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Abstract
Artificial intelligence (AI) is envisioned to play a 

key role in future wireless technologies, with deep 
neural networks (DNNs) enabling digital receiv-
ers to learn how to operate in challenging com-
munication scenarios. However, wireless receiver 
design poses unique challenges that fundamentally 
differ from those encountered in traditional deep 
learning domains. The main challenges arise from 
the limited power and computational resources 
of wireless devices as well as from the dynamic 
nature of wireless communications which causes 
continual changes to the data distribution. These 
challenges impair conventional AI based on high-
ly-parameterized DNNs, motivating the devel-
opment of adaptive, flexible, and light-weight AI 
for wireless communications, which is the focus 
of this article. We consider how AI-based design 
of wireless receivers requires rethinking of three 
main pillars of AI: architecture, data, and training 
algorithms. In terms of architecture, we review 
how to design compact DNNs via model-based 
deep learning. Then, we discuss how to acquire 
training data for deep receivers without compro-
mising spectral efficiency. Finally, we review effi-
cient, reliable, and robust training algorithms via 
meta-learning and generalized Bayesian learning. 
Numerical results are presented to demonstrate 
the complementary effectiveness of each of the 
surveyed methods. We conclude by presenting 
opportunities for future research on the develop-
ment of practical deep receivers.

Introduction
Wireless communication technologies are sub-
ject to escalating demands for connectivity and 
throughput, with rapid growth in media transmis-
sions, including images, videos, and, in the near 
future, augmented and virtual reality. Furthermore, 
transformative applications such as the Internet 
of Things (IOT), autonomous driving, and smart 
manufacturing are expected to play major roles 
in 5G-defined deployments of ultra-reliable and 
low-latency communication (URLLC) and massive 
machine-type communications (mMTC) services. 
To accommodate these scenarios, communica-
tion systems must meet strict performance require-
ments in reliability, latency, and complexity.

To facilitate meeting these performance require-
ments, emerging technologies such as mmWave 

and THz communication, holographic multiple-in-
put multiple-output (MIMO), spectrum sharing, 
and intelligent reconfigurable surfaces (IRSs) are 
currently being investigated. While these technol-
ogies may support desired performance levels, 
they also introduce substantial design and operat-
ing complexity. For instance, holographic MIMO 
hardware is likely to introduce non-linearities on 
transmission and reception; the presence of IRSs 
complicates channel estimation; and classical com-
munication models may no longer apply in novel 
settings such as the mmWave and THz spectrum, 
due to violations of far-field assumptions and lossy 
propagation. This article addresses the latter source 
of complexity by focusing on efficient design of 
receiver processing.

Traditional receiver processing design is mod-
el-based, relying on simplified channel models, 
which, as mentioned, may no longer be adequate 
to meet the requirements of next generation 
wireless systems. The rise of deep learning as an 
enabler technology for artificial intelligence (AI) 
has revolutionized various disciplines, ranging from 
computer vision and natural language processing 
(NLP) to speech refinement and biomedical signal 
processing. The ability of deep neural networks 
(DNNs) to learn mappings from data has spurred 
growing interest in their usage for receiver design 
in digital communications [1, 2]. DNN-aided receiv-
ers, referred to henceforth as deep receivers, have 
the ability to succeed where classical algorithms 
may fail. Specifically, deep receivers can learn a 
detection function in scenarios having no well 
established physics-based mathematical model, 
a situation known as model-deficit; or in settings 
for which the model is too complex to give rise to 
tractable and efficient model-based algorithms, a 
situation known as algorithm-deficit. Consequently, 
deep receivers  have the potential to meet the con-
stantly growing requirements of wireless systems.

Several core challenges arise from the funda-
mental differences between wireless communica-
tions and traditional AI domains such as computer 
vision and NLP, limiting the widespread applicabil-
ity of deep learning in wireless communications. 
The first challenge is attributed to the nature of 
the devices employed in communication systems. 
Wireless communication receivers are highly con-
strained in terms of their computational ability, 
battery consumption, and memory resources. On 
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the other hand, deep learning inherently relies 
on highly parameterized architectures, assuming 
the availability of powerful devices, for example, 
high-performance computing servers.

