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Abstract—Recent years have witnessed growing interest in re-
duced cost radar systems operating with low power. Multiple-
input multiple-output (MIMO) radar technology is known to
achieve high performance sensing by probing with multiple or-
thogonal waveforms. However, implementing a low cost low power
MIMO radar is challenging. One of the reasons for this difficulty
stems from the increased cost and power consumption required
by analog-to-digital convertors (ADCs) in acquiring the multiple
waveforms at the radar receiver. In this work we study reduced cost
MIMO radar receivers restricted to operate with low resolution
ADCs. We design bit-limited MIMO radar (BiLiMO) receivers
which are capable of accurately recovering their targets while
operating under strict resolution constraints. This is achieved by
applying an additional analog filter to the acquired waveforms,
and designing the overall hybrid analog-digital system to facilitate
target identification using task-based quantization methods. In par-
ticular, we exploit the fact that the target parameters can be recov-
ered from a compressed representation of the received waveforms.
We thus tune the acquisition system to recover this representation
with minimal distortion, from which the targets can be extracted
in digital, and characterize the achievable error in identifying
the targets. Our numerical results demonstrate that the proposed
BiLiMO receiver operating with a bit budget of one bit per sample
achieves target recovery performance which approaches that of
costly MIMO radars operating with unlimited resolution ADCs,
while substantially outperforming MIMO receivers operating only
in the digital domain under the same bit limitations.

Index Terms—MIMO radar, quantization, hybrid receiver.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) radar tech-
nology facilitates sensing with improved flexibility and

performance compared to traditional phased-array radars [1],
[2]. These gains are achieved by employing multiple antenna
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elements at both the transmitter and receiver, and radiating a
set of mutually orthogonal waveforms. While the theoretical
gains of MIMO radar are well-established, designing such a
system gives rise to notable challenges in signal processing and
hardware implementation due to its increased complexity. These
challenges impose a major drawback in emerging applications
which are required to operate with limited power and cost-
efficient hardware, including automotive radar [3], unmanned
aerial vehicle radar [4], and radar imaging for urban sensing [5].
Consequently, there is a growing need to design MIMO radars in
a cost-efficient manner, allowing the resulting system to comply
with constraints on its power consumption, physical size and
shape, and bandwidth.

A major source for the increased cost and power consumption
of MIMO radar systems stems from the need to acquire and pro-
cess multiple signals while operating at large frequency bands.
Specifically, MIMO radars utilize a set of analog-to-digital con-
vertors (ADCs) at the receiver in order to convert the received
waveforms into a finite-bit representation, such that they can
be digitally processed. The cost and energy consumption of an
ADC grows rapidly with the sampling rate and the number of bits
used for digital representation [6]. Therefore, when the number
of antennas and the signal bandwidth is large, the cost and power
consumption of these ADCs become prohibitive. Furthermore,
such acquisition generates massive data sets for representing the
waveforms, whose processing and storage may induce a notable
burden on the radar receiver.

The leading approach in the literature to facilitate MIMO
radar with low-rate ADCs is to utilize compressed sensing
(CS) [7] in order to break the dependency of the sampling rate
on the signal bandwidth. Under this framework, a variety of
sub-Nyquist sampling receivers [8]–[10], as well as sub-Nyquist
signal processing methods [11]–[13], have been developed for
radar applications; see survey in [14]. In particular, sub-Nyquist
MIMO radar systems proposed in [15]–[17] utilize CS tools
to reduce the sampling rate and number of antennas in MIMO
radar systems without compromising its sensing performance.
These works mainly focus on reducing the sampling rate and
ignore the quantization aspect of analog-to-digital conversion,
assuming high-resolution quantizers, which tend to be costly
and power hungry.

Recent years have witnessed growing interest in signal pro-
cessing systems operating with bit-limited quantizers. A com-
mon strategy to study signal processing with quantization con-
straints is to acquire the analog signals using low-resolution
quantizers, and to compensate for the distortion induced in
quantization via digital processing. Such digital processing
strategies have been proposed in a multitude of different applica-
tions, including MIMO communications [18], channel estima-
tion [19], direction of arrival estimation [20], [21], and spectrum
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sensing [22], [23]. In the context of radar systems, the
works [24]–[27] and [28], [29] modified the processing to
account for low-resolution quantized observations in pulse-
Doppler radar and MIMO radar, respectively. These works
assume fixed one-bit quantizers which are ignorant of the system
task, possibly with the addition of some dedicated time-varying
reference signal to capture amplitude information [25]–[28],
[30]. The notable distortion induced in low rate task-ignorant
quantization may severely affect the overall system perfor-
mance.

An alternative strategy to facilitate signal processing with
quantization constraints is to account for the task for which the
signal is acquired in quantization. Such task-based quantization
schemes [31]–[37] exploit the fact that analog signals are com-
monly acquired not to be reconstructed, but in order to extract
some lower-dimensional information from them. By doing so,
task-based quantizers are typically capable of achieving im-
proved performance in carrying out their associated tasks under
bit constraints compared to purely digital processing [31]–[34].
In particular, task-based quantization implements a form of
indirect lossy source coding, where an analog signal is encoded
into a digital representation such that a statistically related
signal can be recovered from that digital representation [38].
The encoding procedure is specialized into one which can be
realized using hybrid analog and digital (HAD) architectures
operating with conventional uniform ADCs. Such HAD archi-
tectures are commonly utilized in MIMO communications [39],
[40] and MIMO radar [41] as a method to reduce the number
of costly RF chains. This together with the fact that such sys-
tems acquire their received waveforms for a specific task, i.e.,
extracting the parameters of the targets, motivates the design
of bit-limited MIMO radar receivers as task-based quantization
systems.

Here we propose the bit-limited MIMO radar (BiLiMO) re-
ceiver, which is designed to accurately recover its targets while
operating with bit constraints using task-based quantization
methods. BiLiMO follows a HAD architecture operating with
conventional scalar uniform ADCs and analog filters, in which
both the analog and the digital components of the system are
jointly designed to facilitate target recovery under quantization
constraints. In particular, our design builds upon the insight that
target identification can be represented as a sparse recovery task.
BiLiMO then jointly optimizes its analog and digital processing
for recovering a compressed representation from which the
targets can be identified. By doing so, we incorporate task-based
quantization results for achieving an accurate estimate of the
compressed representation, such that the effect of the distortion
induced in quantization on the ability to identify the targets is
mitigated.

We present two designs of the BiLiMO receiver: The first con-
siders MIMO radar systems with monotone waveforms. For such
setups we characterize the acquisition system which recovers the
desired sufficient compressed representation in a manner which
minimizes the mean-squared error (MSE) between the recovered
compressed representation and optimal linear estimate of it from
unquantized data. Then, we derive the BiLiMO receiver for
multitone waveforms. For this case, our resulting receiver can
be shown to minimize the MSE under additional assumptions,
which hold when the echos observed at different frequency bins
are uncorrelated. So the monotone setup we are able to recast
the recovery of the compressed representation as a task-based
quantization problem studied in [31]. The multitone case results

in a form of structured analog combining, for which we derive
the MSE minimizing configuration.

