar and
communication in MIMO DFRC systems.

5. Numerical Results

In this section, we demonstrate the performance of MIMO
DFRC systems via numerical simulations.

Under the situation of a single-antenna downlink com-
munication user, we consider a ULA transmitter with half-
wavelength element spacing d¼ λ

2 and the number of the
transmit antennas M¼ 10. The radar target is located at
angle θ. The communication signal is transmitted directly
from the transmitter to the communication user. Given the
communication user direction θC , the channel vector h is
given by the following:

h¼ 1 ejπ sin θC ⋯ ej9π sin θC
Â Ã

H : ð46Þ

In the simulation, we use SNR loss to represent the SNR
threshold in Equation (13), given by the following:

SNR loss¼ 10 log10
SNR0

SNRMAX

� �
; ð47Þ

where SNRMAX ¼ α20kar jj22Pkat jj22 is the maximal achievable
SNR under the sum-power constraint.

We perform the first simulation to demonstrate the
channel capacity versus radar SNR loss with θ set to − 30°
and θC set to − 30°, 0°, and 30°. The transmit SNR P=σ2 ¼
13 dB. The results are shown in Figure 2. Since both
Equations (13) and (14) are convex and can be solved by the
CVX, a package for specifying and solving convex programs
[26, 27], we also compare the analytical expressions of the
optimal solutions given in Section 4.1 with the CVX results,
denoted by “analytical” and “CVX,” respectively. We find
that for the same θC , the CVX and analytical expressions
yield the same curve, verifying the correctness of the deriva-
tion in Section 4.1.

From Figure 2, the channel capacity increases with the
radar SNR loss when the communication user and the radar
target are in different directions, θ ≠ θC , while the capacity is
fixed when θ¼ θC . We explain the phenomenon under dif-
ferent locations of single-antenna downlink users and
targets.

(1) When θ¼ − 30° and θC ¼ 30°, it holds that hHat ¼ 0.
In this case, there is no energy sharing between radar
and communication functions. As a result, which is the
channel capacity reduces to 0 when the radar SNR loss
is 0, because all the transmit energy is allocated to the
radar. As the radar SNR loss becomes higher, the chan-
nel capacity increases and reaches its upper bound,
which is the channel capacity of a communication-only
system with all the transmit power allocated to
communication.

(2) When θ¼ θC , which means that at is parallel to h,
the transmit power is shared between these two func-
tions. Consequently, by allocating all the transmit
power in the desired direction, the channel capacity
is fixed and achieves the upper bound, and the radar
SNR is maximized simultaneously.

(3) When θC ¼ 0°, the steering vector at is neither par-
allel nor perpendicular to h. Part of the transmit
power for communication is also used for probing.
Therefore, even when the SNR loss is strictly 0, the
capacity is still positive. The capacity curve stays
between those of θC ¼ − 30° and 30°.

In the second simulation, we show the transmit beam
patterns for different radar SNR losses in Figures 3(a) and
3(b), where θ is set to − 30°, θC is set to − 30° and 0°,
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FIGURE 2: Channel capacity versus radar SNR loss (single-antenna
downlink user).
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respectively. The beam patterns are normalized to the peak
value of the one obtained under 0 dB radar SNR loss. In
Figure 3(a), when the communication user and radar target
are in the same direction, θ¼ θC , the transmit beam pattern
is toward θ for different radar SNR losses. In this case, there
is no power allocation between radar and communication,
because the communication signal simultaneously serves for
probing. In Figure 3(b), when θ ≠ θC , there are two beams
towards θ and θC , respectively, indicating that the transmit
power is allocated between radar and communication func-
tions. As the radar SNR loss increases, less power is allocated
to the radar target.