A second challenge stems from the nature of 
the wireless communication domain. Communica-
tion channels are dynamic, implying that the receiv-
er task, dictated by the data distribution, changes 
over time. This makes the standard receivers pipe-
line of data collection, annotation, and training 
highly challenging. Specifically, DNNs rely on (typ-
ically labelled) data sets to learn from the underly-
ing unknown, but stationary, data distributions. For 
example, machine translation tasks, requiring the 
mapping of an origin language into a destination 
language, do not change over time, enabling the 
collection of a large volume of training data and 
the deployment of a pretrained, static, DNN. This 
is not the case for wireless receivers, whose pro-
cessing task depends on the time-varying channel, 
restricting the size of the training data set repre-
senting the task.

The two challenges outlined above imply that 
successfully applying AI for wireless receiver design 
requires deviating from conventional deep learning 
approaches. To this end, there is a need to develop 
communication-oriented AI techniques, which are 
the focus of this article. Previous tutorials on AI for 
communications, for example, [1, 2], have primari-
ly concentrated on surveying challenges and appli-
cations of conventional deep learning methods in 
the context of communication systems. In contrast, 
the present article focuses on the design of prac-
tical and effective deep receivers that address the 
specific limitations imposed by the use of data- and 
resource-constrained wireless devices and by the 
dynamic nature of the communication channel.

We commence by motivating the development 
of AI systems that are light-weight, and thus opera-
ble on power and hardware limited devices, as well 
as adaptive and flexible, enabling online on-device 
adaptation. As illustrated in Fig. 1, we then pro-
pose that AI-based wireless receiver design requires 
revisiting the three main pillars of AI, namely: the 
architecture of AI models; the data used to train AI 
models; and the training algorithm that optimizes 
the AI model for generalization, that is, to maximize 
performance outside the training set (either on the 
same distribution or for a completely new one).

For each of these AI pillars, we survey candi-
date approaches for facilitating the operation of 
the deep receivers. 

We first discuss how to design light-weight train-
able architectures via model-based deep learning 
[14]. This methodology hinges on the principled 
incorporation of model-based processing, obtained 
from domain knowledge on optimized communi-

cation algorithms, within AI architectures. 
Next, we investigate how labelled data can be 

obtained without impairing spectral efficiency, that 
is, without increasing the pilot overhead. To this end, 
we show how receivers can generate labelled data 
by self-supervision aided by existing communication 
algorithms; and how they may further enrich data 
sets via data augmentation techniques that utilize 
invariance properties of communication systems. 

Finally, we cover training algorithms for deep 
receivers that are designed to meet requirements 
in terms of efficiency, reliability, and robust adapta-
tion of wireless communication systems, avoiding 
overfitting from limited training data while limiting 
training time. These methods include communica-
tion-specific meta-learning as well as generalized 
Bayesian learning and modular learning.

To illustrate the individual and complementa-
ry gains of the reviewed approaches, we provide 
a numerical study considering finite-memory sin-
gle-input single-output (SISO) channels as well as 
multi-user MIMO systems. We conclude by dis-
cussing the road ahead, as well as key research 
challenges that are yet to be addressed to enable 
adaptive and flexible light-weight deep receivers.

Deep Receivers in Dynamic Channels
Harnessing the potential of deep learning in 
wireless systems requires communication-spe-
cific AI schemes that are adaptive, flexible, and 
light-weight. The light-weight requirement follows 
from the power and computational constraints 
of wireless devices, while the need for adaptivity 
and flexibility is entailed by the dynamic nature of 
wireless channels. Classical model-based receiver 
processing is inherently adaptive and flexible: The 
receiver periodically estimates the channel using 
the available pilots, and then uses this estimate 
to adapt the operation of the receiver baseband 
chain, which is a direct function of the channel 
coefficients. In contrast, for deep receivers, the 
dependence of the weights of the DNN on the 
channel state is indirect, and hence designing flex-
ible, channel adaptive, DNNs-based processing is 
a non-trivial task.

Current state of the art on deep receivers 
encompasses the following three main approaches 
to address channel variations.