As the BiLiMO receiver detects the targets from its recovered
compressed representation via CS methods, we theoretically
characterize the stability in identifying the targets using �1 sparse
recovery techniques. Our numerical evaluations demonstrate
that the target parameters estimation accuracy of the proposed
BiLiMO receiver with one bit per sample approaches that of
MIMO receivers operating with infinite resolution quantizers,
and notably outperforms digital-only receivers operating under
the same bit budget.

The rest of the paper is organized as follows: Section II
introduces the MIMO radar model with HAD receivers. The
BiLiMO architecture is described in Section III. In Section IV,
the BiLiMO receiver design via task-based quantization is stud-
ied, and the target recovery performance is analyzed. Sections V
and VI provide numerical simulations and concluding remarks,
respectively. Detailed proofs are delegated to the appendix.

Throughout the paper, we use lower-case (upper-case) bold
characters to denote vectors (matrices). The ith element of
a vector x is written as (x)i. Similarly, the (i, j)th element
of a matrix X is (X)i,j . We use IN for the N ×N identity
matrix. R and C denote the sets of real and complex numbers.
(·)T , (·)H , Tr(·), and sign(·) denote the matrix transposition,
Hermitian transposition, trace, and sign operator, respectively.
Finally, �·� and �·� denote the ceiling and the floor functions,
a+ � max(a, 0), and vec(·) is the vectorization operator.

II. HAD MIMO RADAR MODEL

In this section we present the system model of MIMO radar
with HAD receivers. We begin by formulating the transmitted
and received waveforms in Section II-A. Then, we detail the
problem of target recovery using a bit-constrained HAD receiver
in Section II-B, based on which we formulate the BiLiMO
receiver architecture and its corresponding design problem in
the following section.

A. MIMO Radar Signal Model

We consider a colocated MIMO radar consisting of two
linear antenna arrays with N receive antennas and M transmit
antennas. The locations of the receive antennas and transmit
antennas are denoted by ζ0λ, . . . , ζN−1λ and ξ0λ, . . . , ξM−1λ,
respectively. Here, λ is the wavelength of the carrier signal.
Without loss of generality, we assume that ζ0 = ξ0 = 0. The
MIMO radar uses two uniform linear arrays (ULAs) as the
receive antennas and transmit antennas, located at ζn = n/2
and ξm = Nm/2 for 0 ≤ n ≤ N − 1 and 0 ≤ m ≤ M − 1. As
such, the resulting MN channels generate a virtual ULA array
with length MNλ/2 [1].

Each transmit antenna transmits Q pulses, such that the mth
transmitted signal is given by

sm(t) =

Q−1∑
q=0

hm(t− qT0)e
j2πfct, 0 ≤ t ≤ QT0, (1)

where hm(t), 0 ≤ m ≤ M − 1, are narrowband pulses with
bandwidth Bh, modulated with carrier frequency fc, and T0

denotes the pulse repetition interval (PRI). For simplicity, we
only consider one PRI, i.e., Q = 1. However, our analysis can
be generalized to the case of multiple pulses, namely, Q > 1.
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Fig. 1. Baseband operation of a MIMO radar system with K = 2 targets.

MIMO radar architectures commonly utilize orthogonal
waveforms for radar probing [1]. Here, we consider orthogonal-
ity achieved using frequency division multiple access (FDMA)
signaling. In FDMA, the transmitted baseband waveform hm(t)
can be expressed as hm(t) = h0(t)e

j2πfmt, where h0(t) is the
lowpass waveform with spectral support [−Bh

2 , Bh

2 ], each fm is
chosen in [−MBh

2 , MBh

2 ] so that the intervals [fm − Bh

2 , fm +
Bh

2 ] do not overlap. In such setups, different waveforms lie in
distinct spectral bands.

The targets are represented as non-fluctuating point reflectors
in the far field, and we let K be the number of targets. Each
target is characterized by the following parameters: its reflection
coefficient α̃k, its distance from the array origin Rk, and the
azimuth angle relative to the array θk. We assume the targets lie
in the radar unambiguous time-frequency region.

Let τk = 2Rk

c and ϑk = sin(θk) be the delay and az-
imuth sine of the kth target, respectively. The received
signal x̃n(t) at the nth antenna in one PRI can then
be written as: x̃n(t)=

∑M−1
m=0

∑K
k=1 α̃ke

j2πfc(ξm+ζn)ϑkhm(t−
τk)e

j2πfc(t−τk)+w̃n(t), where w̃n(t) is the interference plus
noise signal, which is independent of the signal components and
follows a zero-mean random distribution. By defining xn(t) =
x̃n(t)e

−j2πfct as the baseband component, we have

xn(t) �
M−1∑
m=0

K∑
k=1

αke
j2π(ξm+ζn)ϑkhm(t− τk) + wn(t), (2)

with αk = α̃ke
−j2πfcτk and wn(t) = w̃n(t)e

−j2πfct. In Fig. 1
we illustrate our MIMO radar model for K = 2.

B. HAD Radar Receiver

The goal of MIMO radar receiver processing is to identify the
targets based on the received echos. In particular, the receiver
is required to resolve the K delay-azimuth pairs {τk, ϑk}Kk=1

from the received signals {xn(t)}N−1
n=0 . In classic MIMO radar,

after demodulation, the baseband components of the received
signals {xn(t)}N−1

n=0 are converted from analog signals to digital
representations using ADCs which sample above the Nyquist
rate and utilize high-resolution quantizers. The outputs of the
ADCs are then processed in the digital domain in order to
estimate the delays and azimuth sines of the K targets from
the received signals [2]. The usage of high-resolution ADCs,
which assign a relatively large number of bits to represent each
sample, induces minimal distortion [42], and thus the effect
of quantization on radar signal processing is usually ignored.

Fig. 2. HAD radar receiver block diagram.

Nonetheless, the fact that the power consumption of ADC
devices grows exponentially with the number of bits assigned
to each sample [6], dramatically affects the power and cost of
MIMO radar systems operating at high frequencies with a large
number of receive antennas.

To reduce the cost and power usage of such MIMO radar
systems, we may utilize low-resolution ADCs and reduce the
number of RF chains and ADCs by operating in a HAD manner.
The usage of low-resolution ADCs implies that each ADC can
output up to b different levels, e.g., b = 4 for two-bit ADCs.
HAD architectures introduce pre-acquisition analog processing,
combining the N analog signals {xn(t)}N−1

n=0 into P outputs
{yp(t)}P−1

p=0 , which are then acquired by the ADCs. Setting
P < N implies that HAD systems reduce the number of costly
RF chains and ADCs compared to conventional MIMO radar
receivers. An illustration of such a HAD receiver is depicted in
Fig. 2.

Analog combining prior to analog-to-digital conversion is
commonly studied in the MIMO communication literature [39],
[40], typically as a means to reduce the number of costly RF
chains. HAD MIMO receivers were also shown to facilitate
operation with low resolution quantizers for communication
tasks [32], [43]. This is achieved using task-based quantization
methods [31]–[34], [43], which tune the acquisition mapping in
light of the overall system task, allowing to accurately recover
the desired information under limited bit budgets. This motivates
the design of HAD receivers for the task of recovering the target
parameters as a form of task-based quantization.