Our third simulation verifies the achievability of the per-
formance bound by calculating the bit error rate (BER) of
communication using the proposed beamforming design.
We use a low-density parity-check (LDPC) code [28] whose
rate is 3=4, block length is 3; 240, and a 64-QAM modula-
tion. Thus, the rate of communication is 4.5 bits/s/Hz.
According to Figure 2, the rate is achieved when the radar
target is located at θ¼ − 30°, the communication user is
located at θC ¼ 30° and radar SNR loss is 0.5 dB. We obtain
the precoding matrix under this condition using the results
in Section 4.1.1. The relationship between BER and transmit
SNR is shown in Figure 4. From Figure 4, we see that as the
transmit SNR increases, the BER correspondingly decreases.
When the transmit SNR achieves 16 dB, the BER becomes
less than 10−6. Since the results in Figure 2 are achieved
under the condition that the transmit SNR is 13 dB, our
proposed beamforming design is about 3 dB from the capac-
ity limit. The gap is mainly caused by the performance of the
LDPC code we use.

We demonstrate the communication BER and the radar
pulse compression performance with respect to different
directions of communication user and radar target in our

fourth simulation. We set the transmit SNR P=σ2 to 13 dB,
radar SNR loss to 3 dB, and the direction of radar target θ to
− 30°. Figure 5(a) shows the relationship between the BER of
communication and the direction of the downlink user using
the proposed beamforming design. For communication, we
use an LDPC code [28] whose rate is 5=6, block length is 648,
and a 64-QAM modulation. As shown in Figure 5(a), the
BER is related to the relationship between h and at . In par-
ticular, when θC is around θ, the BER achieves its minimum.
The relationship between the amplitude of radar pulse com-
pression and the direction of the downlink user is shown in
Figure 5(b). We see that when θC is around θ, the radar pulse
compression amplitude achieves the maximum value. Oth-
erwise, the amplitude is constant due to the constraint on
radar SNR. Since h and at are nearly parallel to each other
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FIGURE 3: Transmit beam pattern for different SNR loss (single-antenna downlink user): (a) radar target at −30°, communication user at
−30°; (b) radar target at −30°, communication user at 0°.
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when θC is around θ, most of the transmit power is shared
between radar and communication. As a result, the optimal
communication performance and the radar SNR constraint
are achieved at the same time.

We note that our results are different from those in [21],
which states that there is SNR loss for radar when the com-
munication user and the radar target are in the same direc-
tion. The reason is that in this paper, we use the capacity to
evaluate the communication performance, not restricting to
using a certain coding strategy for communication. However,
the signaling scheme in [21] constrains that the downlink
user receives desired signals, which causes SNR loss for
radar.

Under the situation of a multiantenna downlink commu-
nication user, we consider a transmitter with M¼ 10 anten-
nas and a communication user with K ¼ 2; 3; 4 antennas,
respectively. The transmit SNR P=σ2 is 13 dB. The commu-
nication channel is Rayleigh fading, i.e., the entries ofH obey
independent standard complex normal distribution. The
transmit steering vector at is set either parallel to one of
the right-singular vectors of H or orthogonal to the row
space of H.

We perform the fifth simulation to demonstrate the rela-
tion between the channel capacity and the radar SNR loss
when the communication user has multiple receive antennas.
The results are shown in Figure 6. The analytical solution
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FIGURE 5: The communication BER and the radar pulse compression performance with respect to different downlink user’s directions: (a)
BER versus θC ; (b) normalized radar pulse compression amplitude versus θC .
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FIGURE 6: Channel capacity versus radar SNR loss (multi-antenna downlink user): (a) at parallel to one of the right-singular vectors of H; (b)
at orthogonal to the row space of H.
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given in Section 4.2 is compared with the CVX results when
K ¼ 4, denoted by “analytical, K= 4” and “CVX, K= 4” in
Figure 6, respectively.

From Figure 6, the channel capacity increases with radar
SNR loss, and the number of communication user’s receive
antennas. We note that there are some differences and simi-
larities in Figures 6(a) and 6(b), which are explained in the
following discussion.