A1 Joint Learning: The most straightforward 
approach amounts to optimizing a single DNN 
model to maximize performance on average over 
a broad range of channel conditions. Methods in 
this class train a DNN using data corresponding 
to an extensive set of expected channel realiza-
tions, aiming to learn a mapping that is tailored to 
the distribution of the channel. Accordingly, joint 
learning may be thought of as seeking the optimal 

Several core challenges 
arise from the fun-

damental differences 
between wireless com-
munications and tradi-
tional AI domains such 
as computer vision and 
NLP, limiting the wide-
spread applicability of 
deep learning in wire-
less communications. 

FIGURE 1. A summary of methods surveyed in this article that adapt the three pillars of AI to the requirements of deep wireless.

Pillar Method Literature

Architecture
Deep unfolding [3]–[5]

DNN-aided inference [6]

Data
Self-supervised training [6], [ 7]

Data augmentation [8], [ 9]

Training
Algorithm

Meta-learning [10]–[12]

Bayesian learning [13]

Modular training [10]
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non-coherent receiver, which is agnostic to the cur-
rent channel realization. As a result, performance 
degradation as compared to a coherent receiver is 
generally to be expected.

A2 Channel as Input: An alternative approach 
uses an instantaneous estimate of the channel as 
an additional input to the DNN [15]. Among the 
main drawbacks of this approach are the limit-
ed flexibility in accommodating different system 
dimensions, for example, number of antennas or 
number of users, and the lack of structure in the 
way different inputs, such as received signals and 
channel state information, are handled.

A3 Online Training: As illustrated in Fig. 2, in 
online training, decoded data from prior blocks 
is used, alongside new pilots, to adapt the deep 
receiver to channel variations. This class of 
approaches inherits the limitations of continual 
learning, such as catastrophic forgetting, and is gen-
erally not suitable to ensure fast adaptation.

The mentioned shortcomings of the three exist-
ing approaches reviewed above motivate a funda-
mental rethinking of the application of machine 
learning tools to wireless receivers along the three 
directions illustrated in Fig. 1:
•The architecture of the DNN should be care-

fully selected on the basis of domain knowl-
edge to reduce data requirements, while also 
ensuring efficient implementation of the model. 
This amounts to improvements in terms of the 
inductive bias on which learning is based.

•The data used for learning should be augment-
ed, when possible, by leveraging the inherent 
redundancies of encoded signals.

•The training algorithm should make use of histor-
ical data while also preparing for quick adapta-
tion to changing channel conditions. 
In the following sections we review candidate 

approaches for each of these aspects, as summa-
rized in Fig. 1.

Architecture
Standard neural architectures employed in AI 
systems for communication are based on high-
ly-parameterized, unstructured, deep neural mod-
els. However, these networks tend to be highly 
parameterized, and since deep receivers should 
adapt to time-varying conditions using limited 
training data, this type of architectures is typically 
undesirable. In this section, we introduce ways to 
design tailored model architectures by leveraging 
domain knowledge with the goal of improving 

adaptivity and data efficiency. Later we will also 
study data-driven approaches for the optimization 
of the inductive bias — also known as meta-learn-
ing — and see how they can be combined with 
model-driven architectures introduced in this sec-
tion to further reduce the generalization gap.

In model-based deep learning, DNN architec-
tures that are inspired by model-based algorithms 
are tailored to the particular problem of interest 
[14]. In the context of deep receivers, the domi-
nant model-based deep learning methodologies 
are deep unfolding and DNN-aided inference, 
which are illustrated in Fig. 3 and discussed next.

Many model-based algorithms used by wireless 
receivers rely on iterative optimizers that operate 
by gradually improving an optimization variable 
based on an objective function. Deep unfolding 
converts an iterative optimizer into a discriminative 
AI model by introducing trainable parameters with-
in each of a fixed number of iterations [14]. Train-
ing a deep unfolding architecture can thus adapt 
an iterative optimizer on the basis of available data 
for a given problem of interest. As we detail next, 
the aim is addressing model and/or algorithmic 
deficiencies of the original algorithm.

Specifically, deep unfolding enhances iterative 
optimizers in the following ways (see [14] for fur-
ther details).