In order to design such HAD radar receivers, one must first
introduce constraints on the feasible mappings of the compo-
nents of the system in Fig. 2. The motivation for imposing such
constraints is two-fold: First, they enforce the resulting system
to correspond to architectures which are feasible in terms of
hardware. For instance, while in principle the analog processing
in Fig. 2 can be any mapping, in practice it is likely to be imple-
mented using analog hardware based on filters and multiplexers.
The second motivation for introducing these constraints is to
obtain an analytically tractable design problem, which is very
challenging due to the complex relationship between the target
parameters {τk, ϑk}Kk=1 and the received signals {xn(t)}N−1

n=0 .
In the following section we introduce the considered constrained
HAD radar receiver architecture, which we refer to as BiLiMO.
We then tackle the challenge in designing the receiver to recover
the targets by formulating a relaxed problem, as shown in the
sequel.

III. BILIMO RECEIVER ARCHITECTURE

In this section, we introduce the proposed BiLiMO receiver,
which is designed to operate with bit budget constraints. Typical
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Fig. 3. BiLiMO receiver illustration.

systems involving the acquisition of analog signals and their
processing in the digital domain attempt to achieve an accurate
digital representation of the acquired signals, and are thus prone
to notable distortion when utilizing low-resolution ADCs. Here,
we design BiLiMO as a HAD MIMO receiver, whose com-
ponents are jointly designed to facilitate target recovery. The
fact that the received signals in HAD systems are processed in
analog prior to being converted to digital, facilitates extracting
the desired information from them, as they can be combined
into a lower dimensional representation from which the desired
parameters are still recoverable.

In particular, BiLiMO is a HAD MIMO receiver, as illustrated
in Fig. 2, designed in light of the additional constraints: The
analog processing is implemented using a set of combining
filters, mixers, and low-pass filters, as detailed in Section III-A;
analog-to-digital conversion is carried out using identical uni-
form ADCs, as discussed in Section III-B. Due to the complex
relationship between the target parameters and the observa-
tions, we formulate a relaxed problem of digitally filtering the
ADCs output to recover a lower-dimensional representation that
preserves the semantic information with respect to the target
parameters. The targets can then be recovered using further
digital processing based on conventional sparse recovery mech-
anisms. This digital processing is detailed in Section III-C, and
the relaxed problem is formulated in Section IV. The resulting
architecture of the BiLiMO receiver is illustrated in Fig. 3.

A. Analog Pre-Processing

The analog processing consists of three stages: analog com-
bining, analog mixing, and filtering. First, theN received signals
are combined to output P (P ≤ MN ) channels. Then each
of the P channels are separately mixed with a mixing signal
and low-pass filtered before being fed to the ADCs. The mo-
tivation for using this architecture stems from the fact that it
equivalently implements channel separation, which is typically
the first step in MIMO radar processing required to achieve
its desired virtual array capabilities, followed by a controllable
analog combiner. However, while the direct implementation of
such analog hardware requiresMN bandpass filters (for channel
separation) followed by MNP controllable filters, each applied
to a different bandpass component, the architecture illustrated as
Analog processing in Fig. 3 can be shown to implement the same
mapping while utilizing merely NP filters applied directly to
the full-band received signals, followed by P identical low-pass
filters.

Let bp,n(t) be the (p, n)th analog filter. The pth
output of the analog combining can be expressed as
ỹp(t) =

∑N−1
n=0 bp,n(t) ∗ xn(t), resulting in ỹp(t) =∑M−1

m=0

∑K
k=1 αke

j2π(ξm+ζn)ϑk [bp,n(t) ∗ hm(t− τk)]. Since
ỹp(t) is limited to t ∈ [0, T0], it can be equivalently expressed
by its Fourier series

ỹp(t) =

�MT0Bh/2�∑
i=�−MT0Bh/2�

c̃p[i]e
j2πit/T0 , t ∈ [0, T0], (3)

where c̃p[i] =
1
T0

∫ T0

0 ỹp(t)e
−j2πit/T0dt, which equals c̃p[i]=∑N−1

n=0

∑M−1
m=0 ĥm(

2πi
T0
)̂bp,n(

2πi
T0
)
∑K

k=1
αk

T0
ej2π((ξm+ζn)ϑk− iτk

T0
),

where b̂p,n(ω) and ĥm(ω) denote the Fourier transform of
bp,n(t) and hm(t), respectively.

Each of the P output channels is mixed with the signal
q(t) =

∑M−1
m=0 e

−j2πfmt and filtered by a lowpass filter with
passband [−πBh, πBh]. Such mixing signals combine the spec-
trum of the M transmitted signals, such that a portion of energy
from each band appears in baseband. Combined with low-pass
filtering results in equivalent outputs to those which would have
been produced by first applying channel separation based on
MN matched filters, without having to implement these channel
separation filters in analog hardware. This structure is similar
to that used in Xampling [16], which has been shown to be
conveniently implemented in hardware. Using (3), the output of
the pth channel is

yp(t) =

M−1∑
m=0

�T0Bh/2�∑
i=�−T0Bh/2�

c̃p[i+ fmT0]e
j2πit/T0 . (4)

Let us define

b̂mp,n(ω) �
{

1
T0
ĥ0(ω)b̂p,n(ω+2πfm) ω∈ [−πBh,πBh]

0 else.
(5)

Then, for �−T0Bh/2� ≤ i ≤ �T0Bh/2�, it holds that c̃p[i+

fmT0] =
∑N−1

n=0 cm,n[i]bp,mN+n[i], where

cm,n[i] �
K∑

k=1

αke
j2π

(
(ξm+ζn)ϑk− iτk

T0
−fmτk

)
, (6)

and bp,mN+n[i] � b̂mp,n(
2πi
T0

). Define L � BhT0, assumed to be
an odd integer in the following discussion for convenience. Then
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the output in (4) can be written as

yp(t) =

L−1
2∑

i=−L−1
2

N−1∑
n=0

M−1∑
m=0

bp,mN+n[i]cm,n[i]e
j2πit/T0 , (7)

which is equivalent to the outputs achieved by applying channel
separation followed by an analog combiner comprised ofMNP
individual filters with the frequency responses in (5).

We now write the output of the analog processing component
in multivariate form by defining y(t) � [y0(t), . . . , yP−1(t)]

T ,

and obtaining from (7) that y(t) =
∑L−1

2

i=−L−1
2

ej2πit/T0Bici,

where Bi � [bp,ñ[i]] ∈ CP×MN with 0 ≤ ñ < MN , and ci �
[cT0 [i], . . . , c

T
M−1[i]]

T with cm[i] = [cm,0[i], . . . , cm,N−1[i]]
T

for each 0 ≤ m < M . By using the above analog pro-
cessing, rather than classic matched filtering, the num-
ber of channels to be processed is reduced from MN
to P , facilitating the sampling and quantization opera-
tions. The design of the analog processing is equivalent to
designing the NP analog filters bp,n(t), which can be con-
structed from the desired values of Bi. Specifically, the fre-
quency response of bp,n(t) becomes b̂p,n(2π(

i
T0

+ fm)) =

T0bp,mN+n[i]ĥ
∗
0(

2πi
T0

)/|ĥ0(
2πi
T0

)|2 for −L−1
2 ≤ i ≤ L−1

2 by (5).
After analog processing, the P signals represented by y(t) are
forwarded to the ADCs as detailed in the following.

