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Wasserstein Distributionally Robust Graph Learning
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Abstract—In this paper, we consider inferring the underlying
graph topology from smooth graph signals. Most existing ap-
proaches learn graphs by minimizing a well-designed empirical
risk using the observed data, which may be prone to data
uncertainty that arises from noisy measurements and limited ob-
servability. Therefore, the learned graphs may be unreliable and
exhibit poor out-of-sample performance. To enhance the robust-
ness to data uncertainty, we propose a smoothness-based graph
learning framework from a distributionally robust perspective,
which is equivalent to solving an inf − sup problem. However,
learning graphs directly in this way is challenging since (i) the
inf − sup problem is intractable, and (ii) many parameters need
to be manually determined. To address these issues, we first
reformulate the inf − sup problem into a tractable one, where
robustness is achieved via a regularizer. Theoretically, we show
that the regularizer can improve generalization of the proposed
graph estimator by bounding the out-of-sample risks. We then
propose an algorithm based on the ADMM framework to solve
the induced problem and further unroll it into a neural network.
All parameters are determined automatically and simultaneously
by training the unrolled network. Extensive experiments on both
synthetic and real-world data demonstrate that our approach
can achieve superior and more robust performance than existing
models on different observed signals.

Index Terms—Graph learning, graph signal processing, distri-
butionally robust optimization, Wasserstein distance, algorithm
unrolling.
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I. INTRODUCTION

RECENT years have witnessed a growing interest in signal
processing and machine learning tasks involving graphs

since the intrinsic information of structured data residing on
topologically complicated domains can be flexibly represented
with graphs [1]. Some celebrated graph-based models, such
as spectral clustering [2] and graph neural networks [3], have
achieved great success in many fields. However, among these
models, the underlying graphs are built on prior knowledge that
may not be available or accurate, affecting the performance of
downstream graph-based tasks. Therefore, it is essential to learn
graphs directly from the observed data on hand.

Inferring graph topology from raw data, also termed graph
learning, has long been a research area of interest [4], [5].
Recently, with the rise of graph signal processing (GSP) [6],
a class of widely studied models, referred to as smoothness-
based models, attempt to learn graphs from the perspective of
signal processing. These models postulate that the observed
signals are smooth over the underlying graphs [7], [8]. Intu-
itively, a graph signal being smooth over a graph means that
the signal values of two connected nodes should be similar.
In practice, many signals appear to be smooth over the latent
graphs, including temperature recordings [8] and medical data
[9]. Smoothness-based models [7], [8], [10], [11] typically infer
graph topology by solving a constrained Laplacian quadratic
form minimization problem [12]. For example, [8] employs a
squared Frobenius norm regularizer to control the sparsity of the
learned graphs, and [7] utilizes a logarithmic barrier function
to improve the overall graph connectivity. These constrained
Laplacian optimization problems are equivalent to minimizing
the empirical risks of observed data. As a result, the learned
graphs inevitably depend heavily on the empirical distribution
and are vulnerable to data uncertainty. Specifically, the empiri-
cal distribution may deviate from the true data distribution—
which is unknown and depends on the underlying graphs—
due to low-quality observations, leading to unreliable graphs
that trouble downstream tasks. On the other hand, the graphs
learned from empirical risk minimization (ERM) are prone to
overfitting since they only exploit information in the observed
data and ignore those unseen signals.

Here, we leverage ideas from distributionally robust op-
timization (DRO) [13] to learn graphs from smooth signals
by considering data uncertainty. Specifically, we assume that
the ground-truth data distribution is unknown but lies in an
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uncertainty set containing all distributions in the proximity of
the empirical distribution. We then learn a graph by minimizing
the worst-case expected risk of all distributions in the uncer-
tainty set instead of the empirical risk. The graph learned in
this way performs well under the unknown ground-truth dis-
tribution since it suppresses the risks of all distributions in the
uncertainty set, which may also include the true distribution (if
the uncertainty set is constructed properly).

Constructing the uncertainty set requires some metrics to
measure distributional discrepancies. Common metrics in DRO
include KL-divergence [14], moment-based metrics [15], and
Wasserstein distance [16]. In this study, we employ the Wasser-
stein distance for the following reasons. (i) The Wasserstein
uncertainty set contains richer distributions than those induced
by other metrics, e.g., the moment metric [12], meaning it
can handle more complex real-world distributions. (ii) Wasser-
stein distance is more statistically robust than other information
divergences [17] and provides numerous theoretical results,
which facilitates subsequent model analysis [16]. Two recent
studies [18], [19] have applied Wasserstein distributionally ro-
bust optimization (WDRO) to infer graph topology. Our model
differs from [18], [19] in that we learn graphs with Lapla-
cian constraints, whereas [18], [19] learn precision matrices.
Moreover, we theoretically analyze the out-of-sample (OOS)
performance of the proposed model, which is not provided in
[18], [19]. In parallel to our work, [12] also proposes to learn
graphs from smooth signals under distributional uncertainty.
However, it only uses the first two moments of data distributions
to construct uncertainty sets, while our model uses Wasserstein
distance, which may carry more information. Furthermore, we
propose a method for constructing the uncertainty sets, which
has not been explored before (see Section IV-B).

Nevertheless, it is challenging to learn graphs by minimizing
the worst-case expected risk—which is equivalent to solving an
inf − sup problem—for two reasons. (i) The inf − sup prob-
lem is intractable since it involves the expectation over all pos-
sible distributions in the uncertainty set. (ii) The uncertainty set
size, together with other undetermined parameters, constitutes
a large parameter search space, making it laborious to choose
optimal parameters for the proposed framework.

Regarding the first challenge, many studies attempt to refor-
mulate the inf − sup problems induced by DRO into tractable
forms [20], [21], [22]. However, the reformulation in the context
of learning graphs from smooth signals has not been thoroughly
studied. Inspired by [22], we reformulate our distributionally
robust graph learning problem into a tractable one, where ro-
bustness is achieved via a regularization term whose weight is
interpreted as the uncertainty set size. The reformulation pro-
vides an interpretable connection between robustness and regu-
larizers. To further validate the necessity of the WDRO-induced
regularizer, we analyze the OOS performance of the proposed
model. The results illustrate that the regularizer contributes to
bounding the OOS risks, which improves generalization of the
proposed graph estimator.

The uncertainty set size needs to be carefully determined as
it represents the level of robustness [19]. A large uncertainty
set indicates higher confidence that the set contains the true

distribution, while too large uncertainty sets may lead to over-
conservative results [16]. A practical method to determine the
uncertainty set size is cross-validation [21], which is computa-
tionally expensive. Moreover, there are other free parameters in
our model, making it more difficult to use cross-validation due
to the large search space. Some studies suggest a principle for
choosing the uncertainty set size through concentration inequal-
ities [16], [21]. Although computationally efficient, the sizes
determined by this approach may be over-conservative [16].
The recent work [23] proposes a method based on empirical
likelihood, which is unsuitable for our problem due to the ad-
ditional Laplacian constraints. Thus, how to design an efficient
method to automatically determine all parameters simultane-
ously, especially the uncertainty set size, remains unsolved.

To address the issue, we employ the algorithm unrolling (AU)
technique [24] to transform the parameter selection task into a
neural network training task. Algorithm unrolling offers a prin-
cipled framework to express a conventional iterative algorithm
as a neural network. It was first proposed in [25] to connect
iterative algorithms for sparse coding to neural network archi-
tectures. Following [25], many studies attempt to unroll iterative
algorithms, including compressive sensing [26], deconvolution
[27], and stochastic control [28].

Recently, some works apply AU to GSP to denoise and
restore graph signals [29], [30]. These approaches unroll graph
signal denoising/restoration algorithms based on known graphs,
while our goal is to use AU to learn graphs from signals.
Some studies have also applied AU to graph learning problems.
The GLAD model [31] unrolls an alternating minimization
algorithm to learn graphs represented by precision matrices
without Laplacian constraints. The recent work [9] learns
graphs from smooth signals by unrolling a primal-dual splitting
(PDS) algorithm. Our model, however, differs from that of
the logarithmic barrier function in [9] and further accounts for
data uncertainty. The latest work [32] leverages AU to learn
graphs from convolutional mixtures, which is different from our
smoothness-based model.