Learned Hyperparameters: Iterative optimizers 
often include hyperparameters, such as step-sizes, 
damping factors, and regularization coefficients, 
that are typically tuned by hand by the designer 
and shared among all iterations. Deep unfolding 
can treat such hyperparameters as trainable param-
eters. This is useful to cope with forms of algorithm 
deficiency, whereby an iterative algorithm requires 
too many iterations or struggles to converge to 
a suitable decision. For example, the work [3] 
showed that unfolding the orthogonal approximate 
message passing algorithm for MIMO detection, 
and learning iteration dependent scaling coeffi-
cients, notably improves performance, requiring 
only a few iterations.

Learned Objective: Deep unfolding can also 
enhance an iterative algorithm by tuning the objec-
tive functions approximately optimized at each 
iteration. This optimization addresses algorithm 
deficiencies, in a manner similar to the optimiza-
tion of hyperparameters, as well as model deficien-
cies by adapting the design criterion to observed 
data, rather than to assumptions about the model. 
A representative example is the MMNet architec-
ture proposed in [4] for unfolding MIMO detec-
tion. MMNet, which is based on proximal gradient 
steps, parameterizes the gradient computation pro-
cedure at each iteration, effectively using an itera-
tion-dependent design objective.

DNN Conversion: An iterative optimizer can 
be converted into a trainable abstract architecture 
by incorporating a DNN module within each iter-
ation in order to implement some functionality of 
the solver. When the iterative solver operates on 
a graph, as is the case for message passing algo-
rithms, the solver can be unfolded into a graph 
neural network (GNN). GNNs support compact 
parameterizations by reusing DNN modules across 
different nodes and edges of the graph. DNN con-
version is suitable for handling model deficiency, 
since the DNN modules learn how to best real-
ize model-independent internal computations at 

FIGURE 2. Overall illustration of online training of deep receivers in time-varying channels.
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each iteration. For instance, DeepSIC proposed in 
[5] is derived from the iterative soft interference 
cancellation (SIC) MIMO detection algorithm with 
the introduction of DNN models for implementing 
each stage of interference cancellation and soft 
detection in a manner agnostic to the underlying 
channel model.

DNN-Aided inference refers to a family of 
model-based deep learning methods that incor-
porate DNNs into model-based methods that do 
not implement iterative processing. A representa-
tive example is the ViterbiNet equalizer proposed 
in [6]. Viterbi equalization is applicable to any 
finite-memory channel, as long as one can com-
pute the conditional distribution of channel output 
given the corresponding input, also known as likeli-
hood. Based on this observation, ViterbiNet imple-
ments the Viterbi algorithm while using a DNN 
to compute the likelihood. In this way, ViterbiNet 
addresses model deficiencies by operating in a 
channel-model-agnostic manner and requiring only 
the conventional finite-memory modelling assump-
tion to hold.

Data
The amount of data obtained from pilots is typi-
cally insufficient to train an AI model for a deep 
receiver. This motivates the introduction of strat-
egies that expand the available labelled training 
data set without requiring the transmission of 
more pilots. As we detail in this section, existing 
techniques apply either self-supervised learning or 
data augmentation.

With self-supervised learning, training data is 
extended using the redundancy of transmitted sig-
nals either at the symbol level or at the codeword 
level. In contrast, in data augmentation, the goal is 
to enrich the given labelled data set by leveraging 
invariance properties of the data. As summarized 
in Fig. 4, these approaches can be potentially com-
bined, and integrated with a number of different 
architectures and training algorithms.

Codeword-level self-supervision exploits the pres-
ence of channel coding to generate labelled data 
from channel outputs. It uses error correction codes 
to correct detection errors, and then utilizes the cor-
rected data as labelled data for training, as long as 
the codewords are decoded successfully [6, 7].

Symbol-level self-supervision obtains labelled 
data from information symbols without relying on 
channel decoding. This is useful since some sym-
bols can be correctly detected even the decoding 
on the overall codeword fails. Symbol-level self-su-
pervision hence requires reliable soft detection 
measures to indicate the degree to which each 
information symbol may be considered to be cor-
rectly received.

Data augmentation techniques enrich training 
sets by leveraging known invariances in the data. 
While data augmentation is common in AI, exist-
ing methods are highly geared toward image and 
language data, and do not address the nature of 
data and computing devices for wireless communi-
cations. For instance, for image classification, one 
can use a single image to generate multiple images 
with the same label by rotating or clipping the orig-
inal image. Such augmentation techniques do not 
have obvious counterparts for wireless communica-
tions data, such as a sequence of channel outputs 
observed by a receiver. Furthermore, data augmen-
tation in computer vision often relies on complex 
generative DNNs, whose implementation may be 
problematic for hardware-limited wireless devices.