B. Analog-to-Digital Conversion

The output of the analog processing y(t) is converted into
a set of digital streams via sampling and quantization. This
conversion is carried out using P identical pairs of ADCs
which independently discretize the real and imaginary parts of
each analog input signal. We focus here on the low-resolution
quantization aspect of analog-to-digital conversion, assuming
that Nyquist sampling is applied, and leave the analysis and
joint design of such systems with sub-Nyquist sampling and
low resolution quantization for future work.

To formulate the ADC operation, we let yi � y( i
Bh

), i =
0, . . . , L− 1, be the Nyquist samples of y(t). Define the PL×
1 samples vector y � [yT

0 , . . . ,y
T
L−1]

T , and the MNL× 1

Fourier coefficients vector as c � [cT−(L−1)/2, . . . , c
T
(L−1)/2].

Using these definitions, the samples of the outputs of the analog
combining filters can be expressed as

y = F̄B̄c, (8)

where B̄ � blkdiag(B−(L−1)/2,. . . ,B(L−1)/2)∈CPL×MNL,
F̄ � FH

L ⊗ IP , and FL is the L× L discrete Fourier transform
(DFT) matrix.

Using a similar derivation, we represent the samples of the
interference and noise signal as n = F̄B̄w, where w ∈ CMNL

is the frequency-domain representation of the interference and
noise signal observed at the N antennas.

The sampled signaly is converted into a digital representation
using uniform complex-valued quantizers with b decision re-
gions and support γ > 0. The resulting quantization mapping is
given by Qγ,b

C (·) = Qγ,b(
{·}) + jQγ,b(�{·}), where Qγ,b(·)
is the real-valued quantization operator applied element-wise to

any real vector or matrix, and is given by

Qγ,b(x) =

⎧⎨
⎩−γ + 2γ

b (l + 1
2 )

x− l 2γb + γ ∈ [0, 2γ
b ],

l ∈ {0, 1, . . . , b− 1},
sign(x)(γ − γ

b ) |x| > γ.

The output of the ADCs is the vector z ∈ CPL, given by

z = Qγ,b
C (y + n) = Qγ,b

C (F̄B̄c+ F̄B̄w). (9)

The number of bits used for representing z is 2PL�log b�.
In our design of the BiLiMO receiver in Section IV we model

the ADCs as implementing non-subtractive dithered quantiza-
tion [44]. This model facilitates the design and analysis of bit-
constrained HAD systems [31], while being a faithful approx-
imation of conventional uniform quantization operation under
various statistical models [45]. The processing of ADC output
z in the digital domain is detailed in the following subsection.

C. Digital Processing

The digital representation z is used to recover the target
parameters. However, the relationship between z (9) and the
target parameters {τk, ϑk}Kk=1 is quite complex, making the
joint design of the analog processing and digital mapping very
difficult. Therefore, in the following we partition the digital
processing into two stages, as illustrated in Fig. 3. The first
part is comprised of a digital filter, which is jointly designed
with the analog combiner and ADC support based on a relaxed
problem of recovering a vector s in the sense of minimal MSE.
The relaxed task vector s is selected such that the target param-
eters can be recovered from it using conventional linear sparse
recovery algorithms in the second part of the digital processing.
The BiLiMO receiver thus builds upon the ability to recast target
identification as a sparse recovery problem [46]. Therefore, to
formulate the problem of designing the BiLiMO receiver, we
first rewrite our parameter estimation task as sparse recovery,
after which we present the resulting digital processing structure,
which is designed based on the relaxed objective detailed in
Section IV.

As in classic MIMO radar, we now assume the parameters τk
and ϑk are located on the Nyquist grid, i.e., τk ∈ { T0 l

ML}ML−1
l=0

and ϑk ∈ {−1 + 2 l
MN }MN−1

l=0 . Namely, we focus on recovery
of the target parameters up to the range-azimuth resolution
dictated by the MIMO radar system, and do not consider the
additional errors which may arise when the targets do not
exactly lie on the grid. It follows from (6) that the vector c̃m �
[(cm[−L−1

2 ])T , . . . , (cm[L−1
2 ])T ] ∈ CNL obeys the following

sparse representation c̃m = vec(UmAVT
m) = (Vm ⊗Um)a,

where Um ∈ CN×MN with (Um)n,l = ej2π(ξm+ζn)(−1+ 2 l
MN ),

Vm ∈ CL×MN with (Vm)i,l = e−j2π(i/T0+fm)
T0 l
ML ,

A ∈ CMN×ML is a sparse matrix that contains K nonzero
elements, and a = vec(A) ∈ CM2NL is thus a K-sparse
vector. The sparsity pattern of a encapsulates the values of the
unknown delays and angles, i.e., if the kth non-zero element of
a is located at its index (l1 − 1)MN + l2 where 0 ≤ l1 < ML

and 0 ≤ l2 < MN , then τk = T0l1
ML and ϑk = −1 + 2l2

MN .
Stacking {c̃m}M−1

m=1 into the MNL× 1 vector c̃, we obtain

c̃ = Φa, (10)
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where Φ ∈ CMNL×M2NL is defined as Φ � [(VT
0 ⊗

UT
0 )), . . . , (V

T
M−1⊗UT

M−1)]
T . Using the sparse representation

(10), the quantized z (9) becomes z = Qγ,b
C (F̄B̄(PΦa+w)),

where P ∈ RMNL×MNL is a permutation matrix which aligns
the elements between c and c̃, i.e., c = Pc̃.

The MIMO radar task is thus equivalent to recovering the
K-sparse vector a from the quantized z. Therefore, to facilitate
the joint design of BiLiMO as a HAD receiver, we set its digital
processing to first recover a J × 1 vector s, with J ≤ PL, which
can be written as a linear compressed representation of a. This
is achieved by first applying a digital filter D ∈ CJ×PL, which
can be designed using task-based quantization methods, such
that its output ŝ = Dz is an accurate estimate of s. Then, the
fact that ŝ can be written as a linear compressed representation
of a with some additive estimation error term is exploited in the
subsequent digital processing, which resolves the targets from
ŝ using conventional algorithms for recovering sparse vectors
from noisy linear compressed measurements. The formulation
of the relaxed problem and the resulting design of BiLiMO are
detailed in the following section.

IV. BILIMO RECEIVER DESIGN

We now jointly design the HAD processing and quantizer
mapping of the BiLiMO receiver for target recovery under bit
constraints. Our approach builds upon the task-based quantiza-
tion framework proposed in [31]. We first present a relaxation of
the target detection problem which represents the design of BiL-
iMO as task-based quantization in Section IV-A. Then, we show
how this formulation allows designing the BiLiMO receiver in
Sections IV-B-IV-C, and summarize the steps in configuring
BiLiMO in Section IV-D. Finally, we derive bounds on the target
recovery accuracy and discuss the design in Sections IV-E-IV-F,
respectively.

