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Abstract— The Kalman filter (KF) and its variants are among
the most celebrated algorithms in signal processing. These
methods are used for state estimation of dynamic systems by
relying on mathematical representations in the form of simple
state-space (SS) models, which may be crude and inaccurate
descriptions of the underlying dynamics. Emerging data-centric
artificial intelligence (AI) techniques tackle these tasks using
deep neural networks (DNNs), which are model-agnostic. Recent
developments illustrate the possibility of fusing DNNs with classic
Kalman-type filtering, obtaining systems that learn to track
in partially known dynamics. This article provides a tutorial-
style overview of design approaches for incorporating AI in
aiding KF-type algorithms. We review both generic and dedicated
DNN architectures suitable for state estimation, and provide a
systematic presentation of techniques for fusing AI tools with KFs
and for leveraging partial SS modeling and data, categorizing
design approaches into task-oriented and SS model-oriented. The
usefulness of each approach in preserving the individual strengths
of model-based KFs and data-driven DNNs is investigated in
a qualitative and quantitative study, whose code is publicly
available, illustrating the gains of hybrid model-based/data-
driven designs. We also discuss existing challenges and future
research directions that arise from fusing AI and Kalman-type
algorithms.

I. INTRODUCTION

The Apollo program, which successfully landed the first
humans on the moon, is still considered one of mankind’s
greatest achievements. Among the technological innovations
that played a role in the success of the Apollo program is a
filtering method based on the extended version of an algorithm
developed by Rudolf Kalman in the late 1950s [1], which was
used to track and estimate the trajectory of the spaceship.
This algorithm, known as the Kalman filter (KF), and its
extension into the extended KF (EKF) [2], provide an accurate
and reliable real-time trajectory estimation while still being
simple to implement and applicable on the hardware-limited
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navigation computer of the Apollo spaceship [3]. To date,
the KF is among the most celebrated algorithms in signal
processing and electrical engineering at large, with numerous
applications including radar, biomedical systems, vehicular
technology, navigation, wireless communications, etc.

The KF is a model-based method, namely, it leverages
mathematical parametric representations of the environment.
Specifically, the KF and its variants [4] rely on the ability
to describe the underlying dynamics as a state-space (SS)
model. Such model-based designs have several core advan-
tages when the dynamics are faithfully captured using a known
and tractable SS representation: (i) they can achieve optimal
performance. For example, the KF achieves the minimal mean-
squared error (MSE) for linear Gaussian SS models; (ii)
model-based methods operate with controllable and often
reduced complexity. In fact, the KF and its variants are
implemented on devices such as sensors and mobile systems,
where they operate in real-time using limited computational
and power resources; (iii) decisions made by the KF and
its variants are interpretable, in the sense that their internal
features have concrete meaning and their reasoning can be
explained from their observations and underlying SS model;
(iv) they are inherently adaptive, as changes in the SS model
are naturally incorporated into the operation; and (v) they
reliably characterize uncertainty in their estimate, providing
the error covariance alongside their estimates [5].

A key characteristic of KF-type algorithms is their reliance
on knowledge of the underlying dynamics and specifically,
on the ability to accurately capture these dynamics using a
known and tractable SS representation. A common approach
is to rely on simplifying assumptions (e.g., linear systems,
Gaussian mutually and temporally independent process and
measurement noises, etc.) that make models understandable
and the associated algorithms computationally efficient, and
then use data to estimate the unknown parameters. However,
simple models frequently fail to represent some of the nuances
and subtleties of dynamic systems and their associated signals.
Practical applications are thus often required to operate with
partially known SS models. Furthermore, the performance and
reliability of KF-type algorithms degrade considerably when
using a postulated SS model that deviates from the true nature
of the underlying system.

The unprecedented success of machine learning (ML),
and particularly deep learning, as the enabler technology for
artificial intelligence (AI) in areas such as computer vision
has initiated a general mindset geared towards data. It is now
quite common practice to replace simple principled models
with data-driven pipelines, employing ML architectures based
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on deep neural networks (DNNs) that are trained with massive
volumes of labeled data. DNNs can be trained end-to-end
without relying on analytical approximations, and therefore,
they can operate in scenarios where analytical models are
unknown or highly complex [6]. With the growing popularity
of deep learning, recent years have witnessed the design of
various DNNs for tasks associated with KF-type algorithms,
including, e.g., the application of DNNs for state estimation
[7], [8] and control [9].

AI systems can learn from data to track dynamic systems
without relying on full knowledge of underlying SS models.
However, replacing KF-type algorithms with deep architec-
tures gives rise to several core challenges. For one, the com-
putational burden of training and utilizing highly parametrized
DNNs, as well as the fact that massive data sets are typically
required for their training, often constitute major drawbacks
in various signal-processing applications. This limitation is
particularly relevant for hardware-constrained devices (such
as mobile systems and sensors) whose ability to utilize highly
parametrized DNNs is typically limited [10]. Furthermore, due
to the complex and generic structure of DNNs, it is often
challenging to understand how they obtain their predictions, or
track the rationale leading to their decisions. Moreover, DNNs
typically struggle to adapt to variations in the data distribution
and are limited in their capability to provide estimation of
uncertainty.

The challenges outlined above gave rise to a growing
interest in using AI not to replace KF-type algorithms, but
to empower them, as a form of hybrid model-based/data-
driven design [11]. Various approaches have been proposed for
combining KFs and deep learning including training DNNs to
map data into features that obey a known SS model and can
be tracked with a KF [12], [13]; employing deep models for
identifying SS models to be used for KF-based tracking [14],
[15] and converting the KF into an ML model that can be
trained in a supervised [16]–[19] or unsupervised [20], [21]
manner. Such AI-empowered KFs were already in various
signal processing applications, ranging from brain-machine
interface, acoustic echo cancellation, financial monitoring,
beam tracking in wireless systems, and drone-based monitor-
ing systems [22], [23]. These recent advances in combining
AI and KFs, along with their implications on emerging tech-
nologies, motivate a systematic presentation of the different
design approaches, as well as their associated signal processing
challenges.

In this article, we provide a tutorial-style overview of the
design approaches and potential benefits of combining deep
learning tools with KF-type algorithms. We refer to this as
‘AI-aided Kalman Filters’. While highlighting the potential
benefits AI-aided KFs, we also mention the main signal
processing challenges that arise from such hybrid designs.
For this goal, we begin by reviewing the fundamentals of
KF that are relevant to understanding its fusion with AI. We
briefly describe its core statistical representation – the SS
model – and formulate the mathematical steps for filtering
and smoothing. We then discuss the pros and cons associated
with KF-type algorithms and pinpoint the main challenging
aspects that motivate the usage of AI tools. We then shift

our focus to deep learning techniques that are suitable for
processing time sequences, briefly reviewing both generic
time-sequence architectures, such as recurrent neural networks
(RNNs) and attention mechanisms, and proceeding to DNN
architectures that are inspired by SS representations [24] and
by KF processing flow [7]. We discuss the gains offered
by such data-driven techniques, while also highlighting their
limitations, in turn indicating the potential of combining AI
techniques with classic SS model-based KF-type methods.

The bulk of the article is dedicated to presenting design
approaches that combine deep learning techniques with KF-
type processing based on a partial mathematical representation
of the dynamics. We categorize existing design approaches,
drawing inspiration from the ML paradigms of discrimina-
tive (task-oriented) learning and generative (statistical model-
oriented) learning [25], [26]. Accordingly, the first part is
dedicated to AI-augmented KFs via task-oriented learning,
presenting in detail candidate approaches for converting KF-
type filtering into an ML architecture via DNN-augmentation.
These include designs that employ an external DNN, ei-
ther sequentially [27] or in parallel [19], as well as DNNs
augmented into a KF-type algorithm, e.g., for Kalman gain
(KG) computation [16].We then proceed to detail SS model-
oriented AI-aided KFs designs. These can be viewed as a form
of AI-aided system identification, i.e., techniques that utilize
DNNs in the process of identifying SS models, which can
then be used by model-based KF-type tracking [14], [15],
[28]. We discuss several approaches with various structures
connecting physics-based and data-based model components,
such as incremental, hybrid, or fixed SS structures.

To highlight the gains of each approach for designing AI-
aided KFs, and capture the interplay between the different
algorithms and conventional model-based or contemporary
data-driven methods, we provide a comparative study. We be-
gin with a qualitative comparison, pinpointing the conceptual
differences between the design approaches in terms such as the
level of domain knowledge required, the type of data needed,
and flexibility. We also provide a quantitative comparison,
where we evaluate representative methods from the presented
design approaches in a setting involving the tracking of the
challenging Lorenz attractor. The article concludes with a
discussion of open challenges and future research directions.

Notations: In the following, we use boldface lowercase for
vectors, e.g., x and boldface uppercase letters, e.g., X for
matrices. For a time sequence xt and time indices t1 ≤ t2,
we use the abbreviated form xt1:t2 for the set of subsequent
variables {xt}t2t=t1 . We use N (µ,Σ) for the multivariate
Gaussian distribution with mean µ and covariance Σ, while
p(·) is a probability density function. The notation ∥x∥2C
denotes the squared ℓ2 norm of x weighted by the matrix
C, i.e. ∥x∥2C = x⊤Cx. The operations (·)⊤ and ∥ · ∥2 are
used for transpose and ℓ2 norm, respectively.

II. FUNDAMENTALS OF KALMAN FILTERING

In this section, we review some basics of Kalman-type
filtering. We commence with reviewing SS models, after which
we recall the formulation of the KF and EKF. We conclude

2



this section by highlighting the challenges that motivate its
augmentation with deep learning.

A. State-Space Models
SS models are a class of mathematical models that describe

the probabilistic behavior of dynamical systems. They consti-
tute the fundamental framework for formulating a broad range
of engineering problems in the areas of signal processing,
control, and communications, and they are also widely used
in environment studies, economics, and many more. The core
of SS models lies in the representation of the dynamics of
a system using a latent state variable that evolves over time
while being related to the observations made by the system.

Generic SS Models: Focusing on discrete-time formula-
tions of continuous-valued variables, SS models represent the
interplay between the observations at time instant t, denoted
yt, an input signal ut, and a latent state capturing the system
dynamics xt. In general, SS models consist of: (i) a state
evolution model of the form

xt+1 = f̃t(xt,ut,vt), (1a)

representing how the state evolves in time; and (ii) an obser-
vation model of the form

yt = h̃t(xt,wt), (1b)

which relates the observations and the current system state.
While the mappings f̃t(·) and h̃t(·) are deterministic, stochas-
ticity is induced by the temporally independent noises vt and
wt, and by the distribution of the initial state x0.

Gaussian SS Models: The most common special case of the
above generic model is that of the linear Gaussian SS model,
used by the celebrated KF. In this model, the state evolution
takes the form

xt+1 = F txt +Gtut + vt, (2a)

and the observation model is given by

yt = Htxt +wt, (2b)

where F t,Gt,Ht are matrices of appropriate dimensions, and
vt and wt are temporally and mutually independent Gaussian
noise signals, with zero-mean and covariances Qt and Rt,
respectively. Namely, vt ∼ N (0,Qt) and wt ∼ N (0,Rt),
while vt is independent wt, and both are independent of vτ

and wτ for any τ ̸= t. The initial state x0 is independent of
the noises and also assumed Gaussian, with known mean x̂0

and covariance Σ̂0.
Similar models to (2) are frequently utilized for settings

characterized by non-linear transformations. In the non-linear
additive Gaussian SS model (termed henceforth as non-linear
Gaussian), (1) takes the form

xt+1 = ft(xt,ut) + vt, (3a)
yt = ht(xt) +wt, (3b)

where the noise signals vt and wt are as in (2), i.e., temporally
independent with vt ∼ N (0,Qt) and wt ∼ N (0,Rt).