Data augmentation for digital communications 
has been explored in [8], and more recently in [9]. 
The techniques studied in [9] leverage symmetry in 
digital constellations, independence between the 
noise and the transmitted symbols, and invariance to 
constellation-preserving rotations exhibited by wire-
less channels. These methods may also be applica-
ble to other tasks such as DNN channel estimators, 
while other problems generally require the identifi-
cation of distinct task-specific invariances.

Training
Training algorithms address the optimization of the 
parameters of the neural architecture based on the 
data, with the goal of identifying models with sat-
isfactory generalization performance. The perfor-
mance of a training algorithm depends, in practice, 
on the choice of the loss function; the optimi-
zation algorithm; and the relevance and quality 
of the data used to evaluate the training loss. In 
this section, we review communication-oriented 
approaches for designing adaptive data-efficient 
training algorithm for deep receivers based on 

FIGURE 3. Illustration of model-based, data-driven, and model-based deep learning framework for deep receivers.
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meta-learning, generalized Bayesian learning, and 
modular learning. These methods are all associat-
ed with the training procedure. Meta-learning and 
modular training aim to achieve convergence with 
fewer training samples and iterations. The former is 
applicable to any architecture, and may leverage 
an additional buffer to store past data when imple-
mented in an online fashion; while modular train-
ing incorporates architectural elements inspired 
by known solutions to related problems. Bayesian 
learning targets improvements in reliability, at the 
cost of storage and computing overheads due to 
the adoption of ensembling. The choice of any 
of these approaches, and combinations thereof, 
depends on the specific objectives and constraints 
of the communication system at hand.

Meta-learning is a general framework that seeks 
to obtain a data-efficient training procedure appli-
cable for multiple tasks of interest [12]. A training 
procedure that is data-, or sample-, efficient is able 
to achieve a small generalization gap, while using 
a small amount of training data. Meta-learning 
and model-based learning are two complementa-
ry approaches that reduce the generalization gap 
under a fixed amount of training data: The former 
is data-driven and typically optimizes the training 
algorithm, while the latter is model-driven and opti-
mizes the architecture. While meta-learning encom-
passes a variety of conceptually distinct methods, 
the prominent approaches for application to deep 
receivers are gradient-based meta-learning and 
hypernetwork-based meta-learning.

Gradient-Based Meta-Learning: Gradi-
ent-based meta-learning optimizes some of the 
hyperparameters of a first-order training algorithm. 
While in principle, one could “meta-learn” any 
hyperparameter, such as the learning rate, opti-
mizing the initial weights of the DNNs has been 
found to be extremely beneficial for boosting 
adaptation and flexibility of training procedures in 
many applications, including wireless communica-
tions [12]. DNN initialization is a form of induc-
tive bias, since the parametric function space of 
the DNN becomes restricted by enforcing adher-
ence to the initialization through a limited number 
of gradient-based updates. Meta-learning can be 
combined with a model-based inductive bias, as 
demonstrated in [10].

Hypernetwork-Based Meta-Learning: Gra-
dient-based meta-learning requires running a 
number of (stochastic) gradient updates. An 
alternative approach that does not require in 
real-time any additional optimization for adapta-
tion to new tasks incorporates a hypernetwork in 
the system, alongside the main DNN. The hyper-
network takes as input the available data, or any 
other context information, regarding the task of 
interest, and produces at the output the weights 
of the main DNN. More precisely, typically, only 
a subset of weights of the main DNN are updat-
ed; and/or each output of the hypernetwork 
affects simultaneously a group of weights, for 
example, in the same layer, of the main DNN. 
Hypernetwork-based meta-learning has been 
applied successfully in wireless communication 
systems, including for beamforming and MIMO 
detection [11].

