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O2SC: Realizing Channel-Adaptive Semantic
Communication with One-Shot Online-Learning

Guangyi Zhang, Kai Kang, Yunlong Cai, Qiyu Hu, Yonina C. Eldar, and A. Lee Swindlehurst

Abstract—Motivated by progress in data-driven supervised
learning, semantic communication has witnessed remarkable
advancements in improving the efficiency of data transmission
under various channel conditions. These advancements typically
require a substantial amount of training data for offline training,
which is challenging in practical systems. Therefore, in this work,
we propose O2SC, a one-shot online-learning framework for
semantic communication to achieve adaptive transmission under
different channel conditions. Since semantic communication
relies on acquired channel state information (CSI), we jointly
design the channel estimation and semantic communication
processes. Specifically, we introduce a denoising module based
on one-shot self-supervised learning, allowing semantic commu-
nication systems to adapt to new channel conditions without the
need to collect extensive training data. The denoising module is
utilized to eliminate noise in the received data samples, using only
the data samples themselves. Following this, we further exploit
meta-learning to allow the system to quickly adapt to diverse
channel conditions, by finding an appropriate initialization for
each data sample in a timely way. Simulation results demonstrate
that the proposed method achieves performance close to that
of supervised learning-based approaches while also providing
improved generalizability across different channel conditions.

Index Terms—Channel estimation, deep learning, one-shot
learning, semantic communication.

I. INTRODUCTION

Building on Shannon’s theory [1], wireless communication
has evolved from its analog origins in 1G systems to current
5G systems and beyond [2]. Driven by innovative applications
and intelligent services such as extended reality and intelligent
transportation [3], the landscape of wireless communication
is continuously evolving. To meet the demands of these
emerging technologies, there has been a surge in semantic
communication research in both academia and industry. The
growing trend of semantic communication aims at accurately
recovering the statistical structure of the underlying informa-
tion of the source signal and designing the transceiver in an
end-to-end fashion [4]–[10].

Semantic communication leverages the advanced deep
learning mechanisms, specifically autoencoder architectures
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[11]–[14]. The key idea of semantic communication is exploit-
ing deep neural networks (DNNs) to extract valuable semantic
information in the source data for specific transmission tasks.
As a result, semantic communication is able to benefit from
high compression ratios and transmission efficiency. This ap-
proach is often more effective than the conventional paradigm
of separate source and channel coding, as exemplified by
techniques such as combining Better Portable Graphics (BPG)
source compression with low-density parity-check (LDPC)
channel coding [15]. In particular, a landmark semantic com-
munication system for image transmission was developed in
[16], where the authors conceived of using DNNs to directly
map source data to channel symbols in a joint source-channel-
coding (JSCC) manner.

The deep JSCC (DJSCC) model proposed in [16] is trained
under specific channel conditions, such as a specific signal-to-
noise ratio (SNR), particularly for image transmission tasks.
As a result, its performance surpasses that of separated coding
scheme designs when dealing with different channel envi-
ronments. However, DJSCC is most effective within a fixed
SNR range and needs to be retrained when the SNR changes.
To overcome this problem, the authors of [17] proposed a
channel-adaptive semantic communication system to support
a range of SNR values, with the aid of an attention mechanism.
Recent advancements have been made in [18] and [19] that
allow for the transmission rate to be adjusted within a dynamic
model, adapting to various channel conditions.

Although previous research has demonstrated promising
performance, many of these studies primarily focus on single-
input single-output (SISO) scenarios over an additive white
Gaussian noise (AWGN) channel. This simplistic model does
not accurately capture the complexities of real-world com-
munication channels. To address this limitation and better
adapt to the intricacies of practical channel conditions, re-
searchers have explored a series of physical layer design ap-
proaches for semantic communication [20]–[25]. In [21], the
authors integrated orthogonal frequency division multiplexing
(OFDM) with semantic communication to enable wireless
image transmission in the presence of multi-path fading. In
addition, a vision Transformer-based semantic communication
system has been proposed to adaptively learn semantic feature
mappings and power allocation strategies according to channel
conditions in multiple-input multiple-output (MIMO) systems
[22]. In [23], the authors designed a spatial multiplexing
mechanism to realize adaptive coding rate allocation by jointly
considering the entropy distribution of the source semantic
features and wireless MIMO channels. In [24], the authors
aimed to adaptively adjust the channel feedback overhead
for images with different predicted reconstruction qualities,
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thereby enhancing transmission reliability.
Despite the enormous potential of these methods in real-

izing adaptive transmission over various channel conditions,
they still face some practical challenges:

• Data Collection: The aforementioned deep learning-
based semantic communication methods are typically
based on supervised learning, which rely on a substantial
number of samples to optimize the network parameters
during offline training. However, in practice, obtaining a
sufficient amount of data samples related, for example, to
channel state information (CSI), can be infeasible. This
makes it difficult to develop fully adaptive systems that
rely solely on offline training.

• Environmental Variability: Communication systems must
grapple with the complexity and variability of channel
environments, which are often unpredictable. Addition-
ally, the distribution of the test data may significantly
differ from that of the training data. Many existing
studies assume that if a semantic system performs well
in both training and validation environments, it will
likely generalize effectively to new, unseen environments.
However, this assumption is often hard to realize, due to
unsatisfactory generalizability of DNN models.

To address the first problem, we attempt to introduce self-
supervised learning to further capture the data characteristics,
so as to improve the system performance by making full use
of channel and source data [26], [27], which has the potential
to reduce the need for training data. For the second issue, we
conceive of using an online manner by online updating the
DNN models to adapt to the current environment. Moreover, to
support low-latency real-time data adaptation, the online train-
ing process should be accelerated as much as possible. One
promising avenue is meta-learning, which aims to improve the
learning ability of neural networks by learning from data with
different distributions [28]–[32]. Notably, in [33] and [34],
the model-agnostic meta-learning (MAML) algorithm and the
Reptile algorithm have been introduced. These techniques
focus on learning an effective model initialization that enables
rapid adaptation to new data samples.

Therefore, inspired by these insights, we seek to solve
the above problems by introducing a one-shot online-learning
framework. Our primary objective is to establish an adaptive
semantic communication system suitable for practical appli-
cations. The proposed one-shot online-learning framework is
based on exploiting one-shot self-supervised learning in the
deep learning-based semantic communication model of [16].
The main idea is to denoise the noisy estimated signal online
using the noisy estimated signal itself as the sole training data,
which is why we refer to it as the one-shot online-learning
method. Moreover, previous works typically assume perfect
knowledge of the CSI at the transceiver, which is challenging
to achieve in real-world communication systems. In contrast,
we consider a more practical scenario where the estimation
error is taken into consideration. We specifically takes into
account the critical aspect of channel data acquisition, by
jointly designing the channel estimation and semantic trans-
mission in an end-to-end manner. Furthermore, we devise a
meta-learning-based method to accelerate the convergence of
the online one-shot training procedure, so that the system can

quickly adapt to changing channel conditions. We summarize
our main contributions as follows.