Tasks: SS models are mostly associated with two main
families of tasks. The first is state estimation, which deals

with the recovery of the state variable xt based on a set
of observations {yτ}, i.e., an open-loop system where the
input ut is either absent or not controlled. Some of the most
common state estimation tasks are [4]

• Filtering: estimate xt from y1:t.
• Smoothing: estimate x1:T from y1:T for some T > 0.

Additional related tasks are prediction, input recovery, and
imputation. State estimation plays a key role in applications
that involve tracking, localization, and denoising, ranging from
target tracking in radar systems to monitoring biomedical
signals.

The second family of SS model-based tasks are those that
deal with stochastic control (closed-loop) policies. In this
family, the SS framework is used to select how to set the input
variable ut based on, e.g., past measurements y1:t. Such tasks
are fundamental in robotics, vehicular systems, and aerospace
engineering. As stochastic control policies often employ state
estimation schemes followed by state regulators [29], we focus
in this article on state estimation (i.e., the first family of tasks).

B. Kalman Filtering

The representation of dynamic systems via SS models gives
rise to some of the most celebrated algorithms in signal
processing, particularly the family of Kalman-type filters.
To describe these, we henceforth focus on state estimation.
Therefore, for convenience, we omit the input signal ut from
the following relations (as it can also be absorbed into the
state evolution noise as a known bias term).

KF: The KF is the minimal MSE estimator for the filtering
task in linear Gaussian SS models, i.e., estimating xt from
y1:t when these are related via (2). In every time step t,
the KF estimates xt using only the previous estimate x̂t−1

as a sufficient statistic and the new observation yt, thus its
complexity does not grow in time.

The KF updates its estimates of the first- and second-order
statistical moments of the state, which at time t are denoted
by x̂t|t and Σt|t , respectively. For t = 0, these moments are
initialized to those of the initial state, namely x̂0 and Σ̂0, while
for t > 0 the estimates are obtained via a two-step procedure:

1) Prediction: The first step predicts the first- and second-
order statistical moments of current a priori state and
observation, based on the previous a posteriori estimate.
Specifically, at time t the predicted moments of the state
are computed via

x̂t|t−1 = F t−1 · x̂t−1|t−1 , (4a)

Σt|t−1 = F t−1 ·Σt−1|t−1 · F⊤
t−1 +Qt−1. (4b)

The predicted moments of the observations are computed
as

ŷt|t−1 = Ht · x̂t|t−1 , (5a)

St|t−1 = Ht ·Σt|t−1 ·H⊤
t +Rt. (5b)

2) Update: The predicted a priori moments are updated
using the current observation yt into the a posteriori state
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moments. The updated moments are computed as

x̂t|t = x̂t|t−1 +Kt ·∆yt, (6a)

Σt|t = Σt|t−1 −Kt · St|t−1 ·K⊤
t . (6b)

Here, Kt is the KG, and it is given by

Kt = Σt|t−1 ·H⊤
t · S

−1
t|t−1 . (7)

The term ∆yt ≜ yt − ŷt|t−1 is the defined as the inno-
vation, representing the difference between the predicted
observation and the observed value.

The output of the KF is the estimated state, i.e., x̂t ≡ x̂t|t ,
and the error covariance is Σt = Σt|t . Various proofs are
provided in the literature for the MSE optimality of the KF [4].
A relatively compact way to prove this follows from the
more general Bayes’ rule and Chapman-Kolmogorov equation,
recalled in the box entitled From Chapman-Kolmogorov to the
KF on Page 5.

Extension to Smoothing: While the KF is formulated for
the filtering task, it also naturally extends (while preserving its
optimality) for smoothing tasks. A leading approach to realize
a smoother is the Rauch-Tung-Striebel (RTS) algorithm [31],
which employs two subsequent recursive passes to estimate the
state, termed forward and backward passes. The forward pass
is the standard KF, while refines the estimates for each time t
using future observations at time instants τ ∈ {t+ 1, . . . , T}.

The backward pass is similar in its structure to the update
step in the KF. For each t ∈ {T−1, . . . , 1}, the forward belief
is corrected with future estimates via

x̂t|T = x̂t|t +
←−
Kt · (x̂t+1|T − x̂t+1|t ), (9a)

Σt|T = Σt|t −
←−
Kt · (Σt+1|t −Σt+1|T ) ·

←−
K⊤

t . (9b)

Here,
←−
Kt is the backward KG, computed based on second-

order statistical moments from the forward pass as
←−
Kt = Σt|t · F⊤

t ·Σ
−1
t+1|t . (10)

The output of the RTS is the estimated state for every time
instant t ∈ {1, . . . , T}, with x̂t ≡ x̂t|T , as well as the error
covariance Σt ≡ Σt|T .

Extensions to Non-Linear SS Models: The KF is MSE
optimal for linear and Gaussian SS models. For non-linear
settings, existing approaches vary between non-linear Gaussian
SS models as in (3), and settings that are also non-Gaussian.

Filtering algorithms for state estimation in non-linear Gaus-
sian SS models are typically designed to preserve the linear
operation of the KF update step with respect to measurement.
Specifically, the prediction of the first-order moments in (4a)
and (5a), is replaced with

x̂t|t−1 = ft
(
x̂t−1|t−1

)
, (11a)

ŷt|t−1 = ht

(
x̂t|t−1

)
. (11b)

The key challenge in approximating the operation of the KF
lies in the propagation of the second-order moments. Arguably
the most common non-linear variant of the KF, known as the
EKF, is based on local linearizations. Here, the matrices F t

and Ht in the KF formulations are respectively replaced with
the Jacobian matrices of ft(·) and ht(·), i.e.,

F̂ t = ∇xt−1
ft−1(x̂t−1|t−1), (12a)

Ĥt = ∇xt
ht(x̂t|t−1). (12b)

Alternatively, the propagation of second-order moments can
be approximated using the unscented transform, resulting in
the unscented KF (UKF), or using the cubature and Gauss-
Hermite deterministic or stochastic quadrature rules.

The EKF and UKF are approximations of the KF designed
for non-linear Gaussian SS models. When the SS is also non-
Gaussian, state estimation algorithms typically aim at recur-
sively updating the posterior distribution via the Chapman-
Kolmogorov relation, without resorting to its Gaussian spe-
cial case utilized by the KF (See box on page 5). Leading
algorithms that operate in this manner include the family
of particle filters, that are based on sequential sampling;
Gaussian sum filters, based on Gaussian sum representation
of all densities; and point-mass filters, numerically solving the
Bayesian relation in a typically rectangular grid.

C. Pros and Cons of Model-Based KF-Type Algorithms

The KF and its variants are a family of widely utilized
and trusted state estimation algorithms [5]. The core of these
model-based methods is the SS model, i.e., the mathematical
representation of the system dynamics via closed-form equa-
tions, as those in (1). When the SS model faithfully captures
the dynamics, these algorithms have several key desirable
properties:
P1 When the SS model is well described as being linear

with Gaussian noise, KF-based algorithms can approach
optimal state estimation performance, in the sense of
minimizing the MSE.

P2 Model-based methods are inherently adaptive to known
variations in the SS model. For instance, the matrix
Ht can change with time index t, and one only needs
to substitute the updated matrix in the corresponding
equations.

P3 Their operation is fully interpretable, in the sense that
one can associate the internal features with concrete
interpretation as they represent, e.g., statistical moments
of prior and posterior predictions.

P4 They provide reliable uncertainty measures via the error
covariance in (6b) and (9b).

P5 KF-type algorithms operate with relatively low complex-
ity, that does not grow with time.

However, the reliance of KF-type algorithms on faithful
mathematical modelling of the underlying dynamics, and their
natural suitability with simplistic linear Gaussian models, also
gives rise to several core challenges encountered in various
applications. These challenges can be roughly categorized as
follows:
C1 The state evolution and observation models employed in

SS models are often approximations of the true dynamics,
whose fidelity can vary considerably between applica-
tions. For instance, while the temporal evolution of a state
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From Chapman-Kolmogorov to the KF

Consider a generic SS model as in (1) without an input signal ut. By Bayes’ rule and the Markovian nature of (1),
it holds that the conditional distribution of xt|y1:t satisfies

p (xt |{yτ}τ≤t )
p (yt|xt) p (xt |{yτ}τ≤t−1 )

p (yt |{yτ}τ≤t−1 )
, (8a)

where

p (yt |{yτ}τ≤t−1 ) =

∫
p(yt|xt)p (xt |{yτ}τ≤t−1 ) dxt, (8b)

p (xt |{yτ}τ≤t−1 ) =

∫
p(xt|xt−1)p (xt−1 |{yτ}τ≤t−1 ) dxt−1. (8c)

Combining (8a)-(8b) with Equation (8c), referred to as the Chapman-Kolmogorov equation for SS models [30, Ch.
4.2], describes how the posterior distribution p

(
xt−1

∣∣y1:t−1

)
is recursively updated into p (xt |y1:t ).

For the special case of a linear Gaussian SS model as in (1), all the considered variables are jointly Gaussian.
Specifically, if xt−1|y1:t−1 ∼ N

(
x̂t−1|t−1,Σt−1|t−1

)
, then (8c) implies that xt

∣∣y1:t−1 ∼ N
(
x̂t|t−1,Σt|t−1

)
(computed via (4)), which together with (8b) indicates that yt

∣∣y1:t−1 ∼ N
(
ŷt|t−1,St|t−1

)
(computed via (5)).

Combining these with (8a) reveals that xt|y1:t ∼ N
(
x̂t|t,Σt|t

)
with moments computed via (6). Accordingly, x̂t

computed by the KF is exactly the conditioned expectation of xt conditioned on y1:t, i.e., it is MSE optimal.

corresponding to the position and velocity of a vehicle
can be represented as a linear transformation via mechan-
ical relationships, e.g., a constant velocity model [32],
such modeling of ft(·) is inherently a crude first-order
approximation. Similarly, the relationship between the
velocity of a vehicle and its sensed motor currents can be
captured via an observation model of the form (3), the
exact specification of the mapping ht(·) is likely to be
elusive.

C2 The purpose of the noise signals vt and wt is to (i)
capture the inherent stochasticity in the state evolution
and measurements, respectively; and (ii) model the dis-
crepancy between the SS representation and the true
system. Their actual distribution is thus often unknown,
complex, and possibly intractable. Non-Gaussianity can
have a notable effect on performance and reliability,
especially since Kalman-type algorithms seek a linear
filtering operation.

C3 Even when the dynamics are faithfully characterized by a
non-linear Gaussian SS model, Kalman-type algorithms
are sub-optimal, with gaps from optimality largely de-
pending on the nature and complexity of the underlying
non-linearity.

C4 Despite their relatively low complexity, non-linear vari-
ants of the KF, such as the EKF and UKF, induce some
latency during filtering. This is due to the need to carry
out, e.g., local linearization and matrix inversion, on each
time instant (which the linear KF can do offline based on
knowledge of the statistics).

These challenges motivate exploring data-driven approaches
for tackling tasks associated with SS models, as detailed in the
following section.