Bayesian learning is the gold standard for train-
ing strategies that aim at producing AI models 
offering a reliable assessment of the uncertainty of 
their decisions. Such reliable AI models must out-
put confidence measures that reflect the true accu-
racy of their decisions. Bayesian learning boosts 
reliability by treating the model parameters as ran-
dom variables, and by accordingly maintaining a 
distribution over the weights of a DNN. This distri-
bution is meant to capture epistemic uncertainty in 
the presence of limited training data.

Bayesian learning involves particle-based, 
deterministic or stochastic, procedures, or opti-
mization over the parameters of the distribution 
in the model parameter space. Such optimization 
addresses a training criterion that includes an infor-
mation theoretic regularizer enforcing closeness to 
a prior distribution.

For deep receivers, boosting the reliability of a 
DNN model allows the latter to provide informa-
tive soft decision to downstream DNN or mod-
el-based modules, for example, for soft decoding. 
This makes it possible for the different modules 
of a deep receiver to “trust” the outputs of other 
modules.

Generalized forms of Bayesian learning allow 
for a flexible choice of the regularization function, 
as well as of the data fitting part of the training 
objective. Such methods were shown to be useful 
in wireless systems for their capacity to deal with 
model misspecification and outliers [13].

Modular learning exploits the interpretable 
structure of hybrid model-based deep receivers 
to facilitate rapid learning from limited data. As 
opposed to meta-learning and Bayesian learning, 
modular learning is specific to model-based deep 
learning architectures. It builds on the fact that, 
unlike blackbox DNNs, in model-based deep learn-
ing architectures, one can often assign a concrete 
functionality to different trainable sub-modules of 
the architecture, and not just to its input and out-
put. Each functionality may then be adapted at dif-
ferent rates and times, as some functionalities may 
require rapid adaptation, while the others may be 
kept unchanged over a longer time scale.

This approach was applied in [10] for online 
adaptation of the DeepSIC MIMO receiver of [5]. 
There, the ability to associate different users with 
sub-modules of the deep receivers was leveraged 
to carry out the online training of sub-modules 
associated with users that are identified as being 

FIGURE 4. Data acquisition pipeline for deep receivers without impairing spectral efficiency. 
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characterized by faster dynamics. The method was 
shown to dramatically reduce the number of gradi-
ent-based updates and the amount of data needed 
for online training.

Numerical Results
In this section we showcase the impact of 
schemes designed to facilitate light-weight, adap-
tive, and flexible AI across the three AI pillars 
highlighted throughout this article. We focus on 
finite-memory SISO channels (with 4 taps) and 
memoryless 4  4 multi-user MIMO time-varying 
channels with binary phase shift keying (BPSK) 
and quadrature phase shift keying (QPSK) sym-
bols (The source code used in our experiments 
is available at https://github.com/tomerraviv95/
facilitating-adaptation-deep-receivers). The exact 
mathematical description of the channel models 
can be found in [9, Sec. V.C].

Architecture
In each channel, we consider a model-based 
DNN architecture, as well as black-box DNN, hav-
ing roughly three times more parameters. For the 
SISO channel, with a finite channel memory of L 
symbols, we compare ViterbiNet [6] with a recur-
rent neural network (RNN)-based symbol detector 
with a window size of L, followed by a linear layer 
and the softmax function. For the MIMO channel, 
the DeepSIC receiver [5] with three iterations is 
compared to a fully connected DNN composed 
of four layers with ReLU activations followed by 
the softmax layer.

Data
For each coherence duration, 200 pilot symbols 
are available. We compare standard training with 
training that leverages data augmentation. For the 
latter scheme, at each time step, the pilot data 
is enriched with 600 artificial symbols via a con-
stellation-conserving projection and a translation 
preserving transformation [9].

Training
We consider the following training methodologies.

Joint Training: The receiver is trained offline, 
using 5000 symbols simulated from a multitude of 
channel realizations. No additional training is done 
at run time.

Online Training: The receiver is trained initially 
using 200 symbols, and then it adapts online by utiliz-
ing either the pilot data or the augmented pilot data.

Online Meta-Learning: The training algo-
rithm is optimized via meta-learning that utilizes 
accumulated training data from previous channel 
realizations, while adaptation takes place via few 
gradient-based updates from the online meta-
learned initialization [10].

Bayesian Learning: The training process pro-
duces a probability distribution over the parameters 
of the architecture, which is used for ensembling 
(with five randomly generated models) during both 
training and testing [13].