(1) When at is parallel to one of the right-singular vectors
of H, there is energy sharing between radar and com-
munication. The amount of energy shared depends on
the corresponding singular value ofH. Thus, even when
the radar SNR loss achieves 0, the capacity is still posi-
tive, andwhen radar SNR loss is high enough, the capac-
ity achieves a maximum value, which is the channel
capacity of a communication-only system with all the
transmit power allocated to communication.

(2) When at is orthogonal to the row space ofH, there is
no energy sharing between radar and communica-
tion. Therefore, when the radar SNR loss is 0, the
channel capacity reduces to 0 at the same time. The
maximum value of capacity is achieved only when
the radar SNR reaches 0.

(3) In both situations, when radar SNR loss achieves 0, the
capacity is almost identical regardless of K . This is
because when radar SNR loss is low, the transmit energy
is mainly allocated to radar. And when radar SNR loss is
high, the maximum value of capacity increases with K
and is irrelevant to at because the transmit energy is
mainly allocated to communication.

We also compared the runtime of solving the optimiza-
tion using CVX and the analytical solutions given in Section
4. Performed on a personal computer with Intel (R) Core
(TM) i7-9750H CPU @ 2.60GHz and 16.0 GB RAM. The
average runtime is given in Table 1. The results show that by
using the analytical solutions in this work, the time con-
sumption of solving the problem is significantly reduced.

6. Conclusion

In this paper, we consider a simplified scenario of a MIMO
DFRC system where there is only one downlink user and one
radar target. We take achievable communication rate as the
communication performance metric and radar SNR as the
radar performance metric. By constraining radar perfor-
mance and optimizing communication performance, we for-
mulate an optimization problem to study the performance
bound of the system. Through theoretical analysis, we pro-
vide properties of the optimal transmit covariance matrix.
Then, in the situation where the downlink user has only one

receive antenna, we find the analytical expressions of the
optimal waveform design and corresponding channel capac-
ity. When the transmit steering vector is either parallel to one
of the right-singular vectors of the channel matrix or orthog-
onal to the row space of the channel matrix, we also provide
analytical solutions to the problem. The analysis and solu-
tions show that the DFRC system essentially shares and allo-
cates transmit power between radar target and downlink
users, reveal the performance tradeoff between these two
functions and facilitate the discussion on the performance
bound of MIMO DFRC systems.

Appendix

A. Proof of Theorem 1

Inspired by the derivation in [29], we prove Theorem 1
mainly by assuming there is an optimal solution with rank
r first and then discussing whether we can construct a new
optimal solution with lower rank.

If the feasible set of the optimizationproblem(Equation (26))
is bounded and closed, an optimal solution of Equation (26)
must exist. Suppose that there is an optimal solution R0 whose
rank is r. Perform an eigenvalue decomposition on R0:

R0 ¼ UΛUH ¼ ∑
r

i¼1
λiuiuHi ¼ ∑

r

i¼1
vivHi ¼ VVH ; ðA:1Þ

where vi ¼
ffiffiffiffi
λi

p
ui ði¼ 1; 2;⋯; rÞ:, V 2CM×r . Construct the

matrix

Rα ¼ V I þ αΔð ÞVH ; ðA:2Þ

where Δ2Cr×r is a Hermitian matrix.
Assume that Δ satisfies the following:

HVΔVHHH ¼ 0;

tr QiVΔVHð Þ ¼ 0;  i¼ 1; 2;⋯; n:

(
ðA:3Þ

According to Equation (A.3),

log I þHRαHHj j ¼ log I þHV I þ αΔð ÞVHHHj j
¼ log I þHVVHHHj j
¼ log I þHR0HHj j:

ðA:4Þ

The value of the objective function remains the same when
we change the value of the optimization variable from R0 to
Rα. According to Equation (A.3),

tr QiRαð Þ ¼ tr QiV I þ αΔð ÞVHð Þ
¼ tr QiVVHð Þ
¼ tr QiR0ð Þ;  i¼ 1; 2;⋯; n;

ðA:5Þ

which means all the constraints hold for Rα. Therefore, Rα is
also an optimal solution to Equation (26) as long as it satis-
fies Equation (A.3).