Here, we first propose an iterative algorithm based on the
ADMM framework to solve the reformulated problem. Then,
each iteration of the proposed algorithm is unrolled as a layer
of a neural network, where the parameters to be determined
are regarded as the trainable parameters. Moreover, we replace
the handcrafted regularizers that endow topological properties
with a multi-layer neural network. In this way, topological
features are learned automatically from the data instead of being
determined manually. The parameters, including the uncertainty
set size, are learned through end-to-end training, and the trained
networks are used to learn graphs. The merits of utilizing AU
are two-fold. (i) The optimal parameters of the framework are
simultaneously determined by training the network. As a result,
the trained networks usually exhibit more powerful learning
performance than traditional iterative algorithms with manually
determined parameters. (ii) Compared to traditional neural net-
works, the unrolled network incorporates domain knowledge
about smoothness-based graph learning models. Consequently,
the unrolled network has more efficient parameters and requires
fewer training data to extract information [24].
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In summary, the contributions of this study are as follows:
• We propose a smoothness-based graph learning model

from a distributionally robust perspective. Leveraging
modern reformulation techniques, we reformulate the
problem into a tractable form, where robustness is
achieved via a regularizer whose weight is equivalent to the
uncertainty set size. Our framework builds an interpretable
bridge between robustness and graph regularizers. Fur-
thermore, we theoretically analyze the OOS performance
of the proposed graph estimator. The results reveal that
the robustness-induced regularizer contributes to bounding
the OOS risks, thereby mitigating overfitting. Thus, we
corroborate the necessity of the regularizer in robust graph
learning settings.

• We propose an ADMM algorithm to solve the induced
problem and unroll it into a neural network to avoid exces-
sive parameter searches. The parameters of the proposed
framework, especially the uncertainty set size, are deter-
mined automatically and simultaneously by training the
network.

• We conduct extensive experiments on both synthetic and
real-world data to validate the effectiveness of the pro-
posed framework. The experimental results demonstrate
that our approach can achieve superior and more robust
performance than state-of-the-art graph learning models
on different observed signals.

Organization: The rest of this paper is organized as fol-
lows. Some background information is introduced in Section II.
We propose our robust graph learning framework in Section III.
Then, we develop an ADMM algorithm to solve the induced
problem and further unroll it into a neural network in Sec-
tion IV. Next, we conduct experiments on both synthetic data
and real-world data in Section V. Finally, concluding remarks
are presented in Section VI.

Notations: Throughout this paper, vectors, matrices, and
sets are written in bold lowercase, bold uppercase letters, and
calligraphic uppercase letters, respectively. Given a vector y
and matrix Y, y[i] and Y[ij] denote the i-th entry of y and the
(i, j) entry of Y, respectively. The vectors 1, 0, and matrix I
represent all-one vectors, all-zero vectors, and identity matrices,
respectively, whose dimensions depend on the context. The �q
norm of a vector is denoted as ‖·‖q , and ‖·‖F represents Frobe-
nius norm of a matrix. The notations †, ◦, Tr(·), vec(·), and
diag(·) denote pseudo inverse, Hadamard product, trace oper-
ator, vectorization operator, and diagonalization, respectively.
Given a distribution P, we write y ∼ P to mean that the random
vector y is distributed according to P. Moreover, we useEy∼P[·]
to denote the expectation w.r.t. P. Besides, Pr(·) denotes taking
probability. Finally, we use Sd×d for the set of d× d symmetric
matrices and R+ for set of nonnegative real values.

II. BACKGROUND

A. Wasserstein Distance

The Wasserstein distance is a measure of the discrepancy
between two distributions. Here, we define order-α Wasserstein
distance as follows.

Definition 1 ([33]): For any α ∈ [1,∞), order-α Wasserstein
distance between two probability distributions P1 and P2 on R

d

is defined as

Wα(P1,P2)

=

(
inf

π∈U(P1,P2)

∫
Rd×Rd

C(a1,a2)
απ(da1, da2)

) 1
α

, (1)

where C(·) is a cost function. In addition, U(P1,P2) repre-
sents the set of all joint distributions π on a1,a2 ∈ R

d, whose
marginal distributions are P1 and P2, respectively.

We select the cost function C(·) as �p norm, i.e., C(a1,a2) =
‖a1 − a2‖p, where p≥ 1. The definition indicates that the
Wasserstein distance between two distributions represents the
cost of an optimal mass transportation plan [33].

B. GSP Background

We consider undirected graphs with non-negative weights
and no self-loops. For such a graph G = {V, E} with d vertices,
where V and E are the sets of nodes and edges respectively,
its adjacency matrix W ∈ S

d×d is a symmetric matrix with
zero diagonal entries and non-negative off-diagonal entries.
The Laplacian matrix of G is defined as L=D−W [34],
where the degree matrix D ∈ S

d×d is a diagonal matrix sat-
isfying D[ii] =

∑d
j=1 W[ij]. The matrices L and W encode

the topology of G since they have a one-to-one relationship.
We study the graph signal x=

[
x[1], ...,x[d]

]� ∈ R
d associated

with the graph G, where x[i] is the signal value of node i of G.
The smoothness of a graph signal x over G is defined as follows.

Definition 2 (Smoothness [8]): Given a graph signal x ∈ R
d

associated with the graph G, the smoothness of x over G is
defined as

x�Lx=
1

2

d∑
i,j=1

W[ij]

(
x[i] − x[j]

)2
, (2)

where L and W are the Laplacian matrix and adjacency matrix
of G, respectively.

This quadratic form of (2) quantifies how much the signal x
changes w.r.t. G. A graph signal is said to be smooth over the
corresponding graph if the value of (2) is small [8].

C. Smooth Signals Graph Learning

Given N observations X= [x1, ...xN ] ∈ R
d×N , the goal of

smoothness-based graph learning is to infer the graph topology
under the assumption that the signals X are smooth over the
underlying graph G [8]. Formally, the problem is written as

inf
L

1

N

N∑
n=1

x�
nLxn + r(L)

s.t. L[ij] = L[ji] < 0, for i �= j,

L1= 0,

Tr(L) = d, (3)

where r(L) is a regularization term of L that endows G with
desired properties such as sparsity. Some common choices of
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r(L) include κ‖L‖2F [8] and −κ1� log(diag(L)) [7], where κ
is the weight of the regularizers. The first two constraints of (3)
are used to ensure the learned L is a valid Laplacian matrix.
The last constraint is to avoid trivial solutions [8]. For notational
simplicity, we define L as

L�
{
L : L ∈ S

d×d,L1= 0, L[ij] ≤ 0 for i �= j, Tr(L) = d
}
.

Thus, problem (3) can be rephrased as

inf
L∈L

1

N

N∑
n=1

x�
nLxn + r(L). (4)

However, the basic smoothness-based model (4) learns
graphs directly from the observed signals X, meaning that the
performance may heavily depend on the observed data. To this
end, in the next section, we propose a robust graph learning
model grounded on (4) by considering data uncertainty of X.

III. WASSERSTEIN DISTRIBUTIONALLY ROBUST

GRAPH LEARNING

In this section, we first propose the robust graph learning
framework under the WDRO framework, which is next refor-
mulated into a tractable problem. Finally, we analyze the OOS
performance of the proposed model.

A. Basic Formulation

We first revisit (4) via the lens of ERM, which can be rewrit-
ten as

inf
L∈L

Ex∼Pn

[
x�Lx

]
+ r(L), (5)

where Pn is the empirical distribution associated with the ob-
served signals x1, ...,xN , i.e.,

Pn =
1

N

N∑
n=1

Dirac(xn), (6)

where Dirac(xn) denotes the Dirac point measure at data point
xn. This formulation depends heavily on the empirical distri-
bution, suggesting that it may suffer from the following dis-
advantages. (i) The empirical distribution may be far from the
ground-truth due to limited observations and noisy measure-
ments, making the learned graphs unreliable. (ii) The learned
graphs are prone to overfitting as the model only exploits the
information from the observed signals while ignoring unseen
data [16]. Hence, we hope to learn a robust graph less affected
by the sample quality.

To this end, we first construct a set

P = {P : Wα(P,Pn)≤ ε} , (7)

where Wα(P,Pn), α≥ 1, is the order-α Wasserstein distance
between P and Pn. As stated before, Wasserstein distance can
bring tractable reformulation and an interpretable bridge be-
tween robustness and graph regularizers, which will be pre-
sented later. The uncertainty set P contains all distributions
whose distances from the empirical distribution Pn are smaller
than ε. We hereafter refer to ε as the uncertainty set size. We do

not explicitly specify α here, as we will prove that it does not
impact our formulation in the next subsection. We then learn
a graph by minimizing the worst-case expected risk over all
distributions in P , which can be formulated as the following
inf − sup problem:

inf
L∈L

R(L;x) + r(L) = inf
L∈L

sup
P∈P

Ex∼P

[
x�Lx

]
+ r(L), (8)

where

R(L;x) = sup
P∈P

Ex∼P

[
x�Lx

]
(9)

is called the worst-case expected risk. The philosophy underly-
ing (8) is that if we minimize the worst-case expected risk, we
can naturally push down the risks of all distributions inP , which
may include the true distribution P

∗ [21]. Thus, the expected
risk of the learned graph, L̂, over P∗ is smaller than R(L̂;x)
(if P contains P∗), indicating that L̂ still performs well over the
true distribution even if the empirical distribution deviates from
the ground-truth. Intuitively, the uncertainty set size determines
the probability that P contains P∗. An uncertainty set with large
ε is more likely to contain P

∗ as well as more nuisance distri-
butions, making L̂ less sensitive to unseen signals. However, if
the ε is too large, P will contain too many “bad” distributions
that may not be encountered in real life. As a result, the worst-
case expected risk is unnecessarily high, resulting in the learned
graphs being over-conservative. Therefore, ε is critical to the
learning performance and needs to be chosen carefully.