Results
Figures 5a and b depict the average symbol error 
rate (SER) as a function of signal-to-noise ratio 
(SNR). While standard black-box models suffer 
from large generalization gaps due to the limited 
availability of training data, deep receivers with 
model-based architectures, namely ViterbiNet [6] 
and DeepSIC [5], demonstrate successful detec-
tion performance by adapting to the time-varying 
channel in an online manner.

The performance is further improved by opti-
mizing the training algorithm via meta-learning, 
or by implementing ensembling via Bayesian 
learning, as well as by increasing the data size via 
data augmentation. Overall, these results indicate 
that the reviewed methods are complementa-
ry, contributing to the challenges of adapting to 
time-varying channels in different ways. This leads 
to the conclusion that designing AI models for 
communications can benefit from a rethinking of 
deep learning tools across all three AI pillars.

In the MIMO setup (Fig. 5b), online learning 
with a conventional DNN fails to provide satis-
factory results, whereas joint learning partial-
ly succeeds. This result stems from fact that the 
constellation size encompasses 44 = 256 distinct 
symbols, causing online learning with only 200 
to underperform due to insufficient number of 
samples per class. This setup demonstrates that 
even online re-training may prove ineffective with 
extremely limited labeled data using a black-box 
architecture. However, the presented approaches 
manage to handle this extreme low-data regime 
by exploiting the inductive bias of model-based 
deep learning, or by enriching the data with aug-
mentations.

Future Research Directions
We conclude by identifying some representative 
directions for future research.

FIGURE 5. Average SER after transmission of 300 blocks in a time-varying channel as a function of SNR: a) SISO-SER as 
SNR; b) MIMO-SER vs. SNR.

a) b)
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Deciding When to Train

The schemes surveyed enable efficient online 
training. A key open question is how to deter-
mine when to train online. Periodically re-training, 
for example, at each coherence period, may be 
excessively complex, particularly when channel 
variations are relatively smooth. Deep receivers 
can benefit from monitoring mechanisms that 
determine when to adapt the model and/or meta-
learn the inductive bias. This can be achieved 
using data drift detection, a topic widely studied 
in the machine learning literature. While some 
drift detectors can be applied to communication 
systems, advanced mechanisms that leverage 
communication-specific characteristics require 
further development.

Fitting the Architecture to the Scenario
Deep receivers are often composed of multiple 
layers, wherein each element takes part in the 
computation. Thus, even for relatively light-weight 
architectures, full model computations may incur 
computational overhead exceeding the limited 
resources available, particularly for some edge 
devices. This is typically tackled via pruning meth-
ods, which remove redundant model parts to bal-
ance complexity and performance. While most 
existing pruning methods find a single, input-inde-
pendent, model, deep receivers may preferinput-
dependent, adaptive pruning methods, adapting 
complexity to the current requirements.

Hardware-Aware and Power-Aware AI
AI algorithms are typically computationally com-
plex and power hungry. This follows from the large 
number of parameters, as well as from the lengthy 
training procedure, involving multiple iterations 
and frequent data access. The schemes surveyed 
in this article address these challenges from an 
algorithmic perspective by limiting the architecture 
parameterization and/or the number of training 
iterations. These algorithmic advances should be 
complemented by advances in computing hard-
ware platforms, such as in-memory computing, and 
by hardware-software co-design methods.

Continual Bayesian Learning
Bayesian learning was introduced for deep receiv-
ers thanks to the potential gains that are enabled 
by the deployment of more reliable AI modules. 
Another advantage of Bayesian learning is its 
capacity to support continual learning by updat-
ing the parameter distribution. Integrating online 
adaptation with Bayesian learning may further 
enhance the performance of deep receivers.

Interpretable and Explainable AI for Deep Receivers
The deployment of AI modules in communica-
tion systems would be significantly facilitated by 
the implementation of mechanisms that ensure 
trust and transparency. Trust can be established 
by equipping AI models with the capacity to vali-
date their outputs, making it possible to diagnose 
issues and to identify performance bottlenecks. 
Transparency may be supported via interpretable 
AI modules that leverage model-based algorithms 
having processing steps rigorously derived from 
optimality criteria [14].
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