III. COMBINING AI WITH KFS

Recent years have witnessed remarkable empirical success
of deep learning, being the main enabler framework for AI, in
various applications involving processing of time sequences.
Data-driven DNNs were shown to be able to catch the sub-
tleties of complex processes and replace the need to explicitly
characterize the domain of interest. Therefore, an alternative
strategy to implement state estimation while coping with C1-
C4, namely, without requiring explicit and accurate knowledge
of the SS representation, is to learn this task from data using
deep learning.

A. Time Sequence Filtering with DNNs

A common strategy in ML is to utilize highly parameterized
abstract models that are trained from data to find the param-
eterization that minimizes the empirical risk (with regulariza-
tion introduced to prevent overfitting). Their mapping, denoted
Fθ, is dictated by a set of parameters denoted θ. In deep
learning, the parametric model Fθ is a DNN, with θ being the
network parameters. Such highly-parametrized abstract models
can effectively approximate any Borel measurable mapping,
as follows from the universal approximation theorem [6, Ch.
6.4.1].

DNNs can learn various tasks from data without requiring
any mathematical and statistical representation of the under-
lying dynamics and observations model. Accordingly, DNNs
applied for tasks such as filtering and smoothing do not
require the formulation of the dynamics as a SS representation.
Despite this invariance, the resulting architecture of the DNN
can still draw some inspiration from SS representation and
KF-type processing. Consequently, we divide our presentation
to conventional DNNs, which only account for the fact that the
data being processed is a time sequence, and SS/KF-inspired
DNNs, with both families being invariant of the underlying
statistical modeling.
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1) Conventional DNNs: Tasks associated with SS models,
particularly filtering and smoothing, involve the processing of
time sequences that exhibit temporal correlations. Accordingly,
DNNs designed to process time sequences can conceptually be
trained to carry out these tasks. These architectures, discussed
next, involve some deviation from the basic DNN form, i.e.,
based on fully connected (FC) layers, which processes a fixed-
size vector rather than a time sequence.

RNNs: A common DNN architecture tailored for time
sequences is based on RNNs. Recurrent parametric models
maintain an internal state vector, denoted st, representing the
memory of the system [6, Ch. 10]. The parametric mapping
is given by:

x̂t = Fθ(yt, st−1), (13)

where the internal state also evolves via a learned parametric
mapping

st = Gθ(yt, st−1). (14)

The vanilla implementation of an RNN uses a hidden layer to
map yt and the latent st−1 into an updated hidden variable
st. Alternative RNN architectures, such as gated recurrent
units (GRUs) and long short-term memorys (LSTMs), employ
several learned cells to update st. Then, st is used to generate
the instantaneous output x̂t using another layer, as illustrated
in Fig. 1(a).

Attention: A widely popular DNN architecture, which is the
core of the transformer model, is based on attention mecha-
nisms [33]. Such architectures were shown to be extremely
successful in learning complex tasks in natural language
processing, where the considered signals can be viewed as
time sequences.

An attention mechanism jointly processes a query vector
q and na key-value pairs {ki,νi}na

i=1. In the common case
of attention with scaled dot-product scoring, its output is∑na

i=1 softmax
(
const · qTki

)
νi. When applied for tasks such

as filtering or smoothing, this mechanism is used as a form
of self-attention. A self-attention head is an ML model that
applies trained linear layers to map the input into the queries,
keys, and values. A single head self-attention with parameters
θ = {W q,W k,W v} applied for smoothing can be written
as

x̂t = Fθ

(
{yτ}Tτ=1

)
=

T∑
τ=1

softmax
(
(W qyt)

T (W kyτ )
)
W vyτ . (15)

This procedure is illustrated in Fig. 1(b).
Attention-based DNNs processing time sequences typically

apply multiple mappings as in (15) in parallel, as a form of
multi-head attention. As opposed to RNNs, attention mech-
anisms do not maintain an internal state vector that is se-
quentially updated. This makes attention-based DNNs more
amenable to parallel training compared with RNNs. However,
attention mechanisms as in (15) are invariant of the order of
the processed signal samples, and are thus typically combined
with additional pre-processing termed positional embedding
that embed each sample while accounting for its position.

CNNs: Unlike RNNs and attention mechanisms,

Fig. 1: Illustration of conventional DNN architectures for tasks
related to filtering and smoothing, including (a) RNNs; (b)
Attention; and (c) CNNs.

convolutional neural networks (CNNs) are DNN architectures
that originate from image processing, and not time sequences.
Specifically, CNNs are designed to learn the parameters of
spatial kernels, aiming to exploit the locality and spatial
stationarity of image data [6, Ch. 9]. Nonetheless, CNNs can
also be applied for time sequence processing, and particularly
for tasks such as filtering and smoothing. For once, the
trainable kernel of CNNs can implement a learned finite
impulse response filter (as a form of 1D CNN) and be applied
to a time sequence, as illustrated in Fig. 1(c). Alternatively,
one can apply CNNs to the time sequence by first converting
the time sequence (or an observed window) into the form of
an image via, e.g., short-time Fourier transform, and then use
a CNN to process this representation.

2) SS/KF-Inspired DNNs: DNNs applied to process time
sequences, are invariant of the underlying statistics governing
the dynamics, and learn their operation purely from data.
Nonetheless, one can still design DNNs for processing time
sequences whose architecture is to some extent inspired by
traditional model-based processing of such signals, particularly
on SS representations and KF processing.

SS-Inspired Architectures: A form of DNN architecture
that is inspired by SS representation models the filter (and not
the dynamics as in (1)), as a deterministic SS model. These
ML models, which we term SSM following [24], parameterize
the mapping from yt into the estimate x̂t using a latent state
vector st−1. Particularly, the architecture operates using two
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Selective State-Space Models (SSMs)

Fig. 2: Selective SSM illustration.

An emerging SSM DNN, which is the core of the Mamba architecture and
its variants [34], is the selective SSM [35]. Selective SSMs are ML models
that process time sequences via (17). However, instead of using fixed linear
mappings as in (17), here the matrices W y,W s,W x are obtained from learned
mappings of the input yt, effectively implementing a time-varying and non-
linear SSM.
Generally speaking, consider the discretization with sampling period ∆ of
continuous-time deterministic SS representations. The resulting state evolution
in (17a) is parameterized by

W y = exp(∆ · W̄ y) (16a)

W s = (∆ · W̄ y)−1(exp(∆W̄ y)− I) ·∆ · W̄ s, (16b)

where W̄ y, W̄ s are the continuous-time state evolution matrices. Selective
SSMs implement SSMs based on this representation, while using a dedicated
layer with parameters θ1 to map yt into W̄ s, ∆, and W x, where the former
two are then substituted in (16) along with the learned W̄ y . The overall parameters are thus θ = {θ1, W̄

y}. The
resulting operation is illustrated in Fig. 2.

linear mappings, where first st is updated via

st = W yyt +W sst−1. (17a)

Then, the predicted sequence is given by

x̂t = W xst. (17b)

The parameters of the resulting ML architecture are θ =
{W y,W s,W x}.

The SSM operation in (17) can be viewed as a form of
an RNN, with (17a) implementing (14), and (17b) imple-
menting (13). While the restriction to linear time-invariant
learned operators in (17) often results in limited effectiveness,
an extension of SSMs, termed Selective SSMs (see box on
page 7), was recently shown to yield efficient and high-
performance architectures that are competitive to costly and
complex transformers [34].

KF-Inspired Architectures: While SSMs parameterize a
learned filter via a SS representation, one can also design
DNNs whose architecture is inspired by filters suitable for
tracking in SS models, e.g., KF-type algorithms. A represen-
tative example of such architectures is the recurrent Kalman
network (RKN), proposed in [7].

The RKN is a DNN whose operation imitates the prediction-
update steps of the KF and the EKF. However, while the
model-based algorithms realize these computations based on
the characterization of the dynamics as a SS model, the
RKN parameterizes the predict and update stages as two
interconnected DNNs. The predict DNN, whose parameters
are θ1, replaces (4), and computes the a-priori state prediction
via

x̂t|t−1 ,Σt|t−1 = Fθ1

(
x̂t−1|t−1 ,Σt−1|t−1

)
. (18a)

Similarly, the update DNN, parameterized by θ2, produces the
posterior state estimate of (6) via

x̂t|t ,Σt|t = Gθ2

(
x̂t|t−1 ,Σt|t−1 ,yt

)
. (18b)

The resulting architecture can be combined with additional
learned input and output processing, as proposed in [7].

3) Pros and Cons of DNN-Based State Estimation: The
DNN architectures detailed so far can be trained to carry out
state estimation tasks, i.e., map the observed time sequence
into the latent state sequence. Specifically, provided data de-
scribing the task, e.g., labeled data set comprised of trajectories
of observations and corresponding states, these DNNs learn
their mapping from data without relying on any statistical
modeling of the dynamics. This form of discriminative learn-
ing, i.e., leveraging data to learn to carry out a task end-to-
end [26], excels where model-based methods struggle: it is
not affected by inaccurate modeling (thus coping with C1-
C2, and their abstractness allows DNNs to operate reliably
in complex settings (C3). In terms of inference speed (C4),
while DNNs involve lengthy and complex training, they often
provide rapid inference (forward path), particularly when using
relatively compact parameterization. This follows as trained
DNNs are highly amenable to parallelization and acceleration
of built-in hardware software accelerators, e.g., PyTorch.

Nonetheless, replacing KF-type algorithms with DNNs
trained end-to-end gives rise to various shortcomings, par-
ticularly in losing some of the desired properties of model-
based methods. For once, DNNs lack in adaptability (P2), as
one cannot substitute time-varying parameters of SS models
into their operation, and thus changes in the SS model may
necessitate lengthy retraining. Moreover, DNNs are typically
highly parameterized architectures viewed as black-boxes,
that do not share the interpretability of model-based KF-type
methods (P3), and are complex to train or even store on
limited devices (P5). Furthermore, DNNs struggle in providing
uncertainty (P4), for which there is typically no ”ground truth”
to learn from, and do not share the theoretical guarantees of
KFs (P1).

7



Fig. 3: Illustrative comparison between model-based Kalman-type filters (a); AI-based filters (b); and AI-augmented KF (c)
divided into task-oriented and SS-oriented designs.

B. AI-Augmented KFs

The DNN-based approaches discussed so far are highly
data-driven, in the sense that they do not rely on any statistical
characterization of the dynamics. Even SS or KF inspired
architectures, such as the RKN whose operation generally
follows the high-level stages of the KF, are ignorant of any
SS modeling.

An alternative approach that aims to benefit from the best
of both worlds is based on hybrid model-based/data-driven
designs via model-based deep learning [11], [36]. This family
of algorithms typically jointly leverage data along with some
form of domain knowledge, i.e., partial knowledge of some
components of the underlying SS model (which is often
available to some degree as noted in C1). In the context of state
estimation, such hybrid algorithms operate by augmenting
KF-type algorithms with deep learning modules, rather than
replacing them with DNNs.

As discussed above, the direct application of DNNs for
state estimation reviewed so far is based on task-oriented
end-to-end discriminative learning. In the same spirit, existing
approaches for augmenting the operation of KFs with AI tools
can be generally categorized following the ML paradigms of
generative and discriminative learning [25], [26]:

• SS-oriented hybrid algorithms, that use data to learn the
underlying statistical model as DNN-aided system iden-
tification (thus bearing similarity to generative learning).