(1) We propose O2SC, a one-shot online-learning framework
for semantic communication based on one-shot self-
supervised learning. It is distinct from existing methods
[16]–[24] that utilize a substantial number of source and
channel samples to design the semantic communication
systems. Our proposed framework operates using an
online update scheme, allowing it to utilize real-time data
as training samples without the need for accumulating
extensive training data.

(2) The proposed O2SC comprises two crucial components:
a semantic transmission module (STM) and a channel
estimation module (CEM). We view the obtained results
from STM and CEM as a noisy degradation of the
original sample, and aim to recover the original sample
through solving an denoising problem. In particular, we
devise two plug-in denoising modules based on self-
supervised learning, which are inserted at the end of
the STM and CEM modules. For channel estimation,
we obtain a preliminary estimate based on a traditional
algorithm, and then use the denoising module to obtain
a more accurate estimate. For semantic transmission, the
denoising module takes the output of the decoder as input
and returns a more accurate received signal. The param-
eters of the denoising module are periodically adjusted
for individual samples, ensuring stronger generalizability
since it does not rely on training on large data sets from
a specific distribution.

(3) Given that the denoising module undergoes online up-
dates when a new real-time data sample becomes avail-
able, we propose a meta-learning-based initialization
method for O2SC. This method equips the system with
excellent generalizability and enables rapid adaptation
to changing channel conditions. The proposed method
comprises two key components: the inner update and
the outer update. These components involve training
on samples derived from different data distributions,
allowing us to determine a good model initialization.
We further propose an online meta-adaptation strategy
designed to continually find a good initialization for each
future sample while fitting the current data sample, which
significantly improves the O2SC efficiency.

We demonstrate the effectiveness of the proposed framework
on image sources and practical massive MIMO channels.
Simulation results show that our proposed approach achieves
performance comparable to traditional supervised learning-
based methods and has better generalizability.

The rest of this paper is structured as follows. Section II
introduces the proposed one-shot online-learning framework.
Section III presents the detailed architecture of the plug-
in denoising and Section IV introduces the meta-based fast
adaptation strategy. Simulation results are presented in Section
V, and finally Section VI concludes the paper.

Notation: Scalars, vectors and matrices are respectively
denoted by lower case, boldface lower case and boldface upper
case letters. The matrix I represents an identity matrix and 0
denotes an all-zero matrix. For a matrix A, AT , A∗, AH , and
∥A∥F denote its transpose, conjugate, conjugate transpose and
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Fig. 1. Illustration of the proposed one-shot online-learning framework.

Frobenius norm, respectively. For a square matrix A, Tr(A)
the trace. In addition, Cm×n (Rm×n) are the space of m× n
complex (real) matrices.

II. PROBLEM FORMULATION AND ONE-SHOT
FRAMEWORK

In this section, we introduce the STM and CEM and
describe the overall O2SC procedure. We then present the
proposed one-shot online-learning framework.

A. Problem Formulation
As shown in Fig. 1, we consider a downlink wireless

image transmission system, which aims to transmit the image
S ∈ RC×H×W from the transmitter to the receiver, where C,
H , and W indicate the dimensions of S. Before transmission,
S undergoes processing to yield the corresponding encoded
feature matrix Z ∈ Cd×Ns using an encoder denoted as Fe(·).
Here, Ns denotes the number of channel uses and d denotes
the number of data streams for each channel use. Thus, we
have Z = Fe(S;ϕe), where ϕe represents the trainable
parameters of the encoder. Additionally, we define the channel
bandwidth ratio as ρ ≜ Ns/(C ×H ×W ).

For the transmission of Z, CSI-based MIMO techniques
are introduced to further improve the efficiency, as shown in
Fig. 1. Specifically, we assume that the transmitter is equipped
with Nt transmit antennas and the receiver is equipped with
Nr receive antennas. To obtain the CSI matrix H ∈ CNr×Nt ,
we employ channel estimation for semantic communication to
study the impact of estimation errors. Our approach employs
a MIMO system in a time-division duplex (TDD) mode in
which the downlink CSI can be estimated by exploiting the
channel reciprocity. In particular, the receiver sends pilots
Zp ∈ CNr×L to the transmitter, where L is the length of
the pilot. The received pilots Ẑp ∈ CNt×L at the transmitter
is given by Ẑp =HHZp+Np, where Np ∈ CNt×L denotes
AWGN. With Zp and Ẑp, the estimated downlink CSI matrix
H̄ is acquired by an estimator Fc(·) at the transmitter, which
is denoted by H̄ = Fc(Ẑp,Zp). Based on H̄ , we exploit
singular-value decomposition (SVD) for semantic transmis-
sion, i.e., H̄ = P̄ Σ̄W̄ , where Σ̄ denotes the diagonal matrix.

Since the number of data streams for each channel use is d,
the exact precoding matrix is given by P ∈ CNt×d, which
is obtained by drawing the corresponding columns from P̄ .
Moreover, at the receiver, we consider zero-forcing detection,
the combing matrix is given by W̄ = (HP )†. As a result, the
precoded feature matrix is Z̄ = PZ. The transmitted signal
is still subject to a power constraint Pt, i.e., ∥PZ∥2F ≤ NsPt,
where we set Pt = 1 without loss of generality. Moreover, we
define the average SNR at the receiver as SNR ≜ 10 log10

Pt

σ2 ,
where σ2 denotes the noise variance.

The received signal at the receiver is given by

Ẑ =HZ̄ +N , (1)

where N ∼ CN (0, σ2I) denotes AWGN. Subsequently, the
detected signal after combining is given by

Z̃ =WẐ. (2)

Finally, Z̃ is fed into the decoder Fd(·) to recover the
transmitted image, i.e., S̄ = Fd(Z̃;ϕd), where ϕd denotes its
trainable parameters. The target of the decoder is to estimate
S̄ close to S. Thus, the parameters of the encoder and decoder
are updated by solving the following optimization problem:

(ϕ∗
e,ϕ

∗
d) = arg min

ϕe,ϕd

Ep(S,S̄)[d(S, S̄)], (3)

where d(·) denotes the distortion function. The distortion func-
tion is also used as a measurement of image reconstruction
quality, which is defined as d(S, S̄) = ∥S − S̄∥2F .

B. One-Shot Online-Learning Framework

We refer to the mapping from S to S̄ as the STM and
similarly define the mapping from Zp to H̄ as the CEM. In
existing works, the STM and CEM are optimized separately
to achieve their own targets, i.e., the CEM is optimized
to minimize the CSI estimation error, while the STM is
optimized to find a parameter set that minimizes the distortion
function under different channel conditions. In prior work,
they are both optimized over a huge number of data samples,
e.g., CSI matrices and images. Although the model can be
trained to achieve high performance under the given training
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conditions, the channel conditions are variable, and there is
always performance degradation when the testing conditions
differ from those during training. To address this issue, we
propose a one-shot online-learning framework by designing
two plug-in denoising modules, Gc(·) and Gs(·), as illustrated
in Fig. 1.