B. Tractable Reformulation

At first glance, the inf − sup problem (8) appears to be
intractable since the inner supremum has no closed form. How-
ever, if we define Θ� xx� ∈ S

d×d and Θn � xnx
�
n ∈ S

d×d,
the smoothness-based graph learning problem (5) can be rewrit-
ten as

inf
L∈L

EΘ∼Qn
[Tr(LΘ)] + r(L), (10)

where

Qn =
1

N

N∑
n=1

Dirac(xnx
�
n ) =

1

N

N∑
n=1

Dirac(Θn). (11)

Thus, we can construct the uncertainty set centered at Qn in-
stead of Pn, i.e.,

Q= {Q : Wα(Q,Qn)≤ ε} . (12)

Problem (8) can be recast in the form of variable Θ

inf
L∈L

R(L;Θ) + r(L) = inf
L∈L

sup
Q∈Q

EΘ∼Q [Tr(LΘ)] + r(L).

(13)

Then, we have the following theorem.
Theorem 1: The inf − sup problem of (13) is equivalent to

the following problem

inf
L∈L

R(L;Θ) + r(L) = inf
L∈L

Tr(LΘ̃) + r(L) + ε‖vec(L)‖q,
(14)
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where Θ̃= Θ1+Θ2+....ΘN

N =
x1x

�
1 +x2x

�
2 +...+xNx�

N

N , and q ≥ 1
is a constant satisfying 1

p + 1
q = 1.

Proof: The proof is inspired by Theorem 2.1 in [19], with
one distinction being the usage of r(L) in place of − log |L|,
where |L| means the (pseudo)determinant of L. Furthermore,
[19] use the optimal transport cost to measure the distance
between two distributions, while ours use Wasserstein distance.
Although the two are similar, α does not affect the final result
(14) in our problem. The main idea of the proof is to first
provide a dual form of the worst-case expected risk R(L;Θ)
via Corollary 2 in [33] and then show that the dual problem of
R(L;Θ) has the same closed-form solution in the two cases of
α= 1 and α > 1. After calculating the closed-form solution of
R(L;Θ), we plug it into the (13) and then we obtain (14). See
[19], [33] for more details.

Remark 1: It is observed from Theorem 1 that robustness is
achieved via a regularization term of �q norm, and the uncer-
tainty set size controls the weight of the regularization term as
well as the level of robustness. Note that when q = 2, the regu-
larizer is ‖L‖F, which is similar to the squared Frobenius norm
regularizer ‖L‖2F used to control edge sparsity [8]. However,
the ‖L‖2F regularizer is empirically designed without any the-
oretical interpretation. On the other hand, [12] also attempts to
interpret the ‖L‖F regularizer from the perspective of DRO. Our
model considers the more general case of q ≥ 1. Furthermore,
the model in [12] introduces another regularizer κ‖L 1

2 μ̂n‖2,
where μ̂n is the sample mean vector of the observed signals and
κ is the weight. The additional regularizer increases the number
of parameters to be determined and complicates the problem
further.

C. Out-of-Sample Performance

Next, we provide the OOS performance of the proposed
graph estimator to illustrate how the regularizer contributes to
the robustness of the learned graphs. The analysis is based on
the Rademacher complexity [35], a widely-employed tool to
measure the complexity of a class of functions. We first make
several technical assumptions.

Assumption 1: The data x is bounded, i.e., there exists a
constant Bx such that ‖x‖1 ≤Bx.

Assumption 2: The �q norm of the vectorized L ∈ L is
bounded, i.e., there exists a constant BL such that ‖vec(L)‖q ≤
BL.

Assumption 1 naturally holds in the real world. Assumption 2
typically holds since any meaningful graph will have finite edge
weights. With these assumptions at hand, we have the following
Lemma.

Lemma 1: Define a class of functions F � {x 
→ f(x;L) :
f(x;L) = Tr(LΘ),Θ= xx�,L ∈ L

}
and BR �BLB

2
x. Un-

der Assumptions 1-2, the empirical Rademacher complexity of
F of N observed data, denoted as RN (F), is bounded by

RN (F)≤ 2BR√
N

. (15)

Proof: See Appendix A.

Using Lemma 1, we obtain the following theorem.
Theorem 2: Let L̂ be the solution to (14) using the observed

data x1, ...,xN . Suppose we draw a new i.i.d. data x′. Under
Assumptions 1-2, for any 0< η < 1, with probability at least
1− η, we have

Ex′∼P∗

[
f(x′; L̂)

]
(16)

≤ 1

N

N∑
n=1

f(xn; L̂) +
2BR√
N

+BR

√
8 log(2/η)

N
, (17)

and for any ξ ≥ 2BR√
N

+BR

√
8 log(2/η)

N ,

Pr

(
f(x′; L̂)≥ 1

N

N∑
n=1

f(xn; L̂) + ξ

)

≤
1
N

∑N
n=1 f(xn; L̂) +

2BR√
N

+BR

√
8 log(2/η)

N

1
N

∑N
n=1 f(xn; L̂) + ξ

. (18)

Proof: See Appendix B.
Given the graph L̂ learned from (14), the theorem provides an

upper bound on the expected loss of smoothness for a new data
x′. It says that, with probability at least 1− η, the expected loss
of smoothness on the new data is bounded above by the sample
average loss of the observed data plus two terms related to
the supremum of the regularizer ‖vec(L)‖q , i.e., BR =BLB

2
x,

which corroborates the validity and necessity of our regulariza-
tion formulation of (14) from the perspective of generalization
ability. The two terms related to the WDRO-induced regularizer
decay to zero as N increases, which is expected since more ob-
servations lead to better OOS performance. Furthermore, (18)
reveals that the probability that OOS risk exceeds the sample
average risk will also decrease as N increases. When N →
+∞, both (17) and (18) imply that the OOS performance will
only depend on the sample average loss of the observed data.
However, when N is small, the proposed regularizer contributes
bounding the risk of unseen data, promoting the robustness
of the graph estimator. Note that Theorem 2 does not provide
any insights into how different choices of q for the �q norm
affect the OOS performance. Accordingly, we cannot obtain any
suggestion about the choice of q from Theorem 2. Fortunately,
we can exploit algorithm unrolling to automatically choose q
from data, as we will explain in the next section.

IV. ALGORITHM UNROLLING FOR ROBUST

GRAPH LEARNING

In this section, we first develop an algorithm to iteratively
solve the induced optimization problem (14) based on the
ADMM framework. We next unroll the proposed algorithm into
a neural network to avoid excessive parameter searches.

A. The ADMM Algorithm

We have the following equation according to [7]

Tr(LΘ̃) =
1

N
Tr(X�LX) =

1

2N
‖W ◦ Z‖1,1, (19)
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where ‖·‖1,1 is the elementwise �1 norm of a matrix. Besides,
Z is the pairwise distance matrix defined as

Z[ij] = ‖x̃i − x̃j‖22, (20)

where x̃i ∈ R
N is the i-th row vector of X, i.e., X=[

x̃�
1 , ..., x̃

�
d

]�
. The number of free variables of W is m�

d(d−1)
2 , i.e., the upper right triangle elements. Thus, we define

two vectors w, z ∈ R
m whose elements correspond to the upper

right entries of W and Z, respectively. Using (19), the problem
(14) can be rephrased in the following vector form

inf
w

z�w

N
+ ε
(
2‖w‖qq + ‖Sw‖qq

) 1
q + r̃(w)

s.t. w ≥ 0, w�1=
d

2
, (21)

where S is a linear operator satisfying Sw =W1, and r̃(w)
represents r(L) in the form of variable w. Here, w ≥ 0 means
that all elements of w are non-negative. By defining W �{
w :w ≥ 0,w�1= d

2

}
, we rewrite (21) as

inf
w∈W

z�w

N
+ ε
(
2‖w‖qq + ‖Sw‖qq

) 1
q + r̃(v)

s.t. v =w. (22)