• Task-oriented schemes, that directly learn to carry out
the state estimation task (as a form of discriminative
learning), while leveraging partial state knowledge and

principled KF stages as inductive bias.
This categorization, illustrated in Fig. 3, serves for our struc-
tured review of existing approaches in the subsequent sections.

IV. AI-AUGMENTED KFS VIA TASK-ORIENTED LEARNING

The first family of AI-aided KFs converts Kalman-type
state estimation into an ML architecture that is trainable
end-to-end via DNN-augmentation. The key rationale is to
leverage deep learning techniques to directly learn the state
estimation as a form of discriminative learning. A common
approach to designing such architectures is based on using an
external DNN, operating alongside a classic state estimator,
with recent architectures integrating deep learning modules
into the internal processing of Kalman-type algorithms.

A. External DNN Architectures

Utilizing external DNNs aims to enhance KF-type algo-
rithms without altering their internal processing. This approach
facilitates design, as one can separate the DNN components
from the classic state estimator. Broadly speaking, the leading
approaches to utilizing external DNNs employ them either
sequentially, i.e., for pre-processing, or in parallel, e.g., as
learned correction terms.

1) Learned Pre-Processing: A popular approach when
dealing with complex measurement models, e.g., visual or
multi-modal observations, builds on the ability of deep learn-
ing to extract meaningful features from complex data. Specif-
ically, it uses a DNN pre-processor to map the observations
into a latent space via a DNN [13], [27], [37].
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Fig. 4: EKF with DNN pre-processing illustration.

Architecture: Consider a SS model where the observation
model ht(·) is complex and possibly intractable. In such cases,
one can design a DNN with parameters θ whose output
is approximated as obeying a linear Gaussian observations
model, i.e.,

zt = Fθ(yt) ≈Hxt +wt, wt ∼ N (0,R), (19)

with the observation matrix H being fixed a-priori. The latent
zt, combined with a known state evolution model, represent
observations of a closed-form SS representation. Accordingly,
the latent signal can be used as input to a model-based KF-type
state estimator to track xt, as illustrated in Fig. 4.

Supervised Training: In a supervised setting, one has
access to a labeled data set comprised of multiple pairs of
state and observation length T trajectories, e.g.,

Ds =
{
{x(i)

t ,y
(i)
t }Tt=1

}N

i=1
. (20)

Given such labeled data, θ can be trained by encouraging the
DNN output to closely match Hxt, i.e., by using a loss of
the form

LDs
(θ) =

1

NT

N∑
i=1

T∑
t=1

∥∥∥Fθ(y
(i)
t )−Hx

(i)
t

∥∥∥
2
. (21)

When training via (21), the noise covariance R can be
estimated empirically from the validation data.

An alternative training approach finds θ based on its
downstream state estimation task, leveraging the differentiable
operation of KFs [38]. Here, by letting x̂t

(
Fθ(yt)

)
be the

state estimate obtained by a KF/EKF with observations zt =
Fθ(yt), a candidate loss measure is

LDs
(θ) =

1

NT

N∑
i=1

T∑
t=1

∥∥∥x̂t

(
Fθ(y

(i)
t )

)
− x

(i)
t

∥∥∥
2
. (22)

The covariance matrix R can be learned during training
by being incorporated into the trainable parameters of the
architecture.

Discussion: Using an external pre-processing DNN that is
separated from the Kalman-type state estimation algorithm is
a design approach geared mostly towards handling complex
observation models. As state estimation is carried out by
a model-based algorithm, it preserves most of its favorable
properties: The state estimation operation is interpretable (P3),

and uncertainty measures are provided (P4). The excessive
complexity lies in the incorporation of the pre-processing
DNN and thus depends on its parameterization, as well as
on the dimensions of zt. For instance, when zt is of a much
lower dimension compared to yt, the complexity and inference
latency savings of applying a KF to zt compared to using yt

as observations may surpass the added complexity and latency
of the pre-processing DNN.

The adaptivity of KFs (P2) is not necessarily preserved.
Specifically, when the DNN is fully separate from the state
estimator (e.g., when training via (21)), then the state evolution
parameters only affect the model-based algorithm, and thus
one can still operate with time-varying ft(·) (assuming its
variations are known). This is not necessarily the case when
training via (22), as the latent features are learned to be
ones most supporting state estimation based on the evolution
model used during training [17]. Moreover, variations in the
observation model typically necessitate re-training of θ.

Using an external pre-processing DNN, while being simple
and straightforward to combine with model-based state esti-
mation, relies on Gaussianity and known distribution of the
state evolution. The resulting latent SS model is often non-
Gaussian, which can impact the tracking accuracy in the latent
space, thus not handling C2. Moreover, this approach does not
cope with complexities in the state evolution, thus not being
geared towards handling inaccuracies (C1) and dominant non-
linearities (C3) in ft(·).

2) Learned Correction Terms: In scenarios where one
has full characterization of the dynamic system as a SS
model, such that KF-type algorithms are applicable, yet the
characterization is not fully accurate, external DNNs can
further enhance performance by providing correction terms to
internal computations of the model-based method [19]. This
is illustrated using a representative example, based on the
augmented Kalman smoother proposed in [19].

Architecture: Consider a linear Gaussian SS model, and
focus on the smoothing task, i.e., recovering a sequence of
T state variables x1:T = {xt}Tt=1 from the entire observed
sequence y1:T = {yt}Tt=1. As discussed when presenting the
RTS algorithm, various algorithms exist for such tasks, one
of which involves smoothing by seeking to maximize the log-
likelihood function via gradient ascent optimization, i.e., by
iterating over

x
(q+1)
1:T = x

(q)
1:T + γ∇

x
(q)
1:T

log p
(
y1:T ,x

(q)
1:T

)
, (23)

where γ > 0 is a step-size, for q = 0, 1, 2, . . . denoting
the iteration index. The Markovian nature of the SS model
indicates that the gradients in (23) can be computed via
message passing, such that for the t’th index

∇
x

(q)
t

log p
(
y1:T ,x

(q)
1:T

)
= µ(q)

xt−1→xt
+ µ(q)

xt+1→xt
+ µ(q)

yt→xt
,

(24)
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where the summands, referred to as messages, are given by

µ(q)
xt−1→xt

= −Q−1
(
x
(q)
t − Fx

(q)
t−1

)
, (25a)

µ(q)
xt+1→xt

= F TQ−1
(
x
(q)
t+1 − Fx

(q)
t

)
, (25b)

µ(q)
yt→xt

= HTR−1
(
yt −Hx

(q)
t

)
. (25c)

The iterative procedure in (23), is repeated until convergence,
and the resulting x

(q)
1:T is used as the estimate. It is worth

noting that in (25), the messages are obtained by assuming a
time-invariant version of the SS model in (2) [19].

An external DNN augmentation suggested in [19] aims at
facilitating the operation of such smoother under approximated
SS characterization by learning to map the messages in (25)
into a correction term ϵ

(q+1)
1:T , replacing the update rule (23)

with

x
(q+1)
1:T = x

(q)
1:T + γ

(
∇

x
(q)
1:T

log p
(
y1:T ,x

(q)
1:T

)
+ ϵ

(q+1)
1:T

)
.

(26)
Particularly, based on the representation of the smoothing op-
eration as messages exchanged over a Markovian factor graph
whose nodes are the state variables, [19] proposed a graph
neural network (GNN)-RNN architecture with parameters θ.
This architecture maps the messages in (25) into the correction
term ϵ

(q+1)
1:T , namely,

ϵ
(q+1)
1:T = Fθ

(
y1:T , {µ(q)

xt−1→xt
, µ(q)

xt+1→xt
, µ(q)

yt→xt
}Tt=1

)
.

(27)
Supervised Training: The external DNN correction mecha-

nism is trained end-to-end, such that the state predicted by the
corrected algorithm best matches the true state. Particularly,
since smoothing here is based on an iterative algorithm (gradi-
ent ascent over the likelihood objective), its training is carried
out via a form of deep unfolding [36], fixing the number of
iterations to some Q. Then, accounting for the fact that the
iterative steps in (26) should provide gradually refined state
estimates, the loss function accounts for the contribution of
the intermediate iterations with a monotonically increasing
contribution. Particularly, the loss function used for training
θ is

LDs
(θ) =

1

NT

N∑
i=1

T∑
t=1

Q∑
q=1

q

Q

∥∥∥x̂(q)
t

(
y
(i)
1:T ;θ

)
− x

(i)
t

∥∥∥
2
,

(28)
where x̂

(q)
t (y

(i)
1:T ;θ) is the smoothed estimate of x(i)

t produced
by the q’th iteration, i.e., via (26), with parameters θ and y1:T .

Discussion: Augmenting a KF-type algorithm via a learned
correction term is useful in settings where one can still
apply the model-based algorithm quite reliably (up to some
possible errors that external DNN corrects). For instance, the
augmented algorithm detailed above assumes the dynamic
system can be approximated as a linear Gaussian SS model,
such that model-based smoothing can be applied based on this
formulation, yet it is not MSE optimal (as is the case without
discrepancy in the SS model). Consequently, this approach
is suitable for tackling C1, yet it is less valid for handling
complex dynamics (C3), and only adds excessive latency to
the model-based algorithm, thus not handling C4.

B. Integrated DNN Architectures

Unlike external architectures, which employ DNNs sepa-
rately from Kalman-type algorithms, integrated architectures
replace intermediate computations with DNNs. Doing so
converts a Kalman-type state estimation algorithm into a
trainable ML model which follows the operation of the classic
state estimation method as an inductive bias. The key design
rationale is to augment computations that depend on missing
domain knowledge with dedicated DNNs. Accordingly, exist-
ing designs vary based on the absent domain knowledge or,
alternatively, on the augmented computation.

1) Learned Kalman Gain: A key part of Kalman-type
algorithms is the derivation of the KG Kt. In particular, its
computation via (7) encapsulates the need to propagate the
second-order moments of the state and observations. This, in
turn, induces the requirement to have full knowledge of the
underlying stochasticity (C2); leads to some of the core chal-
lenges in dealing with non-linear SS models (C3); and results
in excessive latency which is associated with propagating these
moments (C4). Accordingly, a candidate approach for state
estimation in partially known SS models, which is the basis
for the KalmanNet algorithm [16] and its variants [17], [39],
[40], augments the KG computation with a DNN.

Architecture: Consider a dynamic system represented as a
SS model in which one has only a (possibly approximated)
model of the time-invariant state evolution function f(·) and
the observation function h(·). An EKF with a learned KG
employs a DNN with parameters θ to compute the KG for
each time instant t, denoted Kt(θ). Using this learned KG,
an EKF is applied, predicting only the first-order moments via
(11), and estimating the state as

x̂t = x̂t|t−1 +Kt(θ)(yt − ŷt|t−1). (29)

An illustration of the architecture is depicted in Fig. 5.
As the resulting architecture does not explicitly track the

second-order moments, that are needed for the KG, and thus
the learned computation must do so implicitly. Accordingly,
the DNN has to

1) Process input features that are informative of the noise
signals.