In particular, our target is to quickly adapt STM and CEM
to new channel distributions without collecting numerous data
samples. Instead of adjusting STM and CEM to specifically
adapt to the new channel distributions, i.e., updating the
parameters of STM, we develop denoising modules after the
STM and CEM to eliminate the noise in S̄ and H̄ . To
further elaborate, we denote the trainable parameters of the
two denoising modules as θs and θc, respectively, and focus
on the following problems:

channel estimation: θc|(H) ⇒ θc|(H̄(t)),

semantic transmission: θs|(S) ⇒ θs|(S̄(t)),
(4)

where S̄(t) and H̄(t) are the instantaneous data samples to
be handled at time t. Note that the quality of S̄(t) will also
be affected by the channel condition. The subscript notation
“|(·)” denotes the which data the parameter is train on, e.g.,
θc|(H̄(t)) denotes θc is train on sample H̄(t). Accordingly,
θc is initially learned on the CSI dataset H. Meanwhile, θs
is initially trained on image dataset S and CSI dataset H. We
treat the overall system as one entity, O2SC, and denote θ =
(θc,θs), as illustrated in Fig. 1. Thus, (4) can be simplified
as

O2SC adaptation: θ(S,H) ⇒ θ(S̄(t),H̄(t)), (5)

where the baseline model parameters θ are pretrained in the
source domain S and the channel domain H. Therefore, the
main target is to adapt θ(S,H) to

(
S̄t, H̄(t)

)
. In this work,

we consider an online-learning approach to make θ adapt.
Given the first image sample S̄(1) and channel sample H̄(1),
the proposed framework only takes S̄(1) and H̄(1) as inputs
and online update θ to adapt to S̄(1) and H̄(1). We denote
the loss function of the denoising module as LO-L(·), and the
online-learning objective at t = 1 is given by

θ(1) = argmin
θ

LO-L
(
θ, S̄(1), H̄(1)

)
, (6)

where we initialize θ to θ(S,H). In addition, Note that only(
S̄(1), H̄(1)

)
are utilized to solve (6), effectively achieving

the goal of “one-shot” learning. Then, for the t-th subsequent
pair of samples,

(
S̄(t), H̄(t)

)
, our objective is to efficiently

address the following optimization problem, initializing from
θ = θ(t−1):

θ(t) = argmin
θ

LO-L
(
θ, S̄(t), H̄(t)

)
. (7)

Gradient descent is used to periodically fit the parameters of
O2SC to a single pair of samples as opposed to conventional
supervised learning-based methods, where a large dataset
of input and labels are used. Next, we introduce how to
implement O2SC with DNN models.

III. SELF-SUPERVISED LEARNING-BASED O2SC
In this section, we begin by introducing the self-supervised

learning method used to implement the previously mentioned

one-shot online-learning framework. Then, we present the
architecture of the proposed denoising module.

A. Self-Supervised Denoising Module
The main goal of this work is to update the system

parameters online to adapt to each current data sample. In
this manner, the only data used for training O2SC is the
current data sample. This represents a much more challenging
scenario compared to existing solutions. The key strength
of this approach is that it does not rely on a large amount
of training data and a long training process. In addition, it
also provides better generalizability since it does not rely
on training on very large data sets drawn from a specific
distribution.

To realize the one-shot online-learning framework, we
turn to self-supervised learning [27] and propose a plug-in
denoising module. As shown in Fig. 2, we consider two
denoising modules for O2SC, which are inserted after the
CEM estimator and after the STM decoder. The first denoising
module aims to eliminate the estimation error on H̄ , while the
latter is used to perform denoising on the initially-recovered
image S̄. Since it is hard to conduct time-consuming end-
to-end training online, we freeze the STM parameters, i.e.,
(ϕe,ϕd), and only update the parameters of the two denoising
modules, i.e., (θc,θs). In general, for channel estimation, the
only training data sample is the noisy initially-estimated CSI
matrix H̄ obtained by a conventional estimator, such as the
least square (LS) estimator, and there is no corresponding
clean CSI matrix H . For STM, the only training data sample
is the noisy initially-recovered image S̄. The goal of the
denoising module is to eliminate the noise on H̄ and S̄,
and obtain a more accurate estimated CSI matrix Ĥ and
a recovered image Ŝ, based on only H̄ and S̄. Since the
implementations of the two denoising modules are similar,
we use the notation X in the following sections to introduce
the detailed designs. Thus, X should be interpreted as image
S or CSI matrix H . Related notation such as X̄ denotes
the initially-estimated CSI matrix or image, depending on the
context.

B. Blind Spot and Dropout
1) Two Implementation Challenges: Considering the t-th

data sample X̄(t), the denoising module takes X̄(t) as input
and outputs a more accurate result X̂(t). The training target
is minimizing the mean-square error (MSE) between the
estimated X̄(t) and the real X(t), and one challenge arises.
In particular, when using only the training sample X̄(t) ((and
not the actual X(t)), the network will converge to an identity
mapping, where the output simply mirrors the input X̄(t).
This means the network copies the input as the output. This
phenomenon occurs due to the risk of overfitting when training
with a single data sample. Moreover, the denoising module
can be considered as a Bayes estimator and the MSE can
be decomposed as the sum of squares of estimation bias and
estimation variance, where

MSE = bias2 + var. (8)

When only one noisy sample X̄(t) is available for training,
the estimation variance will increase significantly, which also
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Fig. 2. The DNN structure of the denoising module. We omit superscript “(t)” in the figure for simplicity.

results in the denoised result X̂(t) converging to the noisy
sample X̄(t). Thus, the key point is to avoid the identity
mapping and reduce the estimation variance. To this end,
we adopt the blind spot strategy [27], and apply the dropout
approach in certain layers of the denoising module, which is
a common regularization technique in deep learning. In the
following subsections, we further discuss how to implement
these approaches in detail.