A. Optimization Problem Formulation

Task-based quantization is a framework for designing HAD
acquisition systems operating under bit constraints. Such meth-
ods aim to facilitate the recovery of information embedded in
the observed analog signals, rather than preserving sufficiency of
the digital representation with respect to the signal itself [33]. In
particular, the work [31] jointly designed the components of an
acquisition systems including analog pre-quantization filtering
and digital linear processing of a similar structure as those in
BiLiMO for the task of recovering a linear function of the
measurements. However, unlike the setup in [31], the task of
the BiLiMO receiver is to recover the parameters of the targets,
which do not obey a linear form. To encompass this challenge in
utilizing task-based quantization tools for MIMO radar, we next
present a relaxed problem formulation, which decomposes target
identification into a linear recovery problem followed by a linear
sparse recovery task. This relaxation allows the former to be
treated using existing results in task-based quantization theory,
and the latter to be tackled using conventional CS methods.

In the proposed BiLiMO receiver, rather than recovering the
K-sparse vector a in (10) directly, a digital filter is first applied
to estimate a compressed vector s ∈ CJ (J ≤ PL) from the
quantized data z. In particular, we set s = MΦa, i.e., s is a
linear compressed representation of the desired a, where M ∈
CJ×MNL is a pre-defined compressive measurement matrix.

Then, the K-sparse vector a is recovered from the estimate of s
by applying sparse recovery techniques.

Although we refer to s as the task vector when applying
task-based quantization tools, the true task of the system is to
recover a, so that the estimation of s is an intermediate step.
Therefore, the setting of s can be treated as part of the design
procedure. Specifically, the J-dimensional vector s is related to
theMNL-dimensional vectorΦa via the compressive measure-
ment matrix M. As a result, M should be selected such that the
desired a is still recoverable, while allowing BiLiMO to obtain
an accurate estimate of s at the first stage of its digital processing.
The additional dimensionality reduction induced by M can be
translated into improved accuracy when jointly designing the
HAD system including the digital filter D to estimate s via
task-based quantization. In particular, the accuracy of task-based
quantization typically improves when the task dimensionality is
reduced, as the same number of bits can be utilized to recover less
quantities via HAD processing [31]. Thus, our relaxed problem
formulation considers the estimation of the further compressed
s, from which the targets are still recoverable via sparse recovery,
rather than Φa. In the following we formulate our problem for
a given M, providing guidelines for its setting and numerically
evaluating different selections in Section IV-E and Section V,
respectively.

The relaxed objective of the jointly designed hybrid acqui-
sition system is therefore to minimize the MSE between the
compressed vector s and the digital filter output, given by

ŝ = Dz = DQγ,b
C (F̄B̄(PΦa+w)). (11)

The resulting analysis characterizes the corresponding HAD
processing and low-bit quantizers which achieve this MSE. In
particular, we assume that the BiLiMO receiver has knowledge
of: 1) the statistical model of a and w; 2) the compressive
measurement matrix M, which allows recovery of a from s.

Quantizers are typically designed to operate within their
dynamic range, namely, that their input lies within the sup-
port [−γ, γ], to avoid inducing additional distortion due to
saturation [42]. Our derivation is thus carried out assuming
non-overloaded quantizers, i.e., the magnitudes of the real and
imaginary parts of z are not larger than γ with sufficiently large
probability. To guarantee this, we fix γ to be some multiple η of
the maximal standard deviation of the inputs:

γ2 = η2 max
l=1,2,...,P

E
{∣∣(y + n)l

∣∣2} , (12)

where we recall that (y + n)l is the lth entry of the vector
y + n. For instance, for proper-complex Gaussian inputs, setting
η ≥ √

2 yields overload probability smaller than 6% [32]. For
arbitrary inputs, one can set η to obtain a desired overload
probability bound via Chebyshev’s inequality [47, Pg. 64].

Following the framework of task-based quantization in [31],
we aim to jointly design the analog combining matrix B̄, the dig-
ital processing matrix D, and the support of the quantizer γ via
(12), such that ŝ approaches the linear minimal MSE (LMMSE)
estimator of s from PΦa+w, denoted s̃. The motivation for
this formulation stems from the fact that the output of the digital
filter can be treated as an estimate of s from PΦa+w by (11).
Let Γ be the LMMSE transformation, i.e., s̃ = Γ(PΦa+w),
and let Rc and Rw be the covariance matrices of c = PΦa and
w, respectively. As s̃ is the LMMSE estimate of s = MΦa, it
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holds that Γ is given by

Γ = MPTRcΣ
−1, (13)

whereΣ = Rc +Rw. Accordingly, the LMMSE εM � E{‖s̃−
s‖2} is εM = Tr[MPTRcPMH−MPTRcΣ

−1RcPMH ].
To summarize, our goal is to optimize the components of the

BiLiMO receiver to minimize the excess MSE (EMSE):

min
B̄,D,γ

E{‖s̃− ŝ‖2}. (14)

Our derivation of the jointly designed BiLiMO receiver is pre-
sented in the sequel, where we first focus on the special case
of monotone waveforms, i.e., L = 1, after which we show how
these results extend to multitone waveforms with L > 1.

B. BiLiMO Receiver Design for Monotone Waveforms

We now characterize the BiLiMO receiver design based on
the objective (14). In particular, we derive the analog combining
matrix, digital processing matrix, and the support γ, for the sce-
nario in which L = 1, which means that monotone waveforms
are transmitted. In this case, the matrix F̄ in (8) is the identity
matrix. As a result, the signal samples and noise samples can
now be written asy = BPΦa andn = Bw, respectively, where
B = B0 is the P ×MN analog combining matrix. Thus, the
quantized output is z = Qγ,b

C (B(PΦa+w)).
We begin by characterizing the digital processing matrix

which minimizes the MSE for a fixed analog combining matrix
B. By applying [31, Lemma 1], we obtain the follow result:

Lemma 1: For any analog combining matrix B, the digital
processing matrix which minimizes the MSE is given by

D◦(B) = MPTRcB
H

(
BΣBH +

4γ2

3b2
IP

)−1

. (15)

The achievable EMSE ε(B) = minD E{‖s̃− ŝ‖2} is

ε(B)=Tr

[
MPTRc

(
Σ−1−BH

(
BΣBH+

4γ2

3b2
IP

)−1

B

)

×RcPMH

]
. (16)

Proof: The lemma is obtained as a special case of [31, Lem.
1], and thus we omit the proof for brevity.

Using Lemma 1, we optimize the analog filter matrixB, which
also dictates the support of the quantizers via (12). We do so by
designing B to minimize the EMSE ε(B) in (16), yielding the
filter Bo given in the following theorem.

Theorem 1: Let {λΓ̃,l} be the singular values of Γ̃ � ΓΣ1/2

arranged in a descending order. The analog combiner Bo which
minimizes (16) is given by Bo = UoΛo(Vo)HΣ−1/2, where
Vo is the right singular vectors matrix of Γ̃, Λo is a diagonal
matrix with its diagonal entries given as

(Λo)2l,l =

{
4η2

3b2P

(
ζλΓ̃,l − 1

)+
, l ≤ min{J, P},

0, l > min{J, P},
(17)

and Uo is a unitary matrix such that BoΣ(Bo)H =
UoΛo(Λo)T (Uo)H has identical diagonal entries. In (17), ζ >

0 is set such that 4η2

3b2P

∑P
l=1(ζλΓ̃,l − 1)+ = 1.