TABLE 1: Runtime of solving the optimization.

Number of receive antennas CVX Analytical solution

K ¼ 1 0:915 s 3:64× 10−5 s
K ¼ 4 1:40 s 2:44× 10−4 s
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Take the real and imaginary parts of each element in Δ as
a real variable. Since Δ is Hermitian, there are r2 real vari-
ables in Δ in total. According to Theorem 1, the rank of H is
k; thus, Equation (A.3) is equivalent to k2 real linear
equations, and Equation (A.3) is equivalent to k2 þ n real
linear equations with all the constant terms equal to 0. If
r2>k2 þ n, then the equation set (Equation (A.3)) has a non-
zero solution Δ0 ≠ 0. Denote the eigenvalue with the largest
absolute value of Δ0 as λ0, and let

α¼ −
1
λ0
: ðA:6Þ

In this case, Rα ⪰ 0 and rank ðRαÞ : ≤ r− 1.
In conclusion, if there is an optimal solution to

Equation (26) with rank r and r2>k2 þ n, then there must
be an optimal solution whose rank is no more than r − 1.
Therefore, Equation (26) has an optimal solution whose rank
is no more than r, where r satisfies as follows:

r2 ≤ k2 þ n< r þ 1ð Þ2: ðA:7Þ

If we change some of the equality constraints into inequality
constraints, the conclusion remains true, as can be proved in
a similar manner.

B. Solving the optimization (Equation (38))

Before solving Equation (38), we analyze the feasibility of the
optimization problem. According to Equation (38c), we have

aHt cc
Hat ≤ ck k22 atk k22 ¼ P atk k22; ðB:1Þ

where the equality is achieved when c is parallel to at . Thus, γ
in Equation (38b) must satisfy the following:

γ ≤ P atk k22: ðB:2Þ

Otherwise, there is no feasible solution for Equation (38),
which proves the result of case (iii) in Section 4.1.1.

Since Equation (38) satisfies Slater’s condition, we solve it
by considering its KKT conditions. The Lagrange function of
Equation (38) is given by the following:

L c; c∗; λ; μð Þ
¼ − hHccHhþ λ γ − aHt cc

Hatð Þ þ μ tr ccHð Þ − Pð Þ; ðB:3Þ

where λ and μ are dual variables. Then, its KKT conditions
are as follows:

∂L c; c∗; λ; μð Þ
∂c∗

¼ −hHch − λaHt cat þ μc ¼ 0;

tr ccHð Þ − P ¼ 0;

γ − aHt cc
Hat ≤ 0;

λ ≥ 0;

λ γ − aHt cc
Hatð Þ ¼ 0:

8>>>>>>>><
>>>>>>>>:

ðB:4Þ

Rewrite Equation (B.4) as follows:

c ¼ hHc
μ

hþ λaHt c
μ

at ; ðB:5Þ

To solve Equation (B.4), we need to calculate a and b in the
assumption (Equation (37)) by substituting Equation (37)
into Equation (B.4).

According to Equation (B.4), at least one of λ and γ −
aHt cc

Hat equals 0. Consider the case that λ¼ 0. Then,
Equation (B.5) becomes the following:

c ¼ hHc
μ

h: ðB:6Þ

Substituting Equation (37) into Equations (B.4) and (B.6)
yields the following:

aj j2hHhþ a∗bhHat þ ab∗aHt hþ bj j2aHt at ¼ P;

ahþ bat ¼
ahHhþ bhHat

μ
h:

8<
:

ðB:7Þ
According to Equation (B.7), we find that

b¼ 0: ðB:8Þ

By substituting Equation (B.8) into Equation (B.7), we obtain
that

aj j ¼
ffiffiffi
P

p

hk k2
; ðB:9Þ

where the phase of a is arbitrary. Substitute the solution of c
into Equation (B.4). We then find that