The scaled augmented Lagrangian form of (22) is

Lρ(w,v,u) =
z�w

N
+ ε
(
2‖w‖qq + ‖Sw‖qq

) 1
q + r̃(v)

+
ρ

2
‖w − v + u‖22 −

ρ

2
‖u‖22, (23)

where ρ > 0 is the ADMM penalty parameter, and u is the
dual variable. Under the ADMM framework, the updates of our
algorithm are

wk+1 = argmin
w∈W

Lρ(w,vk,uk)

vk+1 = argmin
v

Lρ(w
k+1,v,uk)

uk+1 = uk +wk+1 − vk+1. (24)

The details of the above three updates are as follows.
Update w: The sub-problem of updating w is

wk+1 = argmin
w∈W

Lρ(w,vk,uk)

= argmin
w∈W

z�w

N
+ ε
(
2‖w‖qq + ‖Sw‖qq

) 1
q

+
ρ

2
‖w − vk + uk‖22. (25)

We leverage the projected gradient descent algorithm to solve
the sub-problem. Specifically, the gradient of the objective func-
tion of (25) is

∇wLρ(w,vk,uk)

= ε
(
2‖w‖qq + ‖Sw‖qq

) 1−q
q ·
(
2w.(q−1) + S� (Sw)

.(q−1)
)

+ ρ
(
w − vk + uk

)
+

z

N
. (26)

Let w̃k
0 =wk, and perform the following updates T times

w̃k
t+1 = ProjW

(
w̃k

t − ν∇wLρ(w̃
k
t ,v

k,uk)
)
, (27)

Algorithm 1 The ADMM Algorithm for (14)
Input:

ε, ρ, q, ν, graph signals X
Output:

The learned graph w
1: Initialize w0, v0 and u0, and set k = 0
2: while stop criterion not satisfied do
3: Let w̃k

0 =wk

4: for t= 0, ..., T − 1 do
5: w̃k

t+1 = ProjW
(
w̃k

t − ν∇Lρ(w̃
k
t ,v

k,uk)
)

6: end for
7: Let wk+1 = w̃k

T

8: vk+1 = prox r̃
ρ

(
wk+1 + uk

)
9: uk+1 = uk +wk+1 − vk+1

10: k = k + 1
11: end while
12: return wk

where ν is the (constant) stepsize, and ProjW(·) denotes the
projection into the simplex W . Finally, we let wk+1 = w̃k

T .
Update v: The sub-problem of updating v is

vk+1 = argmin
v

Lρ(w
k+1,v,uk)

= argmin
v

r̃(v) +
ρ

2
‖wk+1 − v + uk‖22. (28)

The solution of (28) is

vk+1 = prox r̃
ρ

(
wk+1 + uk

)
, (29)

where prox r̃
ρ
(·) is the proximal operator of r̃

ρ .

Update u: The update of u is straight, i.e., uk+1 = uk +
wk+1 − vk+1.

We update w, v and u alternately until the solutions con-
verge. The ADMM framework can guarantee global conver-
gence if the problem is convex [36]. Furthermore, the stopping
criterion of the ADMM framework is that the primal and dual
errors are both smaller than a predefined threshold. See [36]
for more details. The complete algorithm flow is shown in Al-
gorithm 1. The computational burden of Algorithm 1 is mainly
on ∇wLρ(w,v,u), ProjW(·), and prox(·). The computational
cost of ∇wLρ(w,v,u) is O(m), where m= d(d−1)

2 and d is
the number of nodes. For commonly used graph structural reg-
ularizer like logarithm barrier, the cost is also O(m). The pro-
jection ProjW(·) requires O(m+ nnz(ProjW(w)) · logm) as
stated in [12], where nnz(·) is the number of nonzeros. Thus,
the overall complexity is K1T (m+ nnz(ProjW(w)) · logm),
where K1 is the number of outer iterations to converge.

We see that in Algorithm 1, we need to manually tune pa-
rameters including ε, ρ, q and ν. Moreover, r̃(w) may also have
some extra parameters, see [7], [8]. Finding a high-performance
combination of them manually is not easy due to the large
search space. Furthermore, as mentioned before, the determi-
nation of ε is crucial since it reflects the level of robustness. As
such, it is essential to devise a convenient method to determine
all parameters automatically.
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Fig. 1. An illustration of the proposed unrolled network.

B. Unrolling The ADMM Algorithm

In this subsection, we unroll the proposed ADMM algorithm
into a neural network, in which the parameters to be determined
in Algorithm 1 are learned by training the network. The details
of the unrolled network are described next.

1) Network Structure: Suppose we run the ADMM algorithm
K iterations, and each iteration corresponds to one layer in the
unrolled network. As displayed in Fig. 1, the network contains
three modules per layer, i.e., UW, UV and UU. We next
explain the three modules in detail.
UW: The module UW is related to updating w, which

consists of T UP submodules. In each UP submodule, the
network makes one forward propagation via (27) to update
w. Note that we need to perform the operator ProjW(·) in
UP to project variables into the simplex W . Many efficient
algorithms have been developed to implement the projection;
see [37] and the references therein. In this study, we develop
a new projection method in which all operations can be back-
propagated to train the unrolled networks. Specifically, for any
vector s ∈ R

m, the projected vector w ∈W is

w =max

(
s−max

{
d/2−

∑I
i=1 s

[I]

−I
, I = 1, ...m

}
, 0

)
,

(30)

wheremax(·) is an element-wise operator, s[I] is the I-th largest
element of s. It is not difficult to verify that all operations of
(30) can be back-propagated. The proposed method is similar
to [38], and the difference is that our method does not need to
determine the number of non-zero elements in s. The derivation
of (30) is presented in Appendix C.
UV: The module UV is related to updating v. In the

ADMM algorithm, the update of v is the proximal operator
of a handcrafted function r̃. However, the design of r̃ requires
topological priors about the desired graphs, which may not ac-
curately describe the true graph topology. Indeed, the proximal
operator can be viewed as a mapping that projects a vector
into the space that satisfies some topological properties [9].
A natural question is, can we replace the handcraft mapping
with some well-designed plugin, or directly learn the mapping

from samples? Some explorations have been made on this prob-
lem, and an excellent example is PnP-ADMM [39], [40], [41].
In PnP-ADMM, the mapping is replaced by a denoiser to en-
hance image restoration performance [41]. Another line of work
attempts to leverage a neural network to replace the mapping,
such as convolutional neural networks [42]. The recent work
[9] designs a variational autoencoder to replace the mapping
w ≥ 0 when we infer graph topology. In this study, we replace
the proximal operator of the regularizer r̃(w) with a multi-layer
neural network NN , which is more intuitive than [9] since
r̃(w) is directly related to the topological priors. The update
of this module is written as

vk+1 =NN (wk+1 + uk). (31)

The structure of NN is m×Nh ×Nh ×m, where Nh is
the size of hidden layers of NN . We let Nh = 8 in our
model. The activation functions of two hidden layers are ReLU
functions.
UU: The module UU is related to updating u, i.e., uk+1 =

uk +wk+1 − vk+1.
The whole procedure are shown in Algorithm 2. For Algo-

rithm 2, the proximal operator prox(·) is replaced by a neural
network NN . The corresponding cost is O(mNh +NhNh +
Nhm). Thus, the overall cost of Algorithm 2 is K2T (m+
nnz(ProjW(w)) · logm+mNh +NhNh +Nhm). Note that
K2 is usually much smaller than K1 thanks to unrolling [9].

2) Trainable Parameters: In the unrolled network, the first
class of trainable variables are those in UW, i.e., ε, ρ, q, and
stepsize ν. To enhance the capacity of the unrolled network,
we let the parameters of each iteration in UP be independent.
Therefore, the final trainable parameters are εkt , ρkt , qkt and νkt
for t= 0, ..., T − 1 and k = 0, ...,K − 1. The other trainable
parameters are those in NN . In summary, the total number
of trainable parameters is 4TK + |NN |, where |NN | is the
number of parameters of NN .