Proof: The theorem follows from [31, Thm. 1]. �

The unitary matrix Uo in Theorem 1 can be obtained via [48,
Algorithm 2.2]. With the analog combining matrix Bo, we can
derive the EMSE and the resulting support of the quantizers.

Corollary 1: For the BiLiMO receiver with the analog com-
bining matrix Bo given in Theorem 1, the quantizer support is
γ = η√

P
. The resulting achievable EMSE is given by

εo=

⎧⎪⎪⎨
⎪⎪⎩

J∑
l=1

λ2
Γ̃,l

(ζλΓ̃,l−1)
+
+1

, P ≥J

P∑
l=1

λ2
Γ̃,l

(ζλΓ̃,l−1)
+
+1

+
J∑

l=P+1

λ2
Γ̃,l

, P <J.
(18)

Proof: The dynamic range in (12) is given by γ2 =
η2

P Tr(ΛoΛ
T
o ) =

η2

P . The resulting EMSE in (16) can be

written as εo = ε(Bo) which is given by εo = Tr[Γ̃Γ̃
H
]−∑min{J,P }

l=1 λ2
Γ̃,l

(ζλΓ̃,l−1)+

(ζλΓ̃,l−1)++1 , which coincides with (18). �
The characterization of the BiLiMO receiver configuration in

Theorem 1 and the corresponding signal recovery accuracy in
Corollary 1 are obtained by expressing the problem of recovering
the desired compressed representation as a task-based quantiza-
tion setup [31]. This follows since for monotone waveforms,
i.e., L = 1, the effect of the analog filters {bp,n(t)} in (7) can be
expressed as the matrix B, without imposing any structure con-
straints on the equivalent analog combining matrix. However,
radar applications commonly utilize multitone signals, resulting
in L > 1, which yields an equivalent formulation in which
the analog combiner is constrained to take a structured form.
Therefore, in the following we characterize the configuration of
BiLiMO under such structure constraints.

C. BiLiMO Receiver Design for Multitone Waveforms

ForL > 1, the analog combining matrix, which represents the
analog filters {bp,n(t)}, is expressed as the product of F̄ and a
block diagonal matrix B̄ as shown in Section III-A. By repeating
the derivation in Lemma 1 with fixed analog processing, the dig-
ital filter which minimizes the MSE for a fixed analog combiner
B̄ is stated in the following lemma.

Lemma 2: For any analog combining matrix B̄, the digital
processing matrix for the quantized output z in (9) which mini-
mizes the MSE is given by

D◦(B̄) = MPTRcB̄
H

(
B̄ΣB̄H +

4γ2

3b2
ILP

)−1

F̄H . (19)

The achievable EMSE ε(B̄) = minD E{‖s̃− ŝ‖2} is

ε(B̄) = Tr

[
MPTRc

(
Σ−1−B̄H

(
B̄ΣB̄H+

4γ2

3b2
ILP

)−1

B̄

)

×RcPMH

]
. (20)

Proof: Substituting F̄B̄ for B in the derivation of Lemma 1,
and applying the relation F̄F̄H = F̄HF̄ = ILP , proves the
lemma. �

The derivation of the digital processing for a given analog
filter is invariant to whether the waveforms are monotone or
multitone. However, when optimizing the analog combining
matrix in light of (20), one must account for its block-diagonal
structure induced when L > 1. In particular, we design the
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matrix B̄ which accounts for the aforementioned constraint by
formulating the following objective:

min
B1,...,BL∈CP×MN

ε(B̄ = blkdiag{B1, . . . ,BL}). (21)

In order to tackle (21), we can choose an appropriate matrix
M such that the matrix MPH is also block diagonal. Let Mi

be the ith block of MPH with its dimension Ji ×MN , where∑L
i=1 Ji = J . Then the compressed vector s can be separated

into L sub-vectors, each related to a different vector in the set
{ci}, i.e., si = Mici. Furthermore, we introduce the following
assumption on the underlying statistical model:

A1 The covariance matrices of c andw, i.e.,Rc andRw, are
block diagonal, with their i-th blocks being the MN ×
MN matrices Rci = E{cicHi } and Rwi

= E{wiw
H
i },

respectively.
Assumption A1 means that we only consider the correlation

within the vector ci and ignore the correlation between the
different vectors ci and ci′ for i �= i′. Since each ci represents
the samples of the received echos after channel separation at
a given tone index i by (6), A1 implies that echos observed at
different frequency bins are uncorrelated. The validity of this
assumption clearly depends on the distribution of {αk}, {τk},
and {ϕk}. As shown in [49], if αk, τk, and ϕk are mutually
independent, with {αk} being zero-mean i.i.d. and τk and ϕk

being uniformly distributed on [0, T0] and [−1, 1], respectively,
then {cm,n[i]} are uncorrelated. In this case, the covariance
matrix Rc is diagonal, satisfying assumption A1. With this
assumption, Σ also becomes a block diagonal matrix, with its
i-th block being the MN ×MN matrix Σi = Rci +Rwi

.
Under assumption A1, we characterize the block diagonal

matrix B̄o which solves (21) in the following theorem:
Theorem 2: Let {λ(i)

Γ̃,l
} be the singular values of Γ̃i �

MiRciΣ
−1/2
i arranged in a descending order. Each block of

the block diagonal matrix B̄o = blkdiag{Bo
1, . . . ,B

o
L} which

solves (21) is given by Bo
i = Uo

iΛ
o
i (V

o
i )

HΣ
−1/2
i , where Vo

i is
the right singular vectors matrix of Γ̃i, Λ

o
i is a diagonal matrix

with its diagonal entries given as

(Λo
i )

2
l,l =

{
4η2

3b2P

(
ζiλ

(i)

Γ̃,l
− 1
)+

, l ≤ min{Ji, P}
0, l > min{Ji, P},

(22)

and Uo
i is a unitary matrix such that Bo

iΣi(B
o
i )

H =
Uo

iΛ
o
i (Λ

o
i )

T (Uo
i )

H has identical diagonal entries. In (22), ζi >

0 is set such that 4η2

3b2P

∑P
l=1(ζiλ

(i)

Γ̃,l
− 1)+ = 1.

Proof: The proof is given in Appendix A. �
The analog combiner B̄o in Theorem 2, is obtained by opti-

mizing the individual contribution of each spectral component
indexed by i ∈ {1, . . . , L}, using the results obtained for the
monotone case in Theorem 1. In general, the optimization prob-
lem in (21) cannot be immediately converted into L individual
problems, since the ADCs have a fixed support γ which depends
on overall analog combiner matrix B̄o, and thus the problems
are inherently coupled. Nonetheless, as we show in Appendix
A, one can still apply the monotone design of Theorem 1 for
each spectral component separately, as the combination of the
matrix F̄ and the unitary matrices {Uo

i } in Theorem 2 results in
each such component having the same effect on the setting of γ.