2) Bernoulli Sampling-Based Blind-Spot: The blind spot
theory suggests that when the network produces a specific
element of a matrix, the input only provides information about
the surrounding elements rather than the element itself [27].
Additionally, both the channel and image exhibit strong spatial
correlations, meaning that each element in the CSI or image
matrix typically has strong relationships with its surrounding
elements. In the presence of spatially independent noise (or
weakly-related), the denoising module using the blind spot
strategy cannot isolate the noise through the surrounding
elements. Instead, it can only anticipate information related
to the surrounding elements. Using this observation, noise
reduction can be achieved. Specifically, we perform Bernoulli
sampling on the noisy sample X̄(t) using the blind spot
strategy. A Bernoulli sampled X̌

(t)
i,j of the i-th row j-th column

in the noisy matrix X̄(t) with probability p is defined as

X̌
(t)
i,j =

{
X̄

(t)
i,j , with probability p;

0, with probability 1− p.
(9)

In each training epoch, we generate training samples by
Bernoulli sampling as

X̌
(t)

m = Bm ⊙ X̄(t),

X̃(t)
m = (1−Bm)⊙ X̄(t),

(10)

where m = 1, 2, . . . ,M , M is the total number of training
steps, Bm denotes the m-th binary Bernoulli matrix with
element drawn from 0 or 1, and ⊙ represents element-by-

element multiplication. We denote X̃(t)
m as the blind sample

part that is masked by Bm, and denote X̌(t)
m as the unmasked

sample part. The input to the denoising module is X̌(t)
m and

the training loss function is defined as

LO-L
(
θx, X̌

(t),X̃(t)
)
=

1

M

M∑
m=1

∥Fm

(
X̌(t)

m ;πm

)
−X̃(t)

m ∥2Bm
,

(11)

where Fm(·;πm) is the model of the denoising module in the
m-th training step1, πm is a vector of trainable parameters
(a subset of θx), and ∥A∥Bm

= ∥(1 − Bm) ⊙ A∥22. The
loss function is measured only on the blind sample part X̃m

instead of the unmasked input X̌m, which is consistent with
the blind spot strategy. The parameters are updated using the
stochastic gradient descent (SGD).

When the noise in X̄(t) and X(t) is independent and zero
mean, the expectation of the loss function (11) is the same as
that of

1

M

M∑
m=1

∥Fm

(
X̌(t)

m ;πm

)
−X(t)∥2Bm

+
1

M

M∑
m=1

∥σ∥2Bm
,

(12)
where σ denotes the standard deviation of the difference
between X̄(t) and X(t). The proof is provided in [27].
Moreover, this method remains effective even when the noise
is not strictly independent, since the contextual information
between image pixels or between CSI element is much easier
to capture than the noise itself. From (12), we see that the
loss function of training with the paired samples (X̌(t), X̃(t))
is equivalent to that of training with the clean label X(t),
promoting the rationality of the method.

3) Dropout for Reducing Prediction Variance: The dropout
strategy aims to randomly discard some of the neural con-
nections in a DNN model while training, where the model

1The model of each training step is different due to the dropout.
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Algorithm 1: One-shot online-learning self-supervised
training.

1 Input: The t-th noisy data sample (image or CSI) X̄(t), the
number of training steps M , the number of inference
models T induced by dropout.

2 Output: The denoised image or channel X̂(t).
3 Training stage:
4 for m = 1, 2, . . . ,M do
5 Generate training data sample pair

(
X̌

(t)
m , X̃

(t)
m

)
by

Bernoulli sampling with equation (10).
6 Perform dropout on the training model.
7 Update the trainable parameters with SGD optimizer on

loss function (12).
8 end
9 Obtain the trained model and freeze the parameters.

10
11 Inference stage:
12 Load the parameters trained in the first phase.
13 for i = 1, 2, . . . , D do
14 Perform Bernoulli sampling to obtain the input X̌(t)

i .
15 Perform dropout on the test model and obtain the output

of the model Fi

(
X̌

(t)
i ;πi

)
.

16 end
17 Average the output to obtain the denoised image or channel

X̂(t).

structure in each training step is different. In this way,
the outputs of these different induced models have a cer-
tain degree of statistical independence, which helps to re-
duce the variance of the predicted result. We first use
the dropout strategy to generate D different induced mod-
els F1(·),F2(·), . . . ,FD(·). Then, we randomly generate D

Bernoulli samples X̌(t)
1 , X̌

(t)
2 . . . , X̌

(t)
D , which are fed into

the D different models, respectively. Finally, we average the
results to acquire the t-th recovered image or CSI matrix:

X̂(t) =
1

T

D∑
i=1

Fi

(
X̌

(t)
i ;πi

)
. (13)

The one-shot self-supervised learning procedure is summa-
rized in Algorithm 1.

C. Architecture of Proposed Denoising Module

We employ the U-Net model [35] to implement the de-
noising module, as depicted in Fig. 2. The denoising module
consists of a contracting path and an expansive path, which
are designed for extracting channel features and restoring
the original resolution, respectively. The dimensions of the
input are denoted as (N1, N2, N3). For the CSI matrix, we
split the complex-valued matrix into real and imaginary parts,
and the size of the input is (N1, N2, 2), where N1 = Nr,
N2 = Nt, and N3 = 2. For the image data sample, N1 = H ,
N2 = W , and N3 = 3. Since the input of the denoising
module after Bernoulli sampling can be considered as a
degraded data sample, the contracting path is equipped with
partial convolutional (PConv) layers. PConv layers are more
effective in handling degraded signals compared to traditional
convolutional layers [36]. Each PConv layer is followed by a
max pooling operation with a stride of 2 for downsampling.
The number of feature channels expands to 48 from N3 after

the first convolutional layer and then remains the same. The
output of the contracting path is of size (N1/32, N2/32, 48).

The expansive path is constructed with multiple blocks
to reconstruct the input sample. Each block consists of two
3 × 3 convolutions and a concatenation operation, and each
block is connected with an up-sampling layer with a scaling
factor of 2. The concatenation operation combines the features
of the up-sampling layer with the corresponding features
from the contracting path to fuse information for improved
reconstruction. The number of feature channels in each output
layer of the block is 96, except for the last block. The size of
output feature is restored to (N1, N2, N3). Dropout is applied
in each convolutional layer of the expansive path, and rectified
linear units (ReLU) serve as the activation function.

D. Comparison with Supervised Learning

Here we elaborate on the differences between the pro-
posed one-shot online-learning method and supervised meth-
ods [37]–[39] 2. For channel denoising, supervised methods
require to collect a large number of noisy data samples
and corresponding clean labels as training pairs to optimize
the trainable parameters of the DNN model offline. The
optimization target of supervised learning-based methods can
be written as

θ∗x = argmin
θx

E(X,X̄)∈X
[
LS-L

(
θx,X, X̄

)]
, (14)

where LS-L(·) represents the supervised loss function, X̄
and X denote the noisy data sample and clean data label,
respectively. In addition, X and X̄ are sampled from dataset
X . After offline training, the DNN model is in the actual
scenarios. The supervised learning-based model performs best
when the training and test environments are consistent. If
the channel statistics in the test environment change, the
performance will degrade due to this mismatch.

For the proposed one-shot online-learning method, we only
have the noisy sample X̄ for training. We need to make full
use of X̄ and generate training pairs according to X̄ . The
optimization target of our proposed self-supervised one-shot
online-learning method is

θ∗x = argmin
θx

E(X̃m,X̌m)∈B(X̄)

[
LO-L

(
θx, X̃m, X̌m

)]
,

(15)
where B(·) denotes that we generate samples from the current
noisy sample X̄ , e.g., using Bernoulli sampling. Then, the
trainable parameters are optimized online with the generated
training pairs. In practical applications, the one-shot online-
learning framework can be directly deployed online to process
the real-time noisy sample.