3) Loss Function: The loss function consists of two parts, i.e.,
the squared relative error (SRE) and the connection accuracy
(CA). The SRE is used to measure the errors of the learned
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Algorithm 2 The Unrolled ADMM Algorithm
Input:

Number of layers K,T , and signals X
Output:

The learned graph w
1: Initialize w0, v0 and u0 and set k = 0
2: for k = 0, ...,K − 1 do
3: // The module UW
4: Let w̃k

0 =wk

5: for t= 0, ..., T − 1 do
6: // The submodule UP
7: w̃k

t+1 = ProjW
(
w̃k

t − νkt ∇Lρ(w̃
k
t ,v

k,uk)
)

8: end for
9: Let wk+1 = w̃k

T

// The module UV
10: vk+1 =NN (wk+1 + uk)

// The module UU
11: uk+1 = uk +wk+1 − vk+1

12: k = k + 1
13: end for
14: return wK

edge weights and is defined as

SREk
t =

‖w̃k
t −w∗‖22
‖w∗‖22

, (32)

where w∗ is the ground-truth graph. The loss CA is used to
measure the accuracy of the learned graph topology. In graph
learning, identifying whether there is a connection between
two vertices can be viewed as a binary classification problem.
Therefore, we employ binary cross-entropy loss as CA

CAk
t =BCE

(
sgn(w∗),Pr(w̃k

t )
)
, (33)

where

(sgn (w∗))[i] =

{
1, if w∗

[i] > 0

0 others.
(34)

Here, Pr(w̃k
t ) is the probability value of w̃k

t passing through a
sigmoid function. The final loss function is

Loss=
1

M

M∑
j=1

K−1∑
k=0

T∑
t=1

τTK−kT−t
((

SREk
t

)
j
+ζ
(
CAk

t

)
j

)
,

(35)

where ζ is the trade-off weight between SRE and CA,
and τ ∈ (0, 1] is a loss-discounting factor added to reduce
the contribution of the first few layers. Moreover, (SREk

t )j
and (CAk

t )j represent the SRE and CA of w̃k
t calculated

from the j-th training samples. We use M training samples,
{(X1,w

∗
1), ..., (XM ,w∗

M )}, where Xj ∈ R
d×N contains N

observed signals, and w∗
j is taken as the ground-truth label.

Compared to the traditional cross-validation method, AU may
need more training samples to obtain the optimal parameters.
However, compared to traditional neural networks, the unrolled
network incorporates domain knowledge about graph learning

models and hence requires fewer training data to extract infor-
mation. The advantage of AU over cross-validation is that it pro-
vides a fine-grained approach to automatically learn parameters
in an end-to-end manner, thereby exhibiting better performance.

4) Network Training: Stacking all the modules mentioned
above, we train the unrolled network end-to-end by minimizing
(35). The number of layersK, T andM are set to 2, 10 and 3000
respectively. For the loss function, we set τ = 0.9 and ζ = 1.
At the beginning of the training process, the parameters εkt , qkt ,
ρkt and νkt are initialized as 1, 2, 0.5 and 0.05, respectively. Dur-
ing training, we restrict the parameters to the feasible region.
The parameters of NN are initialized randomly. The maximum
training epochs is set to 100. We select Adam as our optimizer
and set a decaying learning rate.

V. EXPERIMENTS

In this section, we test the performance of the proposed
framework using both synthetic data and real-world data. First
of all, some experimental setups are introduced.

A. Experimental Setups

1) Graph Generation: We generate three types of random
graphs, i.e., Gaussian radial basis function (RBF) graphs [8],
Erdős–Rényi (ER) graphs [43], and stochastic block model
(SBM) graphs [44]. We follow the same approach as [8], includ-
ing parameter settings, to generate the RBF graphs. The ER and
SBM graphs are generated using the python package networkx.
The probability that two nodes are connected in ER graphs is
0.2. For SBM graphs, the inter-block connection probability is
set to 0.15, while the inner-block connection probability is in
[0.8, 0.95].

2) Graph Signals Generation: We generate graph signals
from the following distribution

x∼N
(
0,L† + σ2

wI
)
, (36)

where L is the Laplacian matrix of G, and σw denotes the noise
level. As described in [8], graph signals generated in this way
are smooth over the corresponding graphs.

3) Synthetic Dataset Preparation: After obtaining M
graphs w∗

j , j = 1, ...,M , based on the graph generation meth-
ods, we generate N signals Xj based on (36) for each graph.
Then, the training dataset containing M data is constructed as
{(X1,w

∗
1), ..., (XM ,w∗

M )} as mentioned before.
4) Evaluation Metric: For topology inference, identifying

whether two nodes are connected is a binary classification prob-
lem. Thus, we first leverage Precision, Recall and Matthews
correlation coefficient (MCC) [45] to evaluate the classification
results, which are defined as follows

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

MCC=
TP · TN− FP · FN√

(TP+FP)(TP+FN)(TN+FP)(TN + FN)
,

(37)

where TP is the true positive rate, TN is the true negative
rate, FP is the false positive rate, and FN denotes the false
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negative rate. MCC has been argued to be one of the most
informative coefficients for assessing the performance of binary
classification since it summarizes all information from TP, TN,
FP and FN. The value range of MCC is [−1,+1], where +1
and −1 represent completely correct and wrong identification.
Some studies have employed MCC to evaluate the learned
graphs, such as [19]. The second type of metric is the relative
error (RE) of edge weights between the learned graphs and the
ground-truth, i.e.,

RE =
‖ŵ −w∗‖2

‖w∗‖2
, (38)

where ŵ is the learned graphs, and w∗ is the ground-truth.
The final results are the average of 50 independent experiments.

5) Baselines: We employ four classes of baseline models.
The first category includes traditional smoothness-based graph
learning models using iterative algorithms, i.e., the SigRep
model [8], the LogDet model [46], and the Log model [7].
The second category contains two graph learning models using
AU, i.e., GLAD [31] and L2G [9]. Note that the graphs learned
from GLAD are represented by precision matrices, but we still
use it as a baseline to test the effect of unrolling different iter-
ative algorithms. The third class of model, MUGL [12], is the
only smoothness-based graph learning model we can find in the
literature that considers data uncertainty. Finally, we let r̃(w) be
the logarithmic barrier in [7] and use the Algorithm 1 to solve
the problem, which is termed LogADMM. The parameters of
all iterative algorithms are determined by grid search as those
corresponding to the optimal MCC values. The parameters of
GLAD are the same as those in [31]. For a fair comparison, the
L2G model has 20 layers and a maximum epoch of 100.

B. Synthetic Data

1) Model Performance: We investigate the performance of
our framework under different levels of data uncertainty. Four
cases are considered, where N is set to 500 and 3000, and σw

is set to 0.1 and 0.8, respectively. The results are displayed
in Table I, from which it is observed that our model achieves
the best performance (MCC and RE) in almost all cases. Fur-
thermore, the standard deviations of our model are relatively
small, indicating that the learned graphs are consistent across
different observed data. The MUGL model also obtains small
standard deviations since it considers moment uncertainty in
the data distributions. However, it fails to achieve competitive
MCC and RE values. Besides, the uncertainty set size is de-
termined manually in MUGL, which may not match the real
situation. The performance of GLAD is sensitive to noise levels.
It fails to learn meaningful graphs when σw = 0.8 and bears
large standard deviations when σw = 0.1. Another AU model,
the L2G, obtains satisfactory RE values. For example, when
N = 500 and σw = 0.8, the RE of L2G for RBF graphs is
smaller than ours. However, the topology recovery MCC of
L2G is inferior to ours, and L2G tends to learn dense graphs
in our experiments. This may be caused by the fact that the
loss function of L2G does not consider the connection accu-
racy of the learned graphs. Moreover, the smooth signals are

Fig. 2. The impact of varying N .

generated from N
(
0, (L+ σ2

wI)
†) in [9], while ours are from

(36). Note that our method is a standard method for generating
smooth signals from a signal representation perspective, and
has been widely used in graph learning problems such as [8],
[12]. Finally, the performance of LogADMM is inferior to
ours for all metrics. The reasons may be two-fold. First, all
parameters of LogADMM such as q are manually selected.
The combinations of these parameters may deviate from the
optimal ones. Our unrolling algorithm can automatically learn
appropriate parameters from data, thus showing better results.
Second, instead of the predetermined logarithmic barrier prior,
we leverage a neural network NN to learn topological priors
from data, which could better capture the graph structure behind
the data.

Table II lists the learned q and ε by training the unrolled
networks. The results are the average of all T UP submodules
of K layers. We can conclude from the results that for more
data uncertainty (smaller N and larger σw), a large ε will be
learned. This makes sense because a large uncertainty set is re-
quired to account for more out-of-sample cases if the empirical
distribution is unreliable. Furthermore, it is observed that the
learned q is around 2.0 and is difficult to determine using priors.
Fortunately, we provide a data-driven method to automatically
select the optimal q.