With the optimal block diagonal matrix B̄o given in Theorem
2, we can derive the optimal dynamic range of the quantizers,
as well as the resulting MSE.

Corollary 2: For the BiLiMO receiver with the block diagonal
B̄o given in Theorem 2, the dynamic range of the quantizer is
γ = η√

P
. The resulting EMSE is εo =

∑L
i=1 εi, where

εi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ji∑
l=1

(λ
(i)

Γ̃,l
)2

(
ζλ

(i)

Γ̃,l
−1

)+
+1

, P ≥ Ji

P∑
l=1

(λ
(i)

Γ̃,l
)2

(
ζλ

(i)

Γ̃,l
−1

)+
+1

+
Ji∑

l=P+1

(λ
(i)

Γ̃,l
)2, P < Ji.

(23)

Proof: The dynamic range is given by γ2 = η2

PL

∑L
i=1

Tr(Λo
i (Λ

o
i )

T ) = η2

P . The EMSE is εo =
∑L

i=1 εi, where

εi = Tr(TiΣ
−1
i TH

i )−∑min{Ji,P }
l=1 (λ

(i)

Γ̃,l
)2

(ζλ
(i)

Γ̃,l
−1)+

(ζλ
(i)

Γ̃,l
−1)++1

. As

Tr(TiΣ
−1
i TH

i ) =
∑Ji

l=1(λ
(i)

Γ̃,l
)2, simplifying this expression

proves (23). �
The HAD system design of Theorem 2 achieves the EMSE

stated in Corollary 2 when Assumption A1 holds. We further
demonstrate numerically in Section V that the resulting design
also allows achieving accurate target identification under bit
constraints using multitone waveforms in scenarios where A1
does not necessarily hold.

D. Design Summary

In the previous subsections we optimized the components
of the BiLiMO receiver and characterized the resulting EMSE.
Here, we summarize the main steps of designing the BiLiMO
receiver when the total bit budget denoted Bbudget and the radar
waveform h0(t) are given.

First, one has to set the matrix M, whose goal is to yield a
linear compressed representation from which the target param-
eters are still recoverable. The key considerations for setting
M are detailed in Section IV-F and are numerically evaluated in
Section V, where it is noted that a reasonable setting ofM is that
of a DFT matrix, whose number of rows J is at most Bbudget/2.

Next, the selected M and the covariance matrices {Σ},Rc

are used to set the analog combiner matrix B̄ and the digital
filter D, which are obtained by Theorem 2 and Lemma 2, re-
spectively. The resulting analog combining matrix B̄o is a block
diagonal matrix, with each block matrix {Bi} corresponding to
the frequency response of the set of analog filters. In particular,
by (5) the frequency response of the analog filter connecting the
nth antenna element to the pth ADC is obtained from {Bi} via

b̂p,n

(
2π

(
fm +

i

T0

))
=

T0

ĥ0(
2πi
T0

)
[Bi]p,mN+n , (24)

for i ∈ {−L−1
2 , . . . , L−1

2 }, m ∈ {0, . . . ,M − 1}. The mixing

signal q(t) in Fig. 3 is q(t) =
∑M−1

m=0 e
−j2πfmt.

Finally, sampling rate of the ADCs equals the Nyquist rate
of h(t), i.e., Bh. The quantizer support is γ = η√

P
and the

ADC resolution is b = �2Bbudget
2PL �. The BiLiMO receiver is

summarized in Algorithm 1.
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Algorithm 1: Design of the BiLiMO Receiver.

Input: Rc, Σ = blkdiag{Σ1, . . . ,ΣL}, P , Bbudget;
Output: B̄o = blkdiag{Bo

1, . . . ,B
o
L}, Do, γ, b;

1: Choose a J ×MNL measurement matrix M;
2: Compute Bo

i = Uo
iΛ

o
i (V

o
i )

HΣ
−1/2
i for i = 1, . . . , L,

where Uo
i , Λo

i , and Vo
i are derived in Theorem 2;

3: Set the frequency response of the analog filters via
(24);

4: Compute D◦ using (19);
5: Set up the ADCs with sampling rate Bh, quantizers

support γ = η√
P

and resolution b = �2Bbudget
2PL �.

E. Target Reconstruction by Sparse Recovery

Using the characterized BiLiMO receivers detailed in the
previous subsections, we can acquire an estimate of s, i.e.,
ŝ, which minimizes the MSE between the estimate ŝ and the
LMMSE estimate s̃. This allows the radar receiver to obtain an
accurate estimate of s, which is a compressed representation of
the targets range-delay grid vector a, as we also numerically
demonstrate in our simulation study in Section V. Having ob-
tained the compressed representation of the targets grid ŝ, the
task of recovering the targets information can be formulated as
the recovery of the K-sparse vector a from ŝ. Following sparse
recovery methods [7, Ch. 1], this task can be relaxed into the
following �1 minimization:

â = min
a

‖a‖1 s.t. ‖ŝ−MΦa‖22 ≤ ε̃, (25)

or the LASSO problem

â = min
a

1

2
‖ŝ−MΦa‖22 + ρ‖a‖1, (26)

where ε̃ and ρ are predefined regularization parameters. The
optimization problems (25) and (26) can be conveniently solved
by convex optimization methods, such as FISTA [50], which
we use in our numerical study to solve (26). We may also
utilize matrix-form sparse recovery algorithms, as done in [16],
by exploiting the structure of Φ. This procedure allows the
BiLiMO receiver to mitigate the effect of the limited bit budget
on its ability to recover the targets. This is achieved by tuning
the system to recover a compressed representation, rather than
processing the high-dimensional echos in digital, thus mitigat-
ing the quantization distortion while maintaining the ability to
reconstruct the targets in the digital domain.

The fact that the BiLiMO receiver applies sparse recovery
methods implies that its reconstruction error can be analytically
bounded using results from CS theory. Therefore, we next char-
acterize bounds on the recovery error associated with solving
the sparse recovery problem (25). To that aim, we recall the
definition of the matrix coherence measure, commonly used in
sparse recovery analysis. The coherence of a matrix A, μ(A), is
the largest absolute inner product between any two columns ai,
aj of A, i.e., μ(A) = maxi,j

|<ai,aj>|
‖ai‖2‖aj‖2 . Using the LMMSE εM

defined in Section IV-A, we can bound the targets reconstruction
error as stated in the following theorem:

Theorem 3: When the quantizers are not overloaded and the
number of targets satisfies K < (1/μ(MΦ) + 1)/4, then the
proposed BiLiMO receiver recovers the targets vector â via (25)

within an error which is bounded by

E{‖a− â‖22} ≤ εM + εo +ε̃

1− (4K − 1)μ(MΦ)
. (27)

Proof: As shown earlier, when the quantizers are not over-
loaded, BiLiMO achieves an EMSE of εo = E{‖s̃− ŝ‖22}. In
such a case, we can write ŝ = s+ e where e is the overall

error satifying E{‖e‖22} = E{‖(s− s̃)+(s̃−ŝ)‖22}
(a)
= εM + εo.