γ ≤
P hHatj j2

hk k22
; ðB:10Þ

which proves the result of case (i) in Section 4.1.1.
Next, consider the case that

γ − aHt cc
Hat ¼ 0: ðB:11Þ

By substituting Equation (37), we rewrite Equations (B.11)
and (B.5) as follows:

IET Signal Processing 11
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aj j2aHt hhHat þ a∗baHt ath
Hat

þab∗aHt ha
H
t at þ bj j2aHt ataHt at ¼ γ;

ahþ bat

¼ ahHhþ bhHat
μ

hþ λ aaHt hþ baHt atð Þ
μ

at :

8>>>>>><
>>>>>>:

ðB:12Þ

Combining Equations (B.7) and (B.12), we obtain that

aj j ¼ η :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P atk k22 − γ

hk k22 atk k22 − hHatj j2
s

: ðB:13Þ

From Equation (B.12), we find the relationship between the
phases of a and b:

arg að Þ ¼ arg ahHhþ bhHatð Þ;
arg bð Þ ¼ arg aaHt hþ baHt atð Þ:

(
ðB:14Þ

When hHat ¼ 0, Equation (B.14) always holds, and the
phases of a and b are arbitrary. When hHat ≠ 0, we have the
following:

arg að Þ − arg bð Þ ¼ arg hHatð Þ: ðB:15Þ

This results from the facts that hHh in Equation (B.14) is a
real number and argðaÞ : ¼ argðahHhÞ :, which implies argðaÞ
: ¼ argðbhHatÞ :. Similarly, argðbÞ: ¼ argðaaHt hÞ :.

Substituting Equation (B.13) and the relationship
between the phases of a and b into Equation (B.7) yields
the following:

bj j ¼
ffiffiffi
γ

p
atk k22

−
hHatj j
atk k22

η: ðB:16Þ

In addition, since jbj: ≥ 0, we have γ ≥ PjhHat j2
khjj22 . From

Equations (B.13), (B.15), and (B.16), we prove the result of
case (ii) in Section 4.1.1.

C. Solving the optimization (Equation (14))
under the situation of Section 4.2

To better depict the relationship between at and H, we first
perform a singular value decomposition (SVD) on the chan-
nel matrix H:

H ¼ UHΣVH
H ; ðC:1Þ

where

ΣVH
H ¼ h1e1 h2e2 ⋯ hKeK½ �H ; ðC:2Þ

h1; h2;⋯; hK are the singular values of H and e1; e2;⋯; eK 2
CM are the corresponding right-singular vectors.

Substituting Equation (C.1) into the objective function
(Equation (14a)) yields the following:

log IK þHRHHj j ¼ log UUH þ UΣVHRVΣHUHj j
¼ log IK þ ΣVHRVΣHj j:

ðC:3Þ

Using the assumption R¼CCH in the proof of Proposition 3,
we rewrite the optimization problem (Equation (14)) as
follows:

max
C

log IK þ ΣVHCCHVΣHj j; ðC:4aÞ

s:t: aHt CC
Hat ≥ γ; ðC:4bÞ

tr CCHð Þ ¼ P: ðC:4cÞ

The KKT conditions of Equation (C.4) give that

∂L C;C∗; λ; μð Þ
∂C∗ ¼ 0;

tr CCHð Þ − P ¼ 0;

8<
: ðC:5Þ

where

∂L C;C∗; λ; μð Þ
∂C∗

¼ − VHΣH I þ ΣVH
HCC

HVHΣHð Þ−1ΣVH
HC

− λataHt C þ μC;

ðC:6Þ

and λ, μ are dual variables.