We also test the performance of our method on varying N .
Fig. 2 depicts the results of the case where σw = 0.5 and the
underlying graphs are generated based on the ER model. It is
observed that our method obtains the best MCC and Recall
over a wide range of N . When N is large, the performance of
baselines is close to ours since the data uncertainty decreases
as N . Our method may not achieve the best Precision and RE
for some N , but it can achieve the best MCC, which is a more
comprehensive metric for evaluating topological inference
results.
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TABLE I
THE PERFORMANCE ON SYNTHETIC DATA UNDER DIFFERENT UNCERTAINTY LEVELS

N = 500, σw = 0.1 N = 500, σw = 0.8
Precison Recall MCC RE Precision Recall MCC RE

R
B
F

Log 0.969±9.04% 0.795±5.16% 0.812±10.31% 0.669±6.13% 0.972±5.62% 0.599±6.54% 0.674±8.03% 0.760±6.33%
SigRep 0.784±9.97% 0.915±8.81% 0.803±13.09% 0.369±5.60% 0.690±8.23% 0.989±4.30% 0.694±9.67% 0.400±5.26%
LogDet 0.936±8.64% 0.865±16.21% 0.842±14.63% 0.575±11.17% 0.901±8.38% 0.866±13.97% 0.811±11.32% 0.761±7.63%
MUGL 0.819±8.87% 0.946±2.88% 0.817±10.82% 0.458±6.48% 0.824±7.11% 0.945±2.64% 0.802±7.78% 0.509±5.48%
GLAD 0.906±9.92% 0.742±12.68% 0.735±11.92% 0.691±16.68%
L2G 0.453±5.98% 0.994±2.38% 0.341±9.13% 0.327±4.49% 0.432±5.59% 0.997±1.65% 0.263±15.44% 0.355±8.01%

LogADMM 0.875±7.61% 0.901±6.25% 0.822±10.31% 0.344±6.02% 0.792±6.25% 0.918±4.81% 0.814±7.52% 0.386±7.01%
Ours 0.937±3.91% 0.937±3.06% 0.899±4.08% 0.311±7.30% 0.896±5.90% 0.926±4.13% 0.855±6.98% 0.370±6.74%

E
R

Log 0.959±8.86% 0.885±4.52% 0.841±9.51% 0.561±12.28% 0.839±9.90% 0.731±5.68% 0.760±8.37% 0.687±4.52%
SigRep 0.819±7.88% 0.937±4.69% 0.809±6.03% 0.555±3.85% 0.580±3.10% 0.975±6.30% 0.792±4.90% 0.571±3.17%
LogDet 0.903±10.32% 0.893±5.33% 0.840±10.10% 0.670±15.10% 0.723±15.67% 0.904±9.00% 0.761±9.07% 0.827±5.03%
MUGL 0.878±6.81% 0.976±3.17% 0.833±5.22% 0.503±7.95% 0.591±6.53% 0.941±3.68% 0.786±4.79% 0.544±6.17%
GLAD 0.897±8.11% 0.735±10.43% 0.731±10.13% 0.708±11.54%
L2G 0.295±4.43% 0.994±1.24% 0.321±8.12% 0.449±6.76% 0.267±4.93% 0.997±1.18% 0.269±10.99% 0.496±6.91%

LogADMM 0.883±7.18% 0.932±4.35% 0.851±5.54% 0.473±6.825% 0.772±6.18% 0.894±6.81% 0.802±6.78% 0.520±7.12%
Ours 0.907±6.13% 0.939±4.06% 0.902±4.78% 0.336±8.23% 0.843±8.01% 0.891±5.30% 0.829±6.52% 0.432±8.56%

S
B
M

Log 0.947±3.76% 0.852±5.42% 0.858±4.07% 0.599±4.56% 0.947±3.92% 0.685±5.26% 0.739±5.12% 0.714±4.34%
SigRep 0.831±5.69% 0.922±8.87% 0.838±8.59% 0.464±3.09% 0.714±5.82% 0.945±8.18% 0.817±8.24% 0.495±3.67%
LogDet 0.966±3.29% 0.652±18.65% 0.728±13.46% 0.809±9.04% 0.917±6.05% 0.652±19.33% 0.696±13.06% 0.897±4.77%
MUGL 0.842±5.31% 0.919±6.78% 0.847±6.20% 0.453±3.65% 0.816±5.97% 0.911±6.60% 0.821±6.48% 0.516±4.79%
GLAD 0.912±8.31% 0.759±11.02% 0.751±9.84% 0.565±12.96%
L2G 0.362±3.53% 0.997±1.02% 0.368±4.03% 0.384±3.17% 0.343±2.93% 0.992±1.26% 0.327±6.58% 0.436±3.65%

LogADMM 0.882±4.79% 0.914±7.27% 0.887±6.19% 0.464±4.53% 0.802±6.04% 0.922±7.08% 0.819±7.21% 0.489±4.87%
Ours 0.931±3.16% 0. 930±3.42% 0.902±3.14% 0.345±5.91% 0.856±4.95% 0.902±3.91% 0.825±5.49% 0.427±5.74%

N = 3000, σw = 0.1 N = 3000, σw = 0.8
Precison Recall MCC RE Precision Recall MCC RE

R
B
F

Log 0.987±5.17% 0.834±3.88% 0.854±5.54% 0.588±8.50% 0.989±5.96% 0.702±4.69% 0.762±6.73% 0.680±3.66%
SigRep 0.989±4.27% 0.820±4.09% 0.847±4.89% 0.652±7.70% 0.984±5.74% 0.806±3.97% 0.836±6.64% 0.695±6.71%
LogDet 0.962±6.99% 0.910±7.37% 0.902±8.31% 0.498±15.31% 0.913±10.55% 0.931±7.69% 0.870±9.68% 0.720±7.84%
MUGL 0.830±6.81% 0.962±2.54% 0.832±7.41% 0.437±6.90% 0.838±6.27% 0.960±2.24% 0.826±6.88% 0.433±6.17%
GLAD 0.977±8.21% 0.833±15.31% 0.842±14.69% 0.447±25.95%
L2G 0.518±6.77% 0.964±3.99% 0.436±7.88% 0.321±15.52% 0.460±6.49% 0.997±1.68% 0.336±11.54% 0.414±5.23%

LogADMM 0.923±4.81% 0.911±3.97% 0.887±5.21% 0.332±7.86% 0.892±5.21% 0.914±3.78% 0.875±6.11% 0.366±7.81%
Ours 0.956±4.49% 0.943±3.29% 0.920±5.10% 0.262±7.74% 0.949±3.64% 0.942±2.93% 0.913±4.15% 0.289±8.31%

E
R

Log 0.878±11.54% 0.902±4.97% 0.864±10.96% 0.536±15.54% 0.973±4.04% 0.839±9.97% 0.843±8.72% 0.636±4.59%
SigRep 0.825±10.02% 0.912±4.41% 0.815±9.14% 0.544±13.31% 0.881±3.98% 0.906±8.65% 0.806±8.41% 0.556±10.45%
LogDet 0.839±10.47% 0.984±5.87% 0.874±10.33% 0.635±29.22% 0.749±13.43% 0.980±5.84% 0.810±12.92% 0.794±7.97%
MUGL 0.828±5.28% 0.952±3.54% 0.852±4.97% 0.495±8.19% 0.823±4.90% 0.990±2.34% 0.844±4.64% 0.495±6.68%
GLAD 0.821±10.09% 0.934±4.59% 0.838±10.19% 0.471±15.84%
L2G 0.335±5.62% 0.981±2.03% 0.392±6.95% 0.434±9.29% 0.296±3.73% 0.996±1.06% 0.330±5.26% 0.445±6.03%

LogADMM 0.881±8.84% 0.916±4.87% 0.874±8.23% 0.404±10.31% 0.877±6.16% 0.903±5.45% 0.849±7.11% 0.436±9.41%
Ours 0.925±7.72% 0.945±4.30% 0.918±6.37% 0.275±9.65% 0.874±11.44% 0.951±4.99% 0.887±9.72% 0.286±9.03%

S
B
M

Log 0.969±2.20% 0.889±4.46% 0.900±3.61% 0.524±4.24% 0.984±1.66% 0.781±5.08% 0.835±3.82% 0.623±2.74%
SigRep 0.941±2.91% 0.898±4.14% 0.883±3.04% 0.588±5.42% 0.936±3.57% 0.877±4.35% 0.868±3.87% 0.614±5.31%
LogDet 0.971±3.83% 0.845±13.99% 0.866±7.97% 0.709±11.60% 0.954±3.67% 0.825±14.81% 0.842±10.28% 0.850±6.43%
MUGL 0.942±3.31% 0.887±6.31% 0.880±5.49% 0.410±3.45% 0.946±3.97% 0.869±6.60% 0.865±5.83% 0.419±3.90%
GLAD 0.953±7.31% 0.892±9.32% 0.891±9.18% 0.402±10.92%
L2G 0.455±9.62% 0.989±1.68% 0.496±11.30% 0.365±4.98% 0.366±4.31% 0.999±0.12% 0.386±4.89% 0.295±4.13%

LogADMM 0.937±5.11% 0.908±4.05% 0.895±4.55% 0.398±6.22% 0.921±4.71% 0.892±4.05% 0.877±5.09% 0.421±6.58%
Ours 0.948±5.09% 0.959±3.09% 0.934±4.64% 0.268±6.14% 0.945±4.98% 0.951±3.30% 0.926±4.81% 0.289±6.42%

2) The Impact of Network Structures: Subsequently, we
fix N = 500 and σw = 0.8, and train the unrolled networks on
ER graphs with different K and T . We use a tuple (K,T )
to denote different combinations of K and T . As depicted
in Fig. 3, compared with the case (2, 5), the performance of
(2, 10) improves as T . However, when K and T continue to
increase, the improvement is insignificant but brings more com-
putational costs. Thus, we select (K,T ) = (2, 10) in previous
experiments, which provides satisfactory performance with a

low computational burden. Note that our algorithm can achieve
competitive performance using a few network layers since the
domain knowledge about the smoothness model is incorporated
into the unrolled networks and brings more efficient parameters,
which is a merit of the AU framework.