IV. REPTILE-BASED META-LEARNING ALGORITHM

To improve the efficiency and the generalizability of the
proposed framework, we incorporate a Reptile-based meta-
learning approach. Specifically, we aim to find a good model

2Existing semantic communication methods typically rely on use of an
unsupervised autoencoder since there are not explicit labels in the training
phase. However, we classify general semantic communication systems as
supervised learning, since the purpose of them is to construct the mapping
from a noisy signal to recover the transmitted source.
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Fig. 3. Illustration of the Reptile-based meta-learning scheme.

initialization for the denoising module, so that it can quickly
adapt to the current environment.

A. Key Motivations for Meta-Learning

To obtain real-time results with little latency, it is essential
to expedite the online training process for the denoising
module. To achieve this goal, we consider employing Reptile-
based meta-learning [34]. Meta-learning techniques are de-
signed to enhance the learning capacity of neural networks
by utilizing data from various distributions [40]. In the pro-
posed framework, the parameters of the denoising module are
updated based on the instantaneous data sample X̄(t), and we
assume that the parameters converge to θ(t)x when the training
process terminates. We notice however that the convergence
speed for each X̄(t) is highly dependent on the initialization,
and a good initialization will lead to much higher training
efficiency. An intuitive option for the next data sample X̄(t+1)

is initializing θx with the resulting parameters of the last
sample, i.e., θ(t)x . Despite the simplicity, this approach has
a severe limitation. That is, the resulting parameters θ(t)x of
the last data sample are instinctively overfitted for X̄(t), and
may be significantly different from the expected parameters
θ
(t+1)
x for X̄(t+1). As a result, it may be hard to update θx

from θ
(t)
x to the expected θ(t+1)

x , and thus θ(t)x may not be
a suitable initialization for X̄(t+1). Therefore, in this work,
we follow the idea of meta-learning, and aim at determining
a better initialization for each instantaneous data sample,
thereby enabling rapid adaptation.

B. Initialization Before Deployment

We start by finding a good initialization using some previ-
ously collected data. As shown in Fig. 3, the initial training
dataset is defined as X , which consists of K tasks, with each
task serving as the basic unit of training. Within each task,
the training sample is a noisy sample that could have been
randomly collected in the past. For example, the training
samples for CEM can be obtained at any previous time
through LS channel estimation, and do not require clean
channel labels. As a result, there is not much additional
overhead in acquiring training samples for meta-learning.

The training process of the proposed method can be divided
into two iterative phases, the inner update and the outer
update. In the inner update phase, we optimize the parameters
of the denoising module with one task. Our target is to find a
good parameter initialization θ̃x, such that for a randomly
sampled task, the denoising module can quickly learn to
deal with it. In the outer update phase, we use the obtained
parameters in the inner update phase to optimize θ̃x. Here, one
task refers to the denoising operation on one data sample. We
define the mapping of the denoising module as Gx(·), with θ̂x
denoting the trainable parameters. For simplicity, we omit the
subscript “x” in the following. In particular, for the denoising
task k, the objective function is represented as

argmin
θ̂k

LO-L(Gx(X̄k; θ̂k)), k = 1, . . . ,K, (16)

where θ̂k denotes the parameters trained with the denoising
task k, and LO-L(·) is the same as the loss function (11).

The parameter update procedure is illustrated in Fig. 3, and
can be summarized as follows. First, we randomly initialize
θ̂ and θ̃ with the same parameters θ̄(0). Then, we randomly
select a task m from the dataset X to train the denoising
module. The i-th updating procedure with task m can be
expressed as

θ̂(i)m = θ̂(i−1)
m − α∇

θ̂
(i−1)
m

LO-L(Gx(X̄m; θ̂(i−1)
m )), (17)

where α is the learning rate, ∇
θ̂
(i−1)
m

denotes the gradient with

respect to θ̂(i−1)
m , i = 1, . . . , I , and I is the total number of

iterations for the update on task m. After I iterations, we
finish the inner update phase on task m and finally obtain the
parameters θ̂(I)m .

Then, in the outer update, we compute the difference
between θ̂(I)m and the expected parameter initialization θ̃(0),
and use this as the direction for updating θ̃(0). Thus, the
updated parameter initialization at the first step can be denoted
as

θ̃(1) = θ̃(0) − β(θ̂
(I)

m − θ̃(0)), (18)

where β denotes the learning rate of the outer update. The
updated parameters θ̃(1) are used for the initialization of the
denoising module in the next inner update phase. Then, we
select another task to perform the next round of the inner
and cross update. Finally, we complete the training of all the
K tasks and obtain the expected initialization θ̃(K), which
are used for the initialization of the denoising module for
practical use. The procedure of the proposed meta-learning
based initialization is summarized in Algorithm 2.

C. Online Meta-Adaptation
Although the above parameter initialization is effective

when the incoming data samples are similar to those in X ,
it is hard for the resulting initialization to support varying
and complex channel conditions. Thus, we propose an online
meta-adaptation method to simultaneously perform denoising
and find a good initialization for the next data sample. In
particular, we introduce a parameter initialization ψ(t)

x and
continuously update it with the incoming data sample X̄(t),
so that O2SC can continuously find a good initialization for
future data samples.
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Fig. 4. Online meta adaptation and denoising procedure.

Algorithm 2: Reptile-based meta training.
1 Input: The dataset X for meta training, the number of tasks

K, the number of iterations for inner update I , the learning
rate α, and the learning rate β in the outer update phase.

2 Output: The found parameter initialization θ̃(K).
3 Randomly initialize the denoising module and the parameter

initialization with parameters θ̄(0).
4 for k = 1, 2, . . . ,K do
5 Randomly select a task k from the training dataset X .
6 for i = 1, 2, . . . , I do
7 Compute the gradient of the loss function of task k.
8 Update the parameters of the denoising module

based on (17).
9 end

10 Update the parameter initialization θ̃ based on (18).
11 Initialize the parameters of the (k + 1)-th inner update

with the current parameter initialization.
12 end

As shown in Fig. 4, we first initialize ψx and θx with
the parameter initialization θ̃(K) learned from the aforemen-
tioned meta-learning-based initialization, i.e., ψ(0)

x = θ̃(K)

and θ(0)x = θ̃(K). When the t-th sample X̄(t) is obtained,
we input it to the denoising module. Then, we train the
denosing module online with the one-shot online-learning
method until convergence to obtain the denoised result X̂(t).
Simultaneously, we perform the meta-adaptation procedure
to find a good initialization for X̄(t+1). In particular, the
parameters of the denoising module in the j-th test step are
updated as

θ(t,j)x = θ(t,j−1)
x −γ∇

θ
(t,j−1)
x

LO-L
(
Gx(X̄

(t);θ(t,j−1)
x )

)
, (19)

where γ is the learning rate, j = 1, . . . , J , and J is the number
of iterations. We use parameters ψ(t)

x for meta-adaptation, as
given by

ψ(t+1)
x = ψ(t)

x − β
(
ψ(t)

x − θ(t,J)x

)
. (20)

Then, we exploit ψ(t+1)
x to initialize the parameters of the

denoising module for the (t+1)-th data sample as

θ(t+1)
x = ψ(t+1)

x . (21)

As the number of samples for adaptation increases, the
training of the denoising module will converge faster when
dealing with new data samples, which improves the efficiency
of online training. The overall procedure is summarized in
Algorithm 3.