2) Possess some internal memory capabilities.
To meet the first requirement, the input features processed
by the DNN typically include (i) differences in the observa-
tions, e.g., ∆yt = yt − ŷt|t−1; and (ii) differences in the
estimated state, such as ∆x̂t−1 = x̂t−1 − x̂t−1|t−2. In order
to provide internal memory capabilities, architectures based on
RNNs [16], [40], or even transformers [41] can be employed.
For instance, a simple FC-RNN-FC architecture was proposed
in [16], as well as a more involved interconnection of RNNs,
while [40] used two RNNs – one for tracking Σt|t−1 and one
for tracking S−1

t|t−1 – that are combined into the KG via (7).
While the above architecture is formulated for filtering, it

can also be extended to smoothing tasks. Particularly, when
smoothing via the RTS algorithm [31] employs a KF for a
forward pass, followed by an additional backward pass (9) that
uses the backward gain matrix

←−
Kt given in (10). Consequently,

the DNN augmented methodology above extends to smoothing
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Fig. 5: EKF with learned KG illustration.

by introducing an additional KG DNN that learns to compute←−
Kt. Moreover, the single forward-backward pass of the RTS
algorithm is not necessarily MSE optimal in non-linear SS
models, the learned RTS can be applied in multiple iterations,
using the estimates produced at a given forward-backward pass
be used as the input to the following pass [39]. Here, the fact
that each pass is converted into a ML architecture allows to
learn a different forward and backward gain DNNs for each
pass, as a form of deep unfolding [36]

Training: KalmanNet and its variants use DNNs to compute
the KG. While there is no ‘ground-truth‘ KG when deviating
from dynamics fully captured as linear Gaussian SS models,
the overall augmented state estimation algorithm is trainable
in a supervised manner. Particularly, given a labeled data set
as in (20), a candidate loss measure is

LDs
(θ) =

1

NT

N∑
i=1

T∑
t=1

∥∥∥x̂t

(
y
(i)
t ;θ

)
− x

(i)
t

∥∥∥
2
, (30)

where x̂t

(
yt;θ

)
is the state estimate obtained using the

augmented EKF with parameters θ and observations yt.
While KalmanNet is designed to be trained from labeled

data via (30), in some settings it can also be trained with-
out providing it with ground-truth state labels. This can be
achieved via the following approaches:

• Observation Prediction: The fact that the DNN-
augmented algorithm preserves the interpretable opera-
tion of Kalman-type state estimation can be leveraged
for unsupervised learning, i.e., learning from a data set
of the form

Du =
{
{y(i)

t }Tt=1

}N

i=1
. (31)

Specifically, as Kalman-type algorithms with time-
invariant SS models internally predict the next observa-
tion as ŷt+1|t = h

(
f(x̂t)

)
in (5), a possible unsupervised

loss is [21]

LDu(θ) =
1

NT

N∑
i=1

T−1∑
t=0

∥∥∥h(f(x̂t

(
y
(i)
t ;θ

)))
− y

(i)
t+1

∥∥∥
2
.

(32)

• Downstream Task: Often, in practice, state estimation
is carried out as part of an overall processing chain,
with some downstream tasks. In various applications,
one can evaluate an estimated state without requiring
a ground truth value. When such evaluation is written
(or approximated) as a function that is differentiable
with respect to the estimated state, it can be used as
a training loss. This approach was shown to enable
unsupervised learning of KalmanNet when integrated in
stochastic control systems, where it is combined with a
linear quadratic regulator [42], as well as in financial pairs
trading, where the state tracked are financial features used
for trading policies [23].

Discussion: The design of DNN-aided Kalman-type algo-
rithms by augmenting the KG computation is particularly
suitable for tackling identified challenges in C1-C4. Unlike
purely end-to-end DNNs designed for generic processing of
time-sequences, augmenting the KG allows leveraging domain
knowledge of the state evolution and observation models,
as these are utilized in the prediction step. However, as the
following processing of these predictions utilizes a DNN that
is trained based on the accuracy of the overall algorithm, mis-
matches, and approximation errors are learned to be corrected,
thus fully tackling C1. As the DNN augmentation bypasses the
need to track second-order moments, the resulting algorithm
does not require knowledge of the distribution of the noises. In
fact, the resulting filter is not linear (as the KG depends on the
observations), allowing to learn non-linear state estimators that
are suitable for non-Gaussian SS models (C2) and non-linear
dynamics (C3). Finally, as the computation of the KG and the
propagation of the second-order moments induces most of the
latency in Kalman-type algorithms for non-linear SS models,
replacing these computations with a compact DNN often leads
to more rapid inference (C4) [39].

The fact that the resulting state estimator is converted into a
trainable discriminative ML architecture makes it natural to be
combined with DNN-based pre-processing (as in Fig. 4), e.g.,
for processing images or high dimensional data. Particularly,
the learned state estimator can be trained jointly with the pre-
processing stage, thus having it learn latent features that are
most useful for processing with the learned filter, without
requiring one to approximate the distribution of the latent
observation model noise [17].

Unlike state estimation based on end-to-end DNNs, which
also tackles C1-C4 (as discussed in the previous section), the
usage of Kalman-type algorithms as an inductive bias allows to
also preserve some of the desirable properties of model-based
state estimators. In particular, the interpretable operation is
preserved, in the sense that the internal features are associated
with concrete meaning (P3), which can be exploited for, e.g.,
unsupervised learning. Moreover, while the error covariance is
explicitly tracked, in some cases it can actually be recovered
from the learned KG (see box entitled ‘Uncertainty Extraction
from Learned KG‘ on Page 12), thus providing P4 to some
extend. In addition, the fact that only an internal computation
is learned allows utilizing relatively compact DNNs, striking a
balance between the excessive complexity of end-to-end DNNs
and the relatively low one of model-based methods (P5).
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Uncertainty Extraction from Learned KG

Fig. 6: EKF with learned KG and covariance
extraction illustration.

Kalman-type algorithms use both the prior covariance Σt|t−1 as
well as the KG to compute the posterior error covariance Σt,
which represents the estimation uncertainty. Particularly, by (6b)
and (7), the EKF computes the error covariance as

Σt = (I −KtĤt)Σt|t−1. (33a)

Consequently, despite the fact that AI-aided filters with learned
KG do not explicitly track the second-order moments, in some
cases, these can still be recovered via (33a), as shown in [43].
In particular, the architecture provides the learned KG as Kt(θ).
Accordingly, when the matrix H̃t =

(
Ĥ⊤

t Ĥt

)−1
exists, then,

combining (5b) and (7), the prior covariance can be recovered
via

Σt|t−1 = (I −Kt(θ)Ĥt)
−1Kt(θ)RĤtH̃t. (33b)

This indicates that when one accurately computes Ĥt (via (12))
and has knowledge of the observations noise covariance R, then
the learned KG can be used to recover the error covariance via
(33a) and (33b), as illustrated in Fig. 10. The extracted covariance
can be encouraged to match the empirical estimation error in
training by, e.g., adding an additional loss term that penalizes
uncertainty extraction, or by imposing a Gaussian prior on the
error and minimizing its likelihood, see [43].

The core limitations of designing AI-aided state estimator
by augmenting the KG computations are associated with its
adaptivity. The design is particularly geared towards time-
invariant state evolution and observation functions. As the KG
computation is coupled with these models, any deviation, even
known ones, is expected to necessitate re-training. This can
be alleviated under some forms of variations using hypernet-
works [44], i.e., having an additional DNN that updates the KG
DNN, while inducing some complexity increase. Moreover,
the architecture is designed for supervised learning. The ability
to train in an unsupervised manner via (32) relies on full
knowledge of f(·) and h(·), thus not being applicable in the
same range of settings as its supervised counterpart. The same
also holds for uncertainty extraction via (33), which requires
some additional domain knowledge compared to that needed
for merely tracking the state via (29).

The introduced learned KG algorithms calculate the com-
plete gain by a DNN. However, if a Kalman-type filter, such
as the unscented Kalman filter or divided-difference filter,
depends on a user-defined scaling parameter, a DNN can be
used for the parameter prediction (instead of the complete gain
calculation) [45], [46]. As a consequence, such DNN-reasoned
scaling parameter affects all elements of the KG and is able,
up to a certain extent, to compensate for model discrepancies
or linearisation errors. This DNN-augmented filter inherently
provides the estimate error covariance matrix, but under the
assumption of the known SS model (3).

2) Learned State Estimation: Another class of integrated
DNN architectures includes methods that learn the task of
state estimation in a data-driven manner using the known ob-

servation model without any knowledge of the state evolution
model. The state evolution model in (1a) may not be linear or
require vt to be Gaussian noise. A candidate approach in this
category is the data-driven nonlinear state estimation (DANSE)
method that provides a closed-form posterior of the underlying
state using linear state measurements under Gaussian noise
[20]. The noisy measurements follow the linear observation
model similar to (2b), namely,

yt = Htxt +wt, (34)

where the measurement noise is wt ∼ N (0,R) with known
covariance R. The matrix Ht is assumed to be full column
rank and known ∀t. Note that, p (yt|xt) = N (Htxt,R).

Architecture: The core of the DANSE method relies on the
sequential modeling capability of RNNs [6, Ch. 10]. DANSE
consists of an RNN with parameters θ that parameterizes
a Gaussian prior on xt given y1:t−1 at a given time t.
Concretely, the prior distribution p

(
xt|y1:t−1;θ

)
is

p
(
xt|y1:t−1;θ

)
= N

(
x̂t|t−1 (θ) ,Σt|t−1 (θ)

)
s.t. {x̂t|t−1 (θ) ,Σt|t−1 (θ)} = Fθ(yt−1), (35)

where Fθ(yt−1) refers to the RNN that recursively processes
the sequence of past observations y1:t−1 as described in (13),
(14). Also, x̂t|t−1 (θ) and Σt|t−1 (θ) denote the mean vector
and the covariance matrix respectively of the RNN-based
Gaussian prior at time t. The covariance matrix Σt|t−1 (θ)
can be designed to be full or diagonal. More accurately, the
hidden state of the RNN in (35) at time t is non-linearly
transformed using feed-forward networks with appropriate
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DANSE Architecture

Fig. 7: A detailed schematic diagram of the DANSE method at time t, highlighting
both training-specific and inference-specific blocks [20]. The dash-dotted line
represents the gradient flow to Fθ during training, solid lines indicate information
flow during training/inference.

The DANSE method utilizes
an RNN for recursively pro-
cessing the input sequence
y1:t−1 [20]. An example of
this sequential processing at
time t is shown in Fig.
7. One can use prominent
RNNs for sequential process-
ing, such as GRUs or LSTMs
. In DANSE, GRU was used
due to simplicity and good
expressive power compared
to vanilla RNNs. Specifically,
for modeling the mean vec-
tor x̂t|t−1 (θ) and diagonal
covariance matrix Σt|t−1 (θ)
of the parameterized Gaussian
prior in (35), the hidden state
of the GRU was nonlinearly
transformed using feed-forward networks with suitable activation functions. In Fig. 7, the ‘Accumulator’ block is
shown for ease of understanding; in practice, the block is embedded in the recursive operation of the RNN.

activation functions to obtain x̂t|t−1 (θ) and Σt|t−1 (θ) [20].
In [20], DANSE uses GRU for implementation purposes owing
to its simplicity and modeling capability.