2) Ablation Study: To further illustrate the superiority of
our model, we conduct some ablation studies. We consider
five cases, including (i) fixing ε= 2 (FixEps), (ii) fixing q = 2
(Fixq), (iii) replacing the NN module with the logarithmic
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TABLE II
THE LEARNED q AND ε OF DIFFERENT UNCERTAINTY LEVELS

N = 500
σw = 0.1

N = 500
σw = 0.8

N = 3000
σw = 0.1

N = 3000
σw = 0.8

RBF
q 2.027 2.018 1.864 1.981
ε 9.719 10.604 9.512 10.007

ER
q 2.013 2.263 1.981 1.933
ε 10.659 10.928 9.722 10.123

SBM
q 1.831 1.993 1.863 2.027
ε 9.156 10.717 7.701 9.801

Fig. 3. The impact of the number of the network layers.

Fig. 4. The results of different ablation studies.

barrier in [7] (FixLog), (iv) removing the regularizer related to
robustness and keeping the hyperparameters for the network un-
changed (NoR), and (v) making different layers of the unrolled
network share the same trainable parameters (Share). We em-
ploy ER graphs and set N = 500, σw = 0.8 in this experiment.
As displayed in Fig. 4, our model outperforms the cases (i) -
(ii). This can be explained by the fact that the manually selected
ε and q may be inconsistent with the optimal one. Our model
directly learns the optimal q and ε from the data, thus exhibiting
better performance. The first two cases demonstrate the ad-
vantage of learnable parameters. Furthermore, our model also
outperforms the FixLog because it learns the latent topological
properties through the module NN . In contrast, the FixLog
model utilizes a hand-crafted function to impart some prior
properties to the learned graphs. The NoR model achieves the
worst performance on both MCC and RE and displays higher

Fig. 5. The performance of different ε. The shaded area is the interval
covered by standard deviations.

standard deviations as it ignores the data uncertainty. This case
verifies the necessity of the robustness-related regularizer. Fi-
nally, our model yields better performance than the case Share.
The reason may be that our model has a larger network capacity
(each layer has its individual parameters), and thus performs
better.

3) The Impact of ε: Although the unrolled network can
learn the optimal ε automatically, we still study the impact
of ε to verify the plausibility of the proposed robust graph
learning model. In this experiment, we learn ER graphs using
Algorithm 1—instead of the unrolled network—with different
ε. Besides, we fix q = 2, σw = 0.1, ρ= 1, ν = 0.001 and choose
the logarithmic barrier function [7] as r̃(w). We remark that
these parameters may not be optimal since we only focus on the
effect of ε rather than finding the optimal model. Fig. 5 displays
the performance of the learned ER graphs for different ε. Two
trends can be observed. (i) As ε increases, the performance first
improves and then degrades. The optimal ε decreases as the
increase of N . This can be interpreted as, given the observed
data, there exists an ε that best matches the data uncertainty. For
a larger N , the observed data contains less uncertainty, meaning
that a small ε is sufficient to contain the true distribution. When
ε is too large, the performance deteriorates since the uncer-
tainty set contains too many nuisance distributions, making the
learned graph over-conservative. Note that the optimal values
of ε in this experiment differ from those of our unrolled network
since the network learns all optimal parameters simultaneously.
In contrast, we fix the other parameters to be constant in this
experiment. (ii) The performance fluctuation (standard devia-
tions) decreases as ε increases because the worst-case expected
risk of large ε will consider more OOS distributions, resulting
in more consistent performance. The performance of different
ε behaves as expected, which justifies our model.

4) The Impact of q: In addition to ε, we also investigate
the impact of q. Specifically, we let N = 500, σw = 0.1, ρ= 1,
and ν = 0.001. We select graph structural regularizer as the
logarithmic barrier function [7] and learn ER graphs using
Algorithm 1. As illustrated in Fig. 5, for a given ε, there exists
an optimal q such that MCC and RE reach the optimal value.
The larger ε is, the larger the optimal q value is. However, it
is difficult to build a quantitative relationship between ε and
the optimal q. In addition, there are other factors that may
affect the optimal q value, such as the choice of the graph

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on February 19,2025 at 12:41:05 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: WASSERSTEIN DISTRIBUTIONALLY ROBUST GRAPH LEARNING 687

Fig. 6. The performance of different q. The shaded area is the interval
covered by standard deviations.

Fig. 7. The (a) OOS performance and (b) reliability of the learned graphs.

structural regularizer. Fortunately, our unrolling algorithm can
directly learn the optimal combination of q and ε in a data-
driven manner, as shown in Table II.

5) Out-of-Sample Performance: Finally, we investigate the
OOS performance of our proposed model. We fix q = 2, σw =
0.1, ρ= 1, ν = 0.001, and ε is selected via cross-validation.
We generate Nu = 104 signals from ER graphs as the unob-
served data and calculate the sample average risk (SAR) of the
unseen data, SAR = 1

Nu

∑Nu

n=1 f(x
′
n; L̂), as the OOS perfor-

mance, where L̂ is the graph learned from our model using
the observed data. Fig. 7(a) shows that the OOS performance
first improves (SAR decreases) rapidly and then levels off as
N increases. As illustrated in Theorem 2, if N is large enough,
the terms related to the WDRO-induced regularizer in (17)-(18)
will decay to zero. The OOS performance then only depends
on the SAR of the observed data, which becomes almost stable
for large N . Then, we investigate the OOS performance of our
model from a new angle by defining

Reliability = Pr
(
f(x′; L̂)≤R∗

)
, (39)

where R∗ is the obtained worst-case risk by solving (14) using
the observed data. The Reliability represents the probability
that the OOS risk is smaller than the worst-case risk, which
can also be interpreted as the probability that the uncertainty set
contains the ground-truth distribution. To calculate Reliability,
we run 100 independent simulations. We calculate the SAR of
104 unobserved data in each simulation. We employ the ratio
of SAR ≤R∗ in 100 independent simulations as Reliability.
Fig. 7(b) depicts that as ε increases, the Reliability approaches

Fig. 8. The performance of the learned social networks. N-1 to N-4
represent the selected networks.

1, indicating that the OOS risk is smaller than R∗ with high con-
fidence. However, high Reliability is not equivalent to learn-
ing good graphs since the R∗ of large ε may also be worse.
The reason is that the large uncertainty set may take into account
too many nuisance distributions, resulting in the learned graphs
being over-conservative, as shown in Fig. 5.

C. Real-World Data

1) Social Networks: We first consider the social networks
from the Ljubljana student social network dataset1. The dataset
contains 12 networks whose nodes represent the same 32 stu-
dents. Edges in these networks capture the interactions among
these students, which are built on the answers of these stu-
dents to different questions. Each student is asked 12 questions
corresponding to 12 networks. Note that the dataset does not
contain graph signals. Thus, we randomly select four networks
and generate signals for each network using (36). The reason
we employ this “semi-real” dataset is that we hope to evaluate
the learned graphs quantitatively. We generate 1000 signals with
σw = 0.5 for each network. The learned graphs are evaluated
using Precision, Recall, MCC and RE since we have ground-
truth graphs. We follow [9] and use a network pre-trained on ER
graphs. The networks is trained with N = 1000 and σw = 0.5
and then transferred to learn the social networks. As shown
in Fig. 8, the baselines can obtain comparable or even better
Recall performance than our method. However, our method
outperforms the baselines in terms of Precision performance,
meaning that our method can recover the social networks more
accurately. For both MCC and RE, our model obtains the
best performance, indicating the superiority of our method.
The Log model achieves the worst RE performance, while the
LogDet is sensitive to different graphs. The results of MUGL
are not as satisfactory as expected, which may be caused by
the inappropriate uncertainty set sizes. Finally, LogADMM is
inferior to ours since the parameter search is coarse-grained and

1http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students
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Fig. 9. The visualizations of the graphs learned by different models.