Algorithm 3: Online meta-adaptation.
1 Input: The current received noisy data samples
X̄(t)(t = 1, 2, . . .) for adaptation, the number of iterations
for meta-adaptation J , the learning rate for meta-adaptation
γ.

2 Output: The denoised result X̂(t)(t = 1, 2, . . .).
3 Initialize ψx and θx with the parameter initialization θ̃(K).
4 for t = 1, 2, . . . do
5 Train the denoising module until convergence to obtain

the denoised result X̂(t).
6 Update the meta-adaptation parameters in the next time

slot with ψ(t+1)
x = ψ

(t)
x − β

(
ψ

(t)
x − θ(t,J)

x

)
.

7 Update the parameters of the denoising module for the
next sample with θ(t+1)

x = ψ
(t+1)
x .

8 end

V. SIMULATION RESULTS

In this section, we first outline the experimental configura-
tion and evaluation protocols. Next, we verify the performance
of the proposed one-shot online-learning algorithms via sim-
ulations.

A. Simulation Setup
1) Datasets and Channel Models: In the simulations, we

consider a transmitter equipped with different numbers of an-
tennas. We generate the channels with the “3GPP-3D” model
in the QuaDRiGa simulation platform, and we also consider
the narrowband millimeter wave (mmWave) clustered channel
model [41]. For the mmWave channel case, the numbers
fo clusters and rays are set to 4 and 3, respectively. We
implement the proposed one-shot online-learning scheme with
the deep learning platform “Pytorch”. The “Adam” optimizer
is employed, with a batch size of 128. We use the CIFAR10
dataset that consists of 50, 000 color images of size 32×32×3
in the training dataset and 10, 000 images in the test dataset.
We also carried out some experiments on higher-resolution
images, using the STL-10 dataset consisting of 96 × 96 × 3
images. Here we evaluated the end-to-end processing latency
of these schemes. The experiments were implemented on
PyTorch 1.9.1 using an Intel(R) Core(TM) i5-10400 CPU and
an RTX 3060 GPU. The task number K for meta adaptation
is set to 50. In addition, we take the DJSCC model [16] as
the architecture for the encoder and decoder. To improve its
performance, we add the precoding and combiner layer to train
the model, and jointly train the DJSCC with different channel
realizations. Moreover, the advanced SNR-adaptive scheme,
ADJSCC [17], is also considered. We also augment it with
the precoding and combiner layer.
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Fig. 5. NMSE performance versus SNR.

2) Evaluation Metrics: To evaluate the performance of
the proposed O2SC, peak signal-to-noise ratio (PSNR) is
chosen for distortion metric. It measures the ratio between the
maximum possible power and the noise, and can be calculated
by

PSNR = 10 log10
MAX2

MSE
(dB), (22)

where MAX is the maximum possible value of the pixels,
e.g., MAX equals 255 for images in RGB format. Normalized
mean squared error (NMSE) is used as the metric for channel
estimation, where

NMSE = EĤ,H

[
∥Ĥ−H∥22/∥H∥22

]
. (23)

3) Comparison Schemes: For comparison, we adopt BPG
source coding and low-density parity-check (LDPC) channel
coding together with 4-order quadrature amplitude modula-
tion. (QAM) In addition, we adopt the channel coding scheme
in the 802.11n protocol [42], [43], and test the performance of
the BPG+LDPC approach with the following two code rates:
1/2 and 2/3. The channel bandwidth ratios are selected as
1/16 and 1/48, and d is set to 4.

Moreover, we also present the effectiveness of our proposed
approach via separate ablation studies. Thus, the performance
of the CEM is also considered. In particular, we compare the
performance of the proposed one-shot online-learning method
with that of the linear minimum mean square error (LMMSE)
channel estimator, and the DnCNN-based supervised learning
method [44]. The DnCNN-based methods are trained with
10, 000 channel samples to achieve satisfactory performance.
The deep image prior (DIP)-based channel estimation method
is also included as a benchmark [45]. We use the MMSE
estimator as a performance bound.

B. Ablation Study
In this subsection, we show the superiority of the one-shot

online-learning framework by conducting ablation studies. We
test the corresponding performance gain of the denoising
modules on CEM and STM, and the related results are labeled
as O2-CEM and O2-STM in the following simulation results.
Furthermore, we also jointly consider the two modules and
present the overall performance gain at last.

1) Channel Estimation Performance Comparison: Fig. 5
illustrates the NMSE performance of the proposed one-shot

Fig. 6. NMSE performance versus the length of pilots.

Fig. 7. NMSE performance versus the number of data frames.

online-learning framework and the benchmarks for different
values of SNR. For “DnCNN (wo/Mismatch)”, the training
and test SNR configurations are the same; for “DnCNN
(wi/Mismatch)”, we train the DnCNN assuming SNR = 18 dB
and test it for other SNRs. We observe that the performance
of the proposed algorithm is much better than that of the
LS estimator, indicating the effectiveness of the denoising
module. In addition, in the high SNR regime, the performance
of our framework is better than that of the DIP-based method
and the LMMSE estimator. Furthermore, the performance of
our self-supervised learning framework is very close to that
of the “DnCNN (wo/Mismatch)” and is better than that of
“DnCNN (wi/Mismatch)”, which illustrates that our approach
is more generalizable than supervised learning approaches.
The performance gap increases as the SNR decreases, since
the mismatch between the training and test stage increases for
the supervised learning.

Fig. 6 illustrates the NMSE performance of the proposed
one-shot online-learning framework and the benchmarks for
different pilot lengths. For “DnCNN (wo/Mismatch)”, the pilot
length L in the training and test stage are the same; while
for “DnCNN (wi/Mismatch)”, we train DnCNN with L = 44
and test it with other pilot lengths. It can be seen that the
estimation performance of O2-CEM is much better than that of
the LS estimator with the same length of pilots. The NMSE of
O2-CEM with 24 pilots is better than that of the LS estimator
with 44 pilots, which demonstrates that our proposed channel
estimation method can reduce pilot overhead. In addition, our
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Fig. 8. PSNR performance comparison versus average received channel SNR over the mmWave channel. The baseline model is trained with error-free
transmission, and the other schemes are trained at SNR = 5 dB and SNR = 10 dB. ADJSCC is trained with SNR sampled from 0 dB to 11 dB. The plots
in (a) and (b) show the results achieved in CIFAR10 dataset at CBR = 1/16 and 1/48, respectively. The plots in (c) and (d) present the results achieved in
STL10 dataset with higher resolution at CBR = 1/16 and 1/48, respectively.