Using the fact that the measurement system in (34) is linear
and also Gaussian, we have p (yt|xt) = N (Htxt,R). This
allows the use of the Chapman-Kolmogorov equation (8a) to
obtain p (xt|y1:t;θ) in closed-form [20]. One can show that
the posterior distribution p (xt|y1:t;θ) is also Gaussian with

p(xt|y1:t;θ) = N (x̂t|t(θ),Σt|t(θ)),

x̂t|t(θ) = x̂t|t−1(θ) +K ′
t (θ)∆yt (θ) ,

Σt|t(θ) = Σt|t−1(θ)

−K ′
t (θ)St|t−1 (θ)

(
K ′

t (θ)
)⊤

. (36)

Notably, (36) resembles the Kalman update equations in (6),
(7) where

K ′
t (θ) ≜ Σt|t−1(θ)H

⊤
t S

−1
t|t−1 (θ) ,

St|t−1 (θ) ≜ HtΣt|t−1 (θ)H
⊤
t +R,

∆yt (θ) ≜ yt −Htx̂t|t−1(θ). (37)

Note that K ′
t (θ) is conceptually similar as the traditional

Kalman gain term in (7), but computed in a data-driven
manner, and that the computation approach is different from
the one illustrated in Fig. 5 due to (35).

In the backdrop of KF, a crucial aspect of DANSE is that
there is no Gaussian propagation of the posterior in (36) to
the prior because DANSE does not use any state evolution
model like (1a). The parameters x̂t|t−1 (θ) ,Σt|t−1 (θ) of the
prior are obtained directly from the RNN, which does not
use any explicit state evolution model as in (1a), or require
any knowledge regarding the same, e.g. first-order Markovian,
Gaussian process noise, etc. A simplified schematic of DANSE

Fig. 8: Simplified schematic of DANSE [20].

is shown in Fig. 8 with a detailed schematic and details
regarding architectural choices present in the box ‘DANSE
Architecture’ on Page 13.

Training: The parameters θ in DANSE are learned in an
unsupervised manner using a training dataset consisting of
only noisy measurement trajectories Du = {y(i)

1:T }Ni=1, where
N is the number of training samples, where every i’th sample
is assumed to have the same trajectory length T . The learning
mechanism is based on maximizing the likelihood of the
dataset D, where one computes the joint likelihood of a full
sequence y1:T . In order to achieve this, one first calculates
the conditional marginal distribution p

(
yt|y1:t−1;θ

)
using the

Chapman-Kolmogorov equation (8b) as follows

p(yt|y1:t−1;θ) =

∫
p(yt|xt)p(xt|y1:t−1;θ) dxt

= N (Htx̂t|t−1(θ),HtΣt|t−1(θ)H
⊤
t +R)

= N (Htx̂t|t−1(θ),St|t−1 (θ)), (38)

where we use the notation for St|t−1 (θ) in (37). Then for the
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sequence y1:T , one can calculate the joint likelihood as

p (y1:T ;θ) =

T∏
t=1

p(yt|y1:t−1;θ). (39)

Thus, using Du, (38) and (39), the optimization problem can
be formulated as maximization of the logarithm of the joint
log-likelihood of Du as follows

max
θ

log

N∏
i=1

T∏
t=1

p
(
y
(i)
t |y

(i)
1:t−1;θ

)
= min

θ
LDu (θ) , (40)

where the loss term LDu
(θ) is obtained using (38) as follows

LDu
(θ) =

N∑
i=1

T∑
t=1

{
n

2
log 2π +

1

2
log det

(
S

(i)
t|t−1 (θ)

)
+

1

2
∥yt −Htx̂

(i)
t|t−1(θ)∥

2(
S

(i)

t|t−1
(θ)

)−1

}
. (41)

In the above {x̂(i)
t|t−1(θ),Σ

(i)
t|t−1 (θ)} denote the parameters of

the Gaussian prior (35) obtained using the i’th sample y
(i)
1:t−1

as input at time t. The parameters θ are thus learned by
minimizing LDu

(θ) with respect to θ in (40). Practically, this
is achieved by using mini-batch stochastic gradient descent
as explained in [20, Sec. II-C].

Discussion: The DANSE approach can be used to address
the challenges associated with model-based KF-type algo-
rithms explained in C1-C4. DANSE can be used to partly
address C1 as it does not require knowledge of the state
evolution model (1a) or the involved process noise in (1a).
However, it requires knowledge of the linear observation
model shown in (34), where Ht should be full-rank and noise
covariance R should be known a priori. The parameterization
of the Gaussian prior in (35) ensures that DANSE can capture
long-term temporal dependency in the state model so that
one is not constrained to state estimation for Markovian SS
models. This is also mentioned by the authors in [20] where
they introduce DANSE in a ‘Model-free process’ setting. In
[20], the authors define a ‘Model-free process’ as a process
where the knowledge of the state evolution model is absent.
This also partly tackles C2 since there is no requirement on
the distribution of vt in (1a) to be Gaussian. At the same time,
it is required that wt is Gaussian with a fixed covariance R
as shown in (34).

The use of recurrent neural networks and the parameteri-
zation of the Gaussian prior also ensures that one can learn
a nonlinear state estimation method for nonlinear SS models
similar to that in the case of KalmanNet. This in turn helps to
tackle the challenge described in C3. The training of DANSE,
as explained in the previous paragraph, is unsupervised and
offline as it requires access to a dataset Du consisting of noisy
measurements. Once the training is completed, the inference
step in DANSE is causal and separated from the offline
training step. This ensures that one has a rapid inference at
test time. This helps address C4, as DANSE doesn’t require
any linearization of the state evolution model as in EKF or
sampling sigma points or particles in UKF or PF, respectively.

The DANSE method is also partly interpretable as the
posterior update of DANSE as shown in (36) is tractable and
bears similarity to the KF posterior update in (6). This is
ensured by using the linear observation model in (34) and
the choice of the Gaussian prior for xt in (35). This ensures
tractable posterior updates, resonating with the feature P3
regarding the interpretability of conventional model-based ap-
proaches using first and second-order moments. Furthermore,
the advantage P4 regarding providing uncertainty estimates is
also present in DANSE as we have both prior and posterior
covariance estimates in (35), (36). As mentioned earlier, the
key difference compared to model-based approaches is the
absence of propagating the posterior moments to the prior at
the next time point.

Lastly, it is worth noting that DANSE cannot immediately
adapt to underlying changes in the SS model and would require
re-training. This also applies to changes in the observation
model as it requires complete knowledge of the same. Hence
DANSE does not have the advantage P2, which is inherent in
model-based approaches and AI-aided approaches that utilize
the knowledge of the state evolution model or additional
hypernetworks as mentioned earlier in section IV-B1.

V. AI-AUGMENTED KFS VIA SS-ORIENTED LEARNING

The second family of AI-aided KFs uses data to learn,
refine, or augment the underlying statistical model using deep
learning tools. Then, the data-augmented SS can be directly
used in Kalman-type state estimation. Instead of learning the
state estimation or the specific parameters in the Kalman filter,
e.g., KG, the key rationale of SS-oriented learning is to exploit
the data to obtain a more accurate model. At the same time,
SS-oriented learning preserves explainability of the state and
brings associated benefits of the statistical estimation1 such
as the inherent calculation of the covariance matrix of the
estimate error [15].

Architecture: The SS-oriented AI-augmented KFs focus
on data-augmented modeling of the state equation, while the
measurement (or observation) model is assumed to be known.
The motivation behind this formulation is twofold: (i) the
fact that the sensors can often be well modeled on the basis
of first principles but a state dynamics model is typically
approximate and widely depends on a user decision (for
example, object kinematic can be modeled by nearly constant
velocity/acceleration model or a Singer model) [15]; (ii) the
need to estimate state dynamics that carry physical meaning.
The concept of data-augmented modeling thus resides in the
definition of four models of state dynamics;

• True model (TM), or a data generator, is a complex
and context-dependent model that cannot be expressed
in a finite-dimensional form. The TM is thus more of a
theoretical construct.

• Physics-based model (PBM) is defined by (3a) and can be
understood as the “best achievable” model of the given
complexity found from the first principles.

1Such augmented model can directly be used also for design a fault-
detection or control algorithm.
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• Data-driven model (DDM) is solely identified from data.
The use of ML in system identification has been studied
for several decades [47], [48] and the DDM can be written
as

xt+1 = g(xt;θ
DNN) + vDDM

t , (42)

where vDDM
t is a state noise, g(·) is a vector-valued

function, possibly a DNN, which is parametrized by
the vector θDNN designed to minimize the discrepancy
between outputs of (42) and the TM.

• The current trend is to consider models that are not purely
trained from data, as in DDMs, but that make use of
the available information that PBMs offer. These hybrid
models are discussed in more detail in the remainder of
the section.

The approaches to data-augmented modeling of the state
equation can be classified in terms of the SS components that
the DNN characterizes or is embedded in. In the general SS
structures (see Fig. 9a), the whole model of state dynamics is
identified from data and replaced by an DNN2 (42). In [49], FC
DNNs were used to represent the function ft(·), and in [50],
the authors use predictive partial autoencoders to find the state
and its mapping to the measurement. In [51], FC DNNs trained
by the expectation-maximization algorithm were used to rep-
resent both functions while [52] utilized LSTM DNNs for this
purpose. A comparison of the performance of several general
SS structures was presented in [14], considering LSTM, GRU,
and variational autoencoders (VAEs). The authors assumed
Gaussian likelihood and combined the RNN and VAE into
a deep state space model. Stochastic RNNs were introduced
for system identification in [53] to account for stochastic
properties of the SS model. A similar approach is followed
physics-informed neural network (PINN) [54] modeling the
state equation by a DNN which training is constrained by the
physics describing the PBM (see Fig. 9b).

Another approach to model state equation is to consider a
fixed structure such as a linear parameter-varying model (2a)
and use the DNNs to represent the matrices [55] (see Fig. 9c).
Such an approach has also been adopted in [38], where the
covariance matrices Q and R were provided by a DNN.

A similar idea was elaborated in [56] where an incremental
SS structure was proposed to separate ft(·) into linear and
nonlinear parts and use a DNN to represent the nonlinear
part (see Fig. 9d). In [57], a hybrid model (see Fig. 9e) was
proposed, which combines the PBM for some state elements
and the DNN for the rest. It leverages the fact that the dynamic
of some states is precisely known (e.g., the position derivative
is velocity).

The data-augmented modeling represented by the data-
augmented physics-based model (APBM) combines the
physics- and data-driven components into a single model,
which reads

xt+1 = g (ft(xt),xt,dt;θ
APBM
t ) + vAPBM

t , (43)

2A structure similar to the general one can be considered for the continuous-
time models, where the DNN represents the function in the differential state
equation, and then the Euler discretization is used to obtain a discrete-time
model used for the estimation.

where vAPBM
t is a state noise, dt represents additional data3, the

function g(·) is aware of the PBM part, and the vector θAPBM
t

is designed to minimize the discrepancy between outputs of
(43) and the TM. The APBM compensates the PBM structure
and parameter mismodelling using information extracted from
available data. Consequently, the APBM preserves the physical
meaning of the state components and exploits actual system
behavior dependencies, which were ignored in the PBM de-
sign. An example of this modeling versatility was shown in
[58], where APBMs were used to filter a high-order Markov
process without the need for order selection. One important
characteristic of the APBM formulation (43) is the flexibility
to cope with the non-stationarity of the model over time or
space (θAPBM

t−τ ̸= θAPBM
t ), which requires adaptive estimation

strategies [59].
The general APBM structure (43) can be simplified into

an additive form with explicitly controlled contribution of
the data-based component (see box entitled ‘APBM with
Controlled Additive Structure’ on Page 17). Bounding the
contribution of the data-driven component of the model is an
essential feature of the APBM, which prevents the data-based
component from overruling the PBM component contribution
and, thus, preserving APBM explainability.