TABLE III
THE DETECTION RESULTS OF THE LEARNED GRAPHS

Ours Log SigRep LogDet MUGL LogADMM

NMI 1.000 0.834 0.830 0.698 0.836 0.907
FMI 1.000 0.727 0.714 0.507 0.733 0.864
RI 1.000 0.811 0.802 0.643 0.816 0.906

* The larger the three indicators, the more accurate.

the hand-craft regularizer may not accurately describe the real
graph properties. The standard deviations in this experiment are
smaller than those of previous experiments since the ground-
truth graphs remain unchanged.

2) The COIL-20 Dataset: We next leverage the COIL-202

dataset, which is a collection of gray-scale images of 20 objects
taken from 360 degrees. The size of each image is 32× 32, and
each object has 72 images (five degrees an image). We ran-
domly select 30 images classified into three objects, i.e., ten
images per object. We treat each image as a node and aim to
learn a relationship graph between these images. The image
itself is taken as graph signals, i.e., X ∈ R

30×1024. It is expected
that the learned graph should have three communities because
the selected images belong to three objects, and the images of
the same object are similar. We utilize the SBM graphs as the
graph generator since the SBM tends to generate graphs with
communities, which is suitable for this dataset. We then use [47]
to estimate the noise levels of the images in COIL-20 and obtain
σw = 1.05, which is the average of all the estimated noise levels
of all images. We then generate 1024 signals from the SBM
graphs with σw = 1.05, which are used to train our unrolled
network. The trained network is used to learn the relationship
graphs of images. To evaluate the learned graphs, we use the
Louvain method [48] to detect the communities in the learned
graphs. Three commonly used metrics, i.e., normalized mutual
information (NMI), Fowlkes and Mallows index (FMI) [49],
and Rand Index (RI) are adopted to evaluate the detection re-
sults. The labels of the images are taken as the ground-truth, and
the detection results are listed in Table III. Our model obtains
the highest NMI, FMI, and RI, meaning it can better learn
the cluster structures in the graphs. Fig. 9 displays the learned
graphs of different models. The graph learned by our model
clearly shows three clusters. Compared with graphs learned by
other models, there are fewer confusing edges between images
of different items, while images of the same item are more
closely related. Therefore, our model can capture the topolog-
ical features of the graphs, such as cluster structures.

2https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

VI. CONCLUSION

In this paper, we proposed a framework to infer graph
topology from smooth signals by considering data uncertainty.
Specifically, inspired by the WDRO framework, we formu-
lated the robust graph learning as an inf − sup problem and
then reformulated it into a tractable form, where robustness
is achieved via a regularizer. To confirm the necessity of the
regularizer, we conducted an OOS performance analysis of our
model. The results indicate that the regularizer can improve
the generalization of the learned graphs by bounding the OOS
risks with high probability. Then, we proposed an ADMM
algorithm to solve the induced optimization problem and further
unrolled it into a neural network to avoid excessive parameter
searches. The parameters of our framework, including the un-
certainty set size, are determined automatically by training the
network. Extensive synthetic and real data experiments showed
that our model outperforms state-of-the-art methods. Future
work will include incorporating our framework into the unrolled
graph signal denoising model [29], [30], in which graphs are
fixed. Developing a more scalable method is another possible
direction.

APPENDIX A
PROOF OF LEMMA 1

At the beginning of the proof, we first prove that |f(x;L)| ≤
BLB

2
x. Specifically, we have

|f(x;L)|= |Tr(LΘ)|
≤ ‖vec(L)‖q ‖vec(Θ)‖p
≤ ‖vec(L)‖q ‖vec(Θ)‖1
≤BLB

2
x, (40)

where the first inequality holds due to Hölder inequality.
The second inequality holds due to the theorem of norm
equivalence [50]. The last inequality holds since ‖vec(Θ)‖1 =
‖x‖21 ≤B2

x. Next, by following [51], suppose that δ1, ..., δN
are i.i.d. uniform random variables on {−1, 1}. Based on the
definition of Rademacher complexity, we have

RN (F) = E

[
sup
f∈F

2

N

∣∣∣∣∣
N∑

n=1

δnf(xn;L)

∣∣∣∣∣
]

≤ 2βBLB
2
x

N
E

[∣∣∣∣∣
N∑

n=1

δn

∣∣∣∣∣
]

≤ 2βBLB
2
x

N
E

⎡
⎣
√√√√ N∑

n=1

δ2n

⎤
⎦
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=
2βBLB

2
x√

N
=

2BR√
N

, (41)

where the first inequality holds due to (40).

APPENDIX B
PROOF OF THEOREM 2

The proof is derived from Theorem 8 in [35]. However,
we need to make some modifications. First, we need to write
our problem in a supervised form since Theorem 8 in [35]
applies to supervised problems, whereas ours is unsupervised.
Specifically, we define g(x, y;L) = f(x;L)− 0 as the new
loss function of smoothness, where the “label” y is always
equal to zero. Accordingly, the input space X , action space A,
and output space Y in Theorem 8 in [35] correspond to R

d,
R+, and {0}, respectively. Then, we set the following symbol
correspondences: L(x, y) = φ(x, y) = g(x, y;L) = f(x;L) =
Tr(LΘ), where L and φ denote loss functions in [35]. For illus-
trative purposes, we still use the same notations as [35] in this
study despite the abuse of symbols. The second modification
is that the value range of the loss function in [35] is set to be
[0, 1], while we have |f(x;L)| ≤BR in our model. With the
above two modifications, we can directly yield (17). Next, we
apply Markov’s inequality and obtain

Pr

(
f(x′; L̂)≥ 1

N

N∑
n=1

f(xn; L̂) + ξ

)

≤
Ex′∼P∗

[
f(x′; L̂)

]
1
N

∑N
n=1 f(xn; L̂) + ξ

≤
1
N

∑N
n=1 f(xn; L̂) +

2BR√
N

+BR

√
8 log(2/η)

N

1
N

∑N
n=1 f(xn; L̂) + ξ

. (42)

APPENDIX C
DERIVATION OF PROJECTION OPERATOR (30)

For a vector s ∈ R
m, we aim to project it into the region

W =
{
w :w ≥ 0,1�w = d/2

}
, (43)

which is equivalent to solving the following problem

min
w

1

2
‖w − s‖22

s.t. w ≥ 0, 1�w = d/2. (44)

The Lagrangian form of (44) can be written as

L=
1

2
‖w − s‖22 +μ

(
1�w − d/2

)
− λ�w, (45)

where μ ∈ R and λ ∈ R
m are the Lagrangian multipliers.

The KKT conditions are then

w∗ ≥ 0, λ∗ ≥ 0, 1�w∗ =
d

2
,

λ∗
[i]w

∗
[i] = 0,w∗

[i] − s[i] + μ∗ − λ∗
[i] = 0, for i= 1, ...,m,

(46)

Fig. 10. Illustration of y(μ). The μ∗ is the largest of all possible μ+
I .

where the variables with superscript ∗ denote the optimal values
to be sought. Based on the KKT conditions, it is not difficult to
conclude that w∗

[i], i= 1, ...,m, should satisfy

w∗
[i] =

{
s[i] − μ∗, μ∗ < s[i]

0, μ∗ ≥ s[i].
(47)

Plugging (47) back into the constraint, 1�w = d
2 , we have

m∑
i=1

max
{
s[i] − μ∗, 0

}
= d/2. (48)

We then define a function

y(μ) =
m∑
i=1

max
{
s[i] − μ, 0

}
. (49)

Observe that y(μ) is a piecewise function as shown in Fig. 10.
We need to find the μ∗ such that y(μ∗) = d/2. We sort all
entries in s in descending order and denote s[i] as the i-th largest
element. The I-th segment of the function is

yI(μ) =−Iμ+

I∑
i=1

s[i]. (50)

We denote μ+
I as the solution of the equation yI(μ) = d/2.

Thanks to the convexity of y(μ), the solution of y(μ) = d/2
is the largest of all μ+

I , i.e.,

μ∗ =max

{
d/2−

∑I
i=1 s

[i]

−I
, I = 1, ...,m

}
. (51)

It is not difficult to obtain the w∗ as

w∗ =max(s− μ∗, 0). (52)

Plugging (51) into (52), we complete the proof.
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