Fig. 9. NMSE performance comparisons when different number of data points
are utilized by the supervised learning-based scheme.

one-shot learning technique achieves comparable performance
with the ‘DnCNN (wo/Mismatch)’ based supervised learning
approach. When there is a mismatch in the number of pilot
symbols in the training and test stages, our method is much
better than supervised learning, which demonstrates that our
framework can adapt to different pilot lengths.

Fig. 7 illustrates the NMSE performance of the proposed
one-shot online-learning framework and the benchmarks when
the channel changes with the frame. We simulate the channel
variation by changing the receiver’s position. In the first three
frames, we keep the receiver’s position fixed; the channel re-
mains unchanged and it is consistent with the training channels
for supervised learning. In this case, DnCNN performs well.
From the 4-th frame, we fix the position of BS and move the
receiver, which causes changes to angle of arrival (AoA) of
the line-of-sight (LOS) path. We can see that the performance
of the DnCNN based supervised learning method deteriorates
due to the mismatch between the training and application
environments. At the 8-th and 9-th frame, the performance
of DnCNN deteriorates dramatically, which is likely because
because the test channel is no significantly different from the
training channels. In contrast, the performance of our pro-
posed self-supervised learning method remains stable, which
illustrates its ability to adapt to variable channels in dynamic
environments.

In the next example, we compare the number of learning
shots by varying the number of training CSI samples for
the supervised learning-based benchmarks and compare its
performance with the proposed one-shot method. The results
are provided in Fig. 9. It can be observed that while training
with more data points can indeed improve the estimation
performance of the supervised-learning-based DnCNN, this
is challenging to achieve in real communication systems.
In comparison, our proposed O2-CEM exhibits comparable
performance without requiring a large number of training
data samples. This further demonstrates the superiority of the
proposed online-learning scheme.

2) Image Transmission Performance: Fig. 8 illustrates the
performance of the proposed one-shot online-learning method
for STM under different average received SNR values and
different channel bandwidth ratios (CBR). To isolate the
contribution of O2-CEM, we initially assume perfect CSI esti-
mation, rendering the performance gain of O2-CEM irrelevant.
The legend “DJSCC (Baseline)” denotes training the DJSCC
model in an error-free manner. In addition, we also train the
DJSCC model at SNR = 5 dB and SNR = 10 dB, and label
the results as “DJSCC (Train 5 dB)” and “DJSCC (Train 10
dB)”, respectively. For the proposed method, we implement
O2-STM by inserting the one-shot online-learning denoising
module after the decoder of the baseline model, and label the
results as “O2-STM (Proposed)”. This also ensures that the
O2-STM has no channel information before deployment, since
the baseline model is trained in an error-free manner. Then,
we test the above schemes on the test images for varying SNR
values.

Fig. 8(a)-(b) depicts the PSNR performance on the
CIRAR10 datasets for bandwidth compression ratios CBR
= 1/16 and CBR = 1/48. We see that the deep learning-based
methods outperform the traditional separated BPG+LDPC
approach, which suffers from a cliff-effect when the channel
condition is below the level anticipated by the channel code.
Additionally, we observe that the model trained at relatively
low SNR achieves better performance in low SNR regimes,
while the model trained at higher SNR tends to achieve
better performance. Specifically, when the test SNR exceeds
the training SNR, the performance quickly saturates. This
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Fig. 10. PSNR performance comparison versus average received channel SNR over different channel environments with varying numbers of paths and different
angles.

indicates that there is an inherent trade-off between the amount
of error protection and compression, as also illustrated in [16].
In contrast, when the SNR is relatively high, our proposed
method significantly outperforms the models trained under
a specific SNR, even though our proposed approach is not
trained under a specific SNR condition. This is mainly because
the proposed method is based on the baseline model, which
mainly allocates all amount of symbols for compression. The
proposed method exploits the characteristics of the noise to
further improve its performance. Moreover, we find that the
performance gain of the proposed method increases as the
SNR decreases and nearly approaches the performance of the
model trained at SNR = 10 dB. In addition, compared with
the SNR-adaptive scheme ADJSCC, teh proposed method can
approach its performance at higher SNR, even without training
with a number of channel samples and SNR like ADJSCC.
By comparing Fig. 8(a) and (b), we see that the denoising
module is still effective in more severe scenarios with lower
transmission bandwidth. Furthermore, it is worth noting that
despite the slight performance loss compared with the DJSCC
model trained at a specific SNR, the ability of O2-STM
to dynamically adapt to varying communication conditions
without requiring time-consuming offline training provides a
significant advantage in practical wireless image transmission
scenarios.

We also evaluate the proposed O2-STM scheme on a higher
resolution image dataset, STL-10. The results are shown
in Fig. 8(c)-(d).We see from the figures that the proposed
method is still effective and achieves comparable performance
to the model trained in low SNR regimes, and significantly
outperforms other methods in high SNR regimes. In addition,
since the traditional methods are specifically designed for
high-resolution images, they achieve better performance than
the deep learning-based methods at the endpoint of the cliff,
i.e., SNR = 3 dB or SNR = 5 dB. However, this may be
addressed by adopting a carefully-designed model with more
parameters.

We further evaluate the overall performance of O2SC by
incorporating both channel estimation and semantic transmis-
sion, and the results are shown in Fig. 10 for the case of the
mmWave channel model. We observe that the proposed O2SC
method significantly outperforms the ADJSCC and the DJSCC
models trained at SNR = 5 dB, SNR = 10 dB, and with

Fig. 11. Overall PSNR performance of O2SC for different numbers of
transmit antennas.

error-free transmission, especially in low SNR regimes. This
is mainly because the denoising modules are more effective
when dealing with higher levels of noise. This highlights
the advantages of jointly considering channel estimation in
semantic communication and suggests the potential for a
joint end-to-end design for practical implementations. Here
we further include the performance of semantic transmission
under the mmWave channel model with different numbers of
clusters and rays, and we also investigate the impact of the
azimuth AoA and AoD. The performance gains observed in
different channel environments further demonstrate the signif-
icant generalizability of the proposed approach, making it a
potential solution for realizing channel-adaptive transmission
in future semantic communication systems.

Fig. 11 shows the PSNR performance for different numbers
of transmit antennas, where the number of received antennas
is set to Nr = 8 and the test SNR is set to 5 dB. We
respectively train the benchmarks at specific settings, where
a number of collected channel samples are required by the
models trained at SNR = 5 dB and SNR = 10 dB. We find that
the performance of the proposed method improves with the
number of transmit antennas. This result also implicitly shows
the generalizability of the proposed method under different
system settings, which is an important property in practical
settings. Additionally, it is evident that our proposed method
outperforms the benchmarks. Furthermore, we can observe
that the performance gap between the proposed O2SC and
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Fig. 12. Examples of output images for visual comparison. For each triplet, the left is original image, the medium is the reconstructed image using O2SC,
and the right is the reconstructed image by using the baseline model. “(PE)” represents using perfect channel estimation.

specifically-trained models (i.e., the models trained at SNR
= 5 dB and SNR = 10 dB) becomes larger as Nt increases,
which further illustrates the performance advantage.