The APBM state dynamics model (43) together with the
observation model (any of (1b), (2b), (3b)) can directly be
used for joint state xt and parameter θAPBM

t estimation by a
regular state estimator such as the EKF or the UKF [30].

Training APBMs: Training APBMs can be performed
under different paradigms depending on data availability,
architecture, and assumptions regarding the stationarity of
the system’s dynamics. Although the learning strategy can
be supervised when Ds is available, we will focus on the
more common problem in the Bayesian filtering literature,
where only noisy observations, Du, are accessible, setting up
an unsupervised learning scenario. In this context, parameter
estimation can be achieved by (i) obtaining and maximizing
the marginal posterior p(θ|y1:T ), often using the energy
function (φT (θ) = − log p(y1:T |θ)− log p(θ)) [30]; (ii) the
joint posterior p(xt,θ|y1:T ) [59]; or (iii) obtaining a point
estimate θ̂ through deterministic optimization strategies often
aiming at maximizing the variational lower bound of the log-
likelihood p(y1:T ;θ) [60].

In [15], [59], the authors opted for a state-augmentation
approach aiming at obtaining the joint posterior distribution
p(xt,θt|y1:T ) through Bayesian filtering recursion. For such,
system states are augmented with the APBM parameters:[

xt+1

θAPBM
t+1

]
=

[
g (ft(xt),xt,dt;θ

APBM
t )

θAPBM
t

]
+

[
vx
t

vθ
t

]
(44)

where a near-constant state transition process is introduced for
θAPBM, allowing one to cast the APBM learning as a filtering
problem. vθ

t is a “small” noise and is introduced to avoid
numerical issues [30]. Note that such noise can also allow
θAPBM
t to drift over time and eventually evolve if the model is

time-varying.

3These denote data related to the system available to the user but not
used in the PBM as additional inputs to avoid overly complex models (e.g.,
ionospheric models, weather forecasts).
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Fig. 9: Structures for SS-oriented learning.

Another important component regarding the APBM learning
process is the need for a control mechanism to prevent the
DNN component from overpowering the PBM. The prevention
can be achieved by imposing appropriate constraints over
θAPBM. A Bayesian filtering based approach is to introduce
pseudo-observation equations into the observation model [61].
Let θ̄ be a vector such that g

(
ft(xt),xt,dt;θ

APBM
t = θ̄

)
=

ft(xt), then the observation model in (3b) can be augmented
as: [

yt

θ̄

]
=

[
ht(xt)
θAPBM
t

]
+

[
wt

wθ
t

]
(45)

where the bottom equation acts as a constraint, forcing θAPBM
t to

be in the vicinity of θ̄; and the distribution of wθ
t governs the

trade-off between regularization and data fit. In the case where
the noise terms in the SS model defined in Equations (44)
and (45) are Gaussian, cov{ωt} = R and cov{ωθ

t } = ηI ,
the Bayesian filtering solution can be cast as a sequence of
minimization problems for every time step t:

(x̂t, θ̂
APBM
t ) = argmin

(xt,θt)

∥yt − ht(xt)∥2R−1 + η∥θ̄ − θt∥2

+ ∥xt − g
(
ft(xt−1),xt−1,dt−1; θ̂

APBM
t−1

)
∥2
[P̂ x

t|t−1
]−1

+ ∥θt − θ̂APBM
t−1∥2[P̂ θ

t|t−1
]−1 (46)

where η ≥ 0 controls the strictness of the regularization added
by the pseudo-observation equation in (45).

Offline vs Online Training of APBMs: One interesting
aspect of leveraging the Bayesian filtering approach for joint
parameter and state estimation lies in its equivalence to a
second-order Newton method [62], leading to fast convergence
and making it suitable for both online and offline training.
The training methodology seamlessly allows for either offline,
online, or both (offline-online) training of the system dynam-
ics. In the offline scenario, the filtering with the augmented
model can be performed over the multiple sequences (and
multiple epochs) in Du if system states, x0, are properly
initialized for every data sequence in Du [63]. Once training
is completed, a standard Bayesian filtering approach can be
used to update only the system states, xt, over time while

keeping the APBM parameters fixed. In the online setting, the
training approach becomes a conventional filtering problem
that continuously adapts both states and model parameters over
time, starting from some initial condition x̂0, θ̂APBM

0 . Again,
the fast convergence of the Bayesian filter allows for quick
reaction of the data-driven component over time, correcting
the PBM to adapt to new conditions and improving the state
estimation performance. This feature is extremely important
when dealing with non-stationary dynamics that continuously
change over time. Both strategies can be combined, where the
offline training solution is used as the initial condition for the
online procedure, which, in turn, keeps updating both states
and parameters during the test.

Discussion: The SS-oriented AI-augmented KF design re-
lies on augmenting the physics-based component, namely
the “deterministic” part of the state equation with a data
component. As seen in the box entitled ‘APBM with Controlled
Additive Structure’, a solution might lead to an additive APBM
state equation (47). The data component is designed to extract
a time-correlated component of the discrepancy between the
pure PBM (3a) and the TM, that is usually embraced by the
overbounded state noise vt. As a consequence, the APBM
state noise vAPBM

t has different statistical properties from the
PBM vt and for optimal performance of the KF, the noise
properties have to be identified. In [64], the noise properties
identification of the APBM was discussed and illustrated using
correlation and maximum likelihood methods. Utilizing the
identified state noise covariance matrix in the KF led to
significant improvement of the estimate consistency.

Following the terminology used in system identification
[65], the PBM augmentation with DNN belongs into block-
oriented “slate-gray” models. The idea of block-oriented
models is “to build up structures from simple building blocks”
[65], which allows physical insight and data-oriented flexible
complement. Note that besides the DNN, the PBM can be
augmented with the nonlinear autoregressive moving-average
model as in [66], where the data component is used for drift
compensation. The concept of the APBM can also be found in
the area of deterministic models with a completely measured
state. In this area, the “deterministic” version of the APBM
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APBM with Controlled Additive Structure

Fig. 10: Illustrative APBM with additive structure.

The general APBM in (43) can be particularized as
an additive augmentation of the PBM [15]

xt+1 = ϕ0ft(xt) + ϕ1g(xt;θ
DNN) + vAPBM

t , (47)

where the APBM parameters θAPBM = [ϕ0, ϕ1,θ
DNN]

may be estimated offline or online, with supervised
or unsupervised training strategies. To ensure, that
the data-based component does not overrule the
PBM component, we can use constrained state
estimation algorithms where the parameters of the
DNN are encouraged to be close to a nominal
value θ̄ that keeps the DNN contribution limited.
State estimation can be interpreted as regularized
optimization problems, such as

(x̂1:t,θ) = argmin
(x1:t,θ)

LDu
(y1:t, ŷ1:t) + ηR(x1:t,θ)

where LDu
and R are cost and regularization functionals, and η ∈ R+ is a regularization parameter governing the

trade-off between model fit and regularization. In the context of Kalman filtering, the minimized cost function is
the MSE of the state given observations and dynamics (47) model and the control of the DNN can be effectively
controlled through the regularization term, for which several implementation options are possible [15].

was successfully used for characterization of the unmodelled
acceleration caused, e.g., by the quadrotor drag [67].

VI. COMPARATIVE STUDY

The previous sections presented a set of design approaches
and concrete algorithms fusing Kalman-type filtering and AI
techniques. While all these methods tackle the same task of
state estimation in dynamic systems, they notably vary in
their strengths, requirements, and implications. To highlight
the interplay between the approaches mentioned above and
provide an understanding of how practitioners should prioritize
one approach over the others, we next provide a comparative
study. We divide this study into two parts: we first present
a qualitative comparison, which pinpoints the conceptual
differences between the approaches in light of the identified
desired properties P1-P5 and challenges C1-C4. We then detail
a quantitative study for a representative scenario of tracking
in challenging dynamics to capture the regimes in which each
approach is expected to be preferable.

A. Qualitative Comparison

Here, we discuss the relationship and individual gains of the
different approaches over each other in terms of key concep-
tual figures of merit that are not quantifiable in the same sense
as estimation performance on a given test-bed is. Based on the
identified desired properties P1-P5 and challenges C1-C4 of
conventional Kalman-type algorithms, we focus on qualitative
comparison in terms of domain knowledge, interpretability,
uncertainty extraction, adaptability, target family of SS models,
and learning framework. The comparison detailed below is
summarized in Table I.

1) Domain Knowledge: The presented methodologies sub-
stantially vary in the level of knowledge and characterization
of the underlying SS model required, corresponding to chal-
lenges C1 and C2. The extreme cases are those of fully model-
based filters (such as the standard KF and its variants) that
require full and accurate knowledge of the SS model, and those
of end-to-end DNNs, that are full model-agnostic (yet do not
incorporate available characterization when such is provided).

Among the methodologies representing AI-augmented KFs,
the usage of an external DNN to classic Kalman-type tracking
typically requires the same level of domain knowledge needed
to apply its classic counterpart. When the DNN is applied
in parallel as a learned correction term, then the complete
SS model should be known, while applying a learned pre-
processing module can compensate for unknown and in-
tractable observation modeling. Settings in which one has
full knowledge of the observations model but does not know
the state evolution model are the focus of methods based on
learned state estimation and the SS-oriented DDM and PINN.
Knowledge (though possibly an approximated one, as in C1) of
the functions f(·) and h(·) is required by techniques that learn
the KG, while some modeling of these functions is needed
by SS-oriented approaches based on parameter learning and
APBM.

2) Interpretability: In interpretability of a state estimation
algorithm, we refer to the ability to explain the operation
of each computation and associate its internal features with
concrete meaning, as in P3. This high level of interpretability
is naturally provided by purely model-based KF-type algo-
rithms, as well as by SS-oriented AI techniques that learn the
parameters of a pre-determined parametric SS model [55], sim-
ilarly to conventional system identification. On the contrary,
algorithms employing end-to-end DNNs for state estimation
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Approach SS Knowledge Interpretability Uncertainty Adaptability SS Model Learning

End-to-end
DNN

Generic Fully model-agnostic Black-box Only outputs state Not adaptive Can be non-linear
and non-Gaussian

Supervised learning from
large data sets

KF-inspired
(e.g., RKN
[7])

Fully model-agnostic Connection of black-
box DNNs

Estimates both state
and uncertainty

Not adaptive Can be non-linear
and non-Gaussian

Supervised learning from
large data sets

External
DNN

Learned pre-
process

Requires state evolution Input transformation
is black-box, while
tracking based on the
latent representation
is fully interpretable

Tracks both state and
uncertainty

Adapts to known
variations only in
the state evolution

State evolution
should be simple
(preferably linear)
and Gaussian

Preferably supervised
for end-to-end learning,
though DNN can also
be trained as a feature
extractor, possibly
unsupervised

Learned
correction
(e.g., [19])

Requires (estimated) SS
representation

Highly interpretable Tracks both state and
uncertainty

Designed for a spe-
cific SS model

Should be Gaussian
with simple non-
linearities

Supervised learning from
moderate data sets

Integrated
DNN

Learned
KG (e.g.,
KalmanNet
[16])

Requires (estimates) of
h(·) and f(·)

Processing follows
the same pipeline
as standard EKF,
with KG computation
being black-box

Can be extracted in
some scenarios [43]

Requires re-
training [21] or
hypernetworks [44]
for adaptivity

Can be non-linear
and non-Gaussian

Preferably supervised for
end-to-end learning, can
also be trained unsuper-
vised with additional do-
main knowledge [21]

Learned State
Estimation
(e.g., DANSE
[20])

Requires SS observation
model and does not re-
quire SS state evolution
model

Posterior update is
interpretable and
resembles that of SS-
oriented KF, while
state prediction is
black-box

Tracks both state and
uncertainty

Requires re-training
for adaptivity

State evolution
model can be non-
linear, observation
model should be
linear, Gaussian

Unsupervised learning

SS-
Oriented

DNN

DDM (e.g.,
fully data-
driven model
or PINN [68])

Fully model-agnostic
(DNN) or some
knowledge of the
model required (PINN).
The observation model
is assumed to be known.