C.1 When at Is Parallel to One of the Right-Singular Vectors
of H. Without loss of generality, assume that at is parallel
to e1

at ¼ ae1: ðC:7Þ

Inspired by the derivation in [25] and the properties
provided in Section 3, we speculate that in this situation
the rank of the optimal transmit covariance matrix R equals
that of H and the eigenvectors of R are parallel to the right-
singular vectors ofH. Thus the optimal C can be expressed as
follows:

C ¼ c1e1 c2e2 ⋯ cKeK 0 ⋯ 0½ �: ðC:8Þ

First, we consider the case in which γ − aHt CC
Hat<0. In

this case, the radar SNR constraint (Equation (C.4b)) is inac-
tive. Thus the optimal solution is obtained by solving
Equation (C.4) without regard to Equation (C.4b), in which

12 IET Signal Processing
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jc1j2; jc2j2;⋯; jcK j2 are obtained by utilizing the water-filling
algorithm [25].

If the optimal solution obtained in this way does
not satisfy that γ − aHt CC

Hat<0, then there must be the
following:

γ − aHt CC
Hat ¼ 0: ðC:9Þ

Substituting Equations (C.7) and (C.8) into Equation (C.9)
and solving the equation we have the following:

c1j j2 ¼ γ

aj j2 : ðC:10Þ

Combining Equations (C.8), (C.8), and (C.5), the KKT con-
ditions are rewritten as follows:

a1e1 a2e2 ⋯ aKeK½ � ¼ 0;

∑
K

i¼2
cij j2 ¼ P − c1j j2 ¼ P −

γ

aj j2 ;

8<
: ðC:11Þ

where a1; a2;⋯; aK are given by the following:

ai ¼
μ − λ −

hij j2
1þ hij j2 cij j2

� �
ci; i¼ 1;

μ −
hij j2

1þ hij j2 cij j2
� �

ci; i¼ 2; 3;⋯;K:

8>>><
>>>:

ðC:12Þ

According to Equations (C.11) and (C.12), jc2j2; jc3j2;⋯;
jcK j2 are solved by using the water-filling algorithm:

cij j2 ¼max
1
μ
−

1
hij j2 ; 0

� �
;  i¼ 2; 3;⋯;K: ðC:13Þ

The dual variables λ and μ are solved by substituting
Equations (C.10), (C.12), and (C.13) into Equation (C.11).

In conclusion, the optimal transmit covariance matrix is
as follows

R¼ CCH ¼ ∑
K

i¼1
cij j2eieHi ; ðC:14Þ

where jc1j2; jc2j2;⋯; jcK j2 are given by previous derivation.

C.2 When at Is Orthogonal to the Row Space of H. Assume
that

eKþ1 ¼
at
atj j ; ðC:15Þ

and the optimal C is in the form of

C ¼ c1e1 ⋯ cKeK cKþ1eKþ1½ �: ðC:16Þ

Similar to the derivation in Section C.1, the KKT condi-
tions are rewritten as follows:

a1e1 a2e2 ⋯ aKþ1eKþ1½ � ¼ 0;

∑
K

i¼1
cij j2 ¼ P − cKþ1j j2 ¼ P −

γ

aj j2 ;

8<
: ðC:17Þ

where

ai ¼
μ −

hij j2
1þ hij j2 cij j2

� �
ci; i¼ 1; 2;⋯;K;

μ − λ atj j2ð Þci; i¼ K þ 1:

8><
>: ðC:18Þ

Solving the KKT conditions, we obtain that the optimal
transmit covariance matrix is given by the following:

R¼ CCH ¼ ∑
Kþ1

i¼1
cij j2eieHi ; ðC:19Þ

where

cKþ1j j2 ¼ γ

atj j2 ; ðC:20Þ

and

cij j2 ¼max
1
μ
−

1
hij j2 ; 0

� �
;  i¼ 1; 2;⋯;K: ðC:21Þ

The dual variables λ and μ are solved by substituting
Equations (C.18), (C.20), and (C.21) into Equation (C.17).

Although we assumed the form of the optimal transmit
covariance matrix in the derivation, the optimal solutions we
obtained in Sections C.1 and C.2 satisfy the original KKT
conditions, which means the results are exactly the optimal
solution under the corresponding cases. In addition, the opti-
mal solutions we obtained in these two cases conform to the
properties we provided in Section 3.
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