To further demonstrate the effectiveness of the proposed
framework, we also conduct visual studies, and the results
are shown in Fig. 12. In the figure, “(PE)” represents using
perfect channel estimation, so that the influence of estimation
error can be escaped for the ablation requirement. We observe
that wireless transmission noise causes disturbances in the
reconstructed image, significantly reducing the visual qual-
ity. However, with the assistance of the proposed denoising
module, the visual quality can be significantly improved. This
further demonstrate that, though we do not considered channel
condition when encoding the image at the transmitter, it is
still able to eliminate the transmission error based on the
correlation between different image parts.

C. Convergence Analysis

We evaluate the online training latency of the proposed
methods by plotting the convergence curve in Fig. 13(a). We
calculate the loss of online training for the first sample as a
function of the number of iterations. The red curve represents
initializing the O2SC with meta-learning, while the pur-
ple curve represents random initialization. As shown, O2SC
converges much faster using meta-learning-based approach.
In addition, the loss at convergence for the meta-learning-
based approach is much lower. This observation indicates
that the meta-learning-based method significantly improves
the convergence speed, and achieves a higher efficiency. In
addition, the results also demonstrate that the meta-learning-
based initialization can also yield significant performance gain
compared to using random initialization.

To further explore the impact of K, we compare the conver-
gence speed with varying numbers of channel samples. The re-

sults, shown in Fig. 13(b), indicate that the convergence speed
increases with K, demonstrating the effectiveness of the meta-
learning-based methods. It can also be seen that the resulting
loss decreases with the number of tasks. Additionally, we
observe that even a small value of K significantly speeds up
convergence. This finding suggests that the proposed method
does not rely on a large number of samples and can perform
effectively with only a few samples.

We examined the impact of the learning rate, as shown in
Fig. 13(c). It is evident that a higher learning rate accelerates
convergence but also causes a slight degradation in perfor-
mance. Therefore, there is a trade-off between convergence
speed and estimation accuracy. In practical applications, se-
lecting an appropriate learning rate is crucial for balancing
these factors.

D. Complexity Analysis

The proposed O2SC framework consists of two key com-
ponents: STM and CEM. The STM primarily incorporates a
CNN-based JSCC model and a U-Net-based image denoising
module, while the CEM is also predominantly built on U-
Net architecture. Concretely, the computational cost (multiply-
accumulate operations) of a single convolutional layer is
given by O(K2CiCoHoWo), where K denote the kernel size,
Ci denotes the input channels, and Co denotes the output
channels. Moreover, Ho and Wo denotes the height and width
of the intermediate feature, respectively. As a result, the com-
putational complexity of the CNN-based DJSCC model can
be written as O

(∑L1

l=1 C1,i,lC1,o,lK
2
1,lH1,o,l,W1,o,l

)
, where

the subscript “l” signifies the layer number. For example, K1,l

denotes the kernel size of l-th layer. Since Ho,l and Wo.l

are only related to the size of the input images, (H,W ),
the computational complexity can be further simplified as
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Fig. 13. Convergence analysis. (a) Convergence curve of O2SC with/without meta-learning; (b) Convergence curve of O2SC using different numbers of tasks
K, where we consider K = 0, 50, 80, 100, 150, respectively; (c) Convergence curve of O2SC using different learning rates.

O
(
HW

∑L1

l=1 C1,i,lC1,o,lK
2
1,l

)
. Meanwhile, the computa-

tional complexity of the U-Net in STM can be represented
as O

(
NsHW

∑L2

l=1 C2,i,lC2,o,lK
2
2,l

)
, where Ns denotes the

number of training iterations, and L2 is the number of layers in
STM. Similar to STM, the computational complexity of CTM
can be represented as O

(
NcNrNt

∑L3

l=1 C3,i,lC3,o,lK
2
3,l

)
,

where Nc denotes the number of training iterations for
CTM, and (Nr, Nt) determines the size of the channel ma-
trix. Considering the complexity of LS estimator, the over-
all complexity of channel estimation can be expressed as
O
(
N2

rN
2
t +NcNrNt

∑L3

l=1 C3,i,lC3,o,lK
2
3,l

)
.

E. Discussion

It has been recognized that channel fading is also a key fac-
tor affecting the performance of semantic communication. For
existing supervised learning-based semantic communication,
the semantic encoder and decoder are jointly learned under a
number of collected channel samples in an offline manner
before deployment. This helps capture the fading effect,
thereby enhancing performance. However, the availability of
samples is generally rare in practical communication systems,
and the channels are time-varying, so it is difficult to use
fixed models trained offline to support real-time applications.
Regarding the above experimental results and ablation studies,
we can conclude two advantages of the proposed O2SC:

• The one-shot online-learning framework is highly adapt-
able to different channel conditions without collecting a
large number of training samples.

• The one-shot online-learning framework can be directly
deployed online to process real-time received noisy
samples. Thus, the proposed self-supervised learning
approach can adapt to varying channels in dynamic
environments.

VI. CONCLUSION

In this paper, we proposed a new method, referred to
as O2SC, that focuses on the joint problem of channel
estimation and semantic transmission to achieve channel-
adaptive semantic communication systems. This approach can
be directly deployed online without the need for acquiring a
large number of channel samples for offline training, making
it robust to varying channels in dynamic environments. The

framework is implemented by devising a plug-in denoising
module. The denoising module is designed based on the
one-shot learning method, where Bernoulli sampling and
dropout approaches are employed. To accelerate the online
learning, the meta-adaptation mechanism was proposed to find
a good initialization for different channel samples. Simulation
results showed that our proposed one-shot online-learning
scheme achieves performance comparable to supervised learn-
ing methods and has better generalizability. The proposed
online-learning paradigm intrinsically provides a new solution
for achieving adaptive semantic communication.

We introduced a one-shot online learning framework to
enhance the performance of semantic communication systems,
focusing initially on the problem formulation. This innovative
approach enables rapid adaptation to new data samples in
dynamic environments, resulting in significant performance
gains. However, several directions show promise for further
improvement. First, limited attention has been given to the
network design. Developing efficient and robust network ar-
chitectures is critical for optimizing the performance of the
online learning framework. Secondly, investigating the impact
of shifts in source and channel domains is essential. These
shifts can significantly influence performance and generaliz-
ability. Addressing these areas will be crucial for advancing
the capabilities and applicability of semantic communication
systems in real-world scenarios. We acknowledge these limi-
tations and leave them for future research.
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