The state evolution is
black-box, while the
filter operation is in-
terpretable

Tracks both state and
uncertainty

Not adaptive Can be non-linear
and non-Gaussian

Supervised learning

Parameter
learning (e.g.,
[55])

Requires models of h(·)
and f(·)

Fully interpretable Tracks both state and
uncertainty

Not adaptive Can be non-linear
and non-Gaussian

Unsupervised learning

APBM (e.g.,
[15])

Requires models of h(·)
and f(·)

Highly interpretable Tracks both state and
uncertainty

Fully adaptive Can be non-linear
and non-Gaussian

Unsupervised learning

Model-
Based

Kalman-type
filters (e.g.,
EKF)

Requires (accurate) SS
representation

Fully interpretable Tracks both state and
uncertainty

Fully adaptive Should be Gaussian
with mild non-
linearities

Fully model-based

TABLE I: Qualitative comparison between the considered approaches.

are essentially black-box methods.
The level of interpretability varies when considering algo-

rithms that augment classic algorithms with DNNs, such that
some of the computations are based on principled statisti-
cal models, while some are based on black-box data-driven
pipelines. For instance, the internal features of task-oriented
designs with integrated DNNs are exactly those of standard
Kalman-type algorithms, while some of the internal computa-
tions – such as the computation of the KG in KalmanNet or the
propagation of the prior state moments in DANSE – are carried
out by black-box DNNs. A higher level of interpretability is
provided when the DNN is applied in parallel to a fully model-
based and interpretable algorithm for learned correction, as
in [19].

3) Uncertainty: The ability to provide faithful uncertainty
measures (as in P4) arises in classic Kalman-type algorithms
from their inherent tracking of the error (posterior) covariance
matrix. As the posterior update is an integral aspect of the
update step of conventional Kalman filtering, any algorithm
that fully implements this computation provides uncertainty
measures along with its state estimate. This property is exhib-
ited by fully model-based Kalman-type filters, as well as by
some AI-aided KFs. Specifically, both SS-oriented designs,

which implement conventional filtering on top of a learned
state evolution model, as well as task-oriented architecture
that augments the prior state prediction (as in [69]) or utilize
DNNs external to model-based filters provide uncertainty in
the update computation.

Among AI-aided algorithms that do not fully preserve the
posterior covariance propagation of classic KFs, the ability to
provide uncertainty varies between the approaches. Generic
end-to-end DNNs that track only the state do not offer such
measures, while KF-inspired architectures are designed to
output error covariances via their update DNNs. AI-aided
KFs with learned KG (such as KalmanNet) are specifically
designed to bypass the need to propagate second-order mo-
ments such as the posterior covariance. Still, as noted in the
box entitled ‘Uncertainty Extraction from Learned KG‘ on
Page 12, in some settings, one can still extract uncertainty
measures from their internal KG features.

4) Adaptability: As noted in P2, classic KF-type algorithms
are adaptable to temporal variations in the statistical model
governing the underlying dynamic system. Assuming that
one can identify and characterize the variations, the updated
SS model parameters are simply substituted into the filter
equations. End-to-end DNNs, in which there is no explicit
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dependence on the SS model parameters, and these are implic-
itly embedded in the learned weights, adapting the SS models
that deviate from those observed in training necessitates re-
training, i.e., they are not adaptive.

Task-oriented AI-aided KFs are trained in a manner that
is entangled with the operation of the augmented Kalman-
type algorithm. Accordingly, while algorithms with integrated
and external DNNs typically use the SS model parameters in
their overall processing, their DNN modules are fixed, and are
suitable for the SS models observed in training. Accordingly,
adaptations require re-training, where some level of variations
can still be coped with using hypernetworks [44]. An exception
is the usage of external DNNs for feature extraction, which
is typically designed to map complex observations into a
simplified observation model and thus are not affected by
variations in the state evolution model. Among SS-oriented
approaches, adaptivity is provided by the design of APBM,
while alternatives based on, e.g., DDM or PINN architectures
need retraining when the state evolution statistics change.

5) SS Model Type: A key distinct property among the
presented methodologies lies in the family of SS models for
which each algorithm is suitable. As noted in C3, fully model-
based KF-type algorithms are most suitable for Gaussian SS
models with simple and preferably not highly non-linear state
evolution and observation models. On the opposite edge of
the spectrum are end-to-end model-agnostic DNNs, that can be
applied in complex and intractable dynamic systems, provided
with sufficient data corresponding to that task.

Among task-oriented AI-augmented KFs, architectures em-
ploying external DNNs as learned correction terms are suitable
for similar SS models as classic KFs, being geared towards
settings where the latter is applicable. External DNNs that
pre-process observations facilitate coping with complex ob-
servation models, while integrated DNNs for learned state
estimation overcome complex state evolution models, with
each approach requiring the remainder of the SS model to
be simple (preferably linear), fully known, and Gaussian.
Augmenting KFs with learned KG notably enhances the
family of applicable SS models, not requiring Gaussianity
and modeling of any of the noise terms, and learning to cope
with non-linear and possibly approximated state evolution and
observation functions. The same holds for the reviewed SS-
oriented methods that can all cope with non-linear and non-
Gaussian dynamics.

6) Learning Framework: The learning framework is spe-
cific to algorithms that incorporate AI, and encapsulates the
amount of data and the reliance on its labeling. Accordingly,
fully model-based algorithms that rely on given mathematical
modeling of the SS representation do not involve learning
in their formulation, while black-box DNNs typically require
learning from large volumes of labeled data sets.

Designs combining partial domain knowledge with deep
learning techniques typically result in a dominant induc-
tive bias that allows training with limited data, compared
to black-box end-to-end DNNs. Methods based SS-oriented
DDM/PINN, external DNN, and learned integrated KG DNN,
typically require this data to be labeled, though for learned
pre-processing and for KalmanNet one can also train unsuper-

vised in some settings. Methods such as DANSE, SS-oriented
parameter learning, and APBM are specifically designed to be
trained based solely on observations, i.e., unsupervised.

B. Quantitative Comparison

To illustrate the performance of the considered state estima-
tion algorithms, we provide a dedicated experimental study4.
We consider the task of tracking the nonlinear movement of a
free particle in three-dimensional space (m = 3) from noisy
position observations. The Lorenz Attractor, a chaotic solution
to the Lorenz system of ordinary differential equations, defines
the continuous-time state evolution of the particle’s trajectory.
To enhance the challenge of this tracking case, we introduce
additional uncertainty due to a sampling-time mismatch in
the observation process. While the underlying ground truth
synthetic trajectory is generated using a high-resolution time
interval

(
∆τ = 10−5

)
, the tracking filter can access only

noisy observations decimated at a rate of 1
2000 , resulting in

a decimated process with ∆t = 0.02.
To ensure a fair evaluation, we restrict any populated evo-

lution model of the tracking filter, if it exists, to discrete time
with ∆t ≥ 0.02. Further details about the Lorenz Attractor
evolution model can be found in [39]. The averaged MSE
values and their standard deviation values for filtering 10
sequences with a length of T = 3000 time steps are reported
in Table II. There, we compare the MSE achieved by using
the noisy observations as state estimate (Noise), that that of
filtering via the model-based EKF and particle filter (PF); the
DNN-integrated KalmanNet and DANSE; and two forms of
the SS-oriented APBM, employing offline and online learning.

In the comparative performance reported in Table II, the
model-based filters, i.e., the EKF and PF manage to improve
upon using noisy observations, but suffer from an error floor
due to their sampling mismatch. All considered AI-aided
filters manage to improve upon this error floor. Specifically,
KalmanNet, which is trained in a supervised manner, achieves
the best performance, improving by approximately 5 dB in
MSE compared to the model-based algorithms. Among the
AI-aided filters that are trained from unlabeled data, DANSE
achieves the best performance. APBM, which is designed to
boost adaptivity, achieves MSE within a small gap of DANSE
when trained offline. These quantitative results complement
the conceptual comparison provided in Table I, in revealing
the interplay between the reviewed methods for combining
deep learning with classic KF-type filtering.

VII. FUTURE RESEARCH DIRECTIONS

The tutorial-style presentation of designs, algorithms, and
experiments of AI-aided KFs indicate potential gains of proper
fusion of model-based tracking algorithms and data-driven
deep learning techniques. These, in turn, give rise to several
core research directions that can be explored to further unveil
the potential, strengths, and prospective use cases of such de-
signs. Exploring these directions is expected to further advance

4The source code for all simulated algorithms and the hyperparameters used
can be found online at https://github.com/ShlezingerLab/AI Aided KFs
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TABLE II: MSE [dB] - Lorenz Attractor with Sampling Mismatch.

Noise EKF PF KalmanNet DANSE APBM (offline) APBM (online)
-0.024 -6.316 -5.333 -11.106 -10.115 -9.457 -7.452
± 0.049 ± 0.135 ± 0.136 ± 0.224 ± 0.163 ± 0.231 ± 0.548

the development and understanding of algorithmic tools to
jointly leverage classic SS model-based KF-type algorithms
with emerging deep learning techniques, and preserving the
individual strengthens of each approach that has a bearing on
the potential of alleviating some of the core challenges shared
by a broad range technologies tracking dynamic systems
ans state estimation. We thus conclude this article with a
discussion of some of the open challenges that can serve as
future research directions.

1) Time-varying SS models and adaptation: A practical state
estimation method might need to cater for a scenario
where the observation model (1b) is mismatched between
training and testing stages, and/or the observation or
state evolution functions are time-varying without a clear
pattern of time-varying nature. Typically AI-aided KFs
are tied to a fixed observation model, typically not time-
varying, and remains same between the the training stage
and inference stage. Therefore, the future research ques-
tion is how to design AI-aided state estimation methods
that can adapt to time-varying SS models, mainly for
time-varying observation models.

2) Non-Markovian SS models: Throughout this article and
being consistent with usual practice, the prevalent state
evolution model is Markovian in nature (see (1a)). Nat-
urally, it is a quest to design methods that can exploit
short and long-term memories in state evolution, which
means non-Markovian state evolution.

3) Non-Gaussian SS models: Most of the directions dis-
cussed in the article focused on Gaussian noises in SS
models. Extensions to non-Gaussian noises encountered
in real problems will require more complex algorithms
with high computational complexity, which is challeng-
ing, especially when learning the large-scale DNN pa-
rameters.

4) Distributed AI-aided KFs: While there exists considerable
research on distributed KFs, such as the work of [70]
for sensor networks, there is little attention currently
to design distributed AI-aided KFs. Design of them for
federated learning and edge computing can be a new
research direction.

5) Robust training: Outliers appearing in the SS models,
mainly in the observation model (1b), may substantially
affect the training process. The approaches should address
this issue by providing robust training.
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