Here, (a) follows from the orthogonality principle combined
with the fact that ŝ obtained by task-based quantization with
dithered quantizers can be modeled as a linear function of c cor-
rupted by additive uncorrelated noise [31, Lem. 1]. Combining
this with the stability bound for �1-minimization based sparse
recovery in [7, Theorem 1.11] proves (27). �

Theorem 3 bounds the achievable error in recovering the target
parameters by the proposed BiLiMO receiver. The result also
holds for sparse recovery with arbitrary value of ε̃, without
imposing any limits on choosing the predefined parameter. In
particular, for a given number of targets K, the bound is pro-
portional to the overall MSE, which is comprised of two terms:
the LMMSE εM, that is an inherent property of the signal model
and is a byproduct of the fact that the echos are noisy; and the
EMSE εo, which follows from the bit constraints. This result
implies that the target recovery performance of the proposed
BiLiMO receiver, which is designed to minimize the EMSE due
to quantization constraints, is not expected to achieve perfect
recovery due to the inherent error induced by the presence of
noise. Nonetheless, we are interested in the sparsity pattern of
a, from which the delays and angles can be extracted, rather than
its actual values. Consequently, by mitigating the distortion due
to quantization, the BiLiMO receiver is capable of approaching
ideal recovery at signal-to-noise ratio (SNR) values as low as
−10dB, while operating under tight bit budgets equivalent to one
bit per sample, as demonstrated in our numerical study presented
in Section V.

The error bound in Theorem 3 is inversely proportional to the
coherence of MΦ. This provides some guidelines to determine
the measurement matrix M. The setting of M should account
for two key considerations: First, its number of rows J should
satisfyJ ≤ PL, as noted in Section IV-A. The value ofP should
not be larger thanMN , and reducingP implies that we are using
fewer ADCs, and can thus allocate more bits to each quantizer
under a given bit budget. However, the resulting compressed
representation should also be sufficient to allow recovering the
desired target parameters grid a. By Theorem 3, this is achieved
by setting M such that the coherence measure μ(MΦ) satisfies
K < (1/μ(MΦ) + 1)/4, preferably using as small coherence
as possible. In our numerical study in Section V, we generate
the entries of M from a complex Gaussian distribution, and set
it to recover a representation which is smaller by factors of 2
and 4 compared to the number of elements in Φa (which equals
s when M = IJ ). This setting is numerically shown to yield
reliable target identification under tight bit constraints, allowing
to approach perfect recovery of the target parameters for SNR
larger than−10 dB while utilizing no more than one bit per input
sample.

F. Discussion

The proposed BiLiMO receiver exploits the task for which
the echos are acquired to facilitate target detection under bit
constraints. The signals acquired by MIMO radar receivers are
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typically high-dimensional, and thus require a large bit budget
to be converted into a digital representation in a manner which
allows their reconstruction. Our task-based design builds upon
the insight that the receiver is interested in the target parameters
rather than reconstructing the echos, and that the targets can still
be accurately recovered from a coarse low-resolution quantized
version of the measurements. Therefore, the radar receiver task
can be treated as indirect lossy source coding of compressed
measurements [51], in which the system is the HAD receiver
detailed in Section II. The BiLiMO receiver accounts for this
task by designing the analog filters {bp,n(t)} such that the
inputs to the uniform ADCs maintain approximate sufficiency
with respect to the desired information, i.e., the compressed
vector s, while resulting in a minor level of distortion induced
in quantization. In particular, the waterfilling-type expression
in (17) and (22) preserves the dominant eigenmodes of the
LMMSE estimate of s, and nullifies the weak ones which
become indistinguishable in uniform quantization. The unitary
matrixUo guarantees that each ADC quantizes an input with the
same variance, allowing to minimize the maximal quantization
distortion. This operation effectively balances the ability to
estimate s from the ADCs analog input along with the distortion
induced in quantization in light of the overall system task.

The common strategy to design radar receivers operating
under bit constraints is to carry out recovery in the digital
domain based on low-resolution measurements, i.e., without
analog combining, as in [29]. Alternatively, in the presence of
controllable analog processing, an intuitive approach is to design
the analog filter to estimate s as accurately as possible. This
approach is known to minimize the overall MSE when using
vector quantizers [52]. In the presence of scalar uniform ADCs,
HAD systems such as BiLiMO designed in a task-based manner
were proven to outperform the aforementioned approaches when
the task is a linear function of the measurements [31]. While we
design the receiver to recover the compressed s = MΦa only as
an intermediate step in identifying the targets, Theorem 3 proves
that accurately estimating s directly affects target recovery.
Furthermore, in Section V we numerically demonstrate that
designing a hybrid system to estimate s under bit constraints
yields improved accuracy in recovering the targets over purely
digital strategies, as well as approaches the accuracy achievable
without quantization constraints.

BiLiMO illustrated in Fig. 3 implements task-based quanti-
zation by introducing pre-acquisition analog filtering. Since the
design of this analog filter depends on the underlying statistical
model of the echos, realizing such a receiver requires using
controllable analog combiner hardware. Such combining can
be implemented using dedicated circuitry as proposed in [53].
An alternative approach, which may be preferable in some
applications, is to implement analog combining via phase-shifter
networks [39], [40], or using externally configurable anten-
nas [54], [55]. Such architectures induce some constraints on the
feasible analog filter, which follow from their specific hardware,
as in, e.g. [43]. We leave the analysis and design of BiLiMO
with constrained analog filters for future work. Furthermore, the
derivation of BiLiMO considers MIMO radar with orthogonal
waveforms. The extension of BiLiMO to MIMO radar systems
utilizing non orthogonal waveforms is also left for future re-
search.

Our design of BiLiMO requires prior knowledge of the under-
lying statistical model, and particularly the covariance matrices
of c and w, denoted Rc and Rw, respectively. While the noise

matrix Rw can be often assumed to be a scalar multiple of the
identity matrix, representing i.i.d. measurement noise, obtaining
Rc may be challenging. In particular, Rc is dictated by the
known waveform and by the distribution of the target parameters.
It can be estimated using pre-training generated from a uniform
distribution of the targets on the grid, as we do in the numerical
study in Section V. An additional quantity that is required in
order to guarantee the recovery of the sparse grid vector and set
the measurement matrixM accordingly, is the number of targets
K. This problem is equivalent to the model order selection
problem, which can be solved by utilizing a Bayesian informa-
tion criterion. Finally, one can also overcome the need to know
the underlying statistical model by designing the components
of BiLiMO in a data-driven manner, using machine learning
methods for tuning task-based quantizers [36], [37].

V. NUMERICAL RESULTS

In this section, we present numerical experiments illustrating
the performance of BiLiMO. We compare our method with
MIMO radar systems without quantization constraints as well
as with digital MIMO radar receivers which digitize the signal
after channel separation via matched filtering with the same bit
budget, i.e., using task-ignorant quantizers, and then identify the
targets via sparse recovery using the FISTA algorithm.

A. Simulation Setup

Throughout the simulations, we consider a MIMO radar with
M = 8 transmit antennas and N = 12 receive antennas. The
locations of the antennas are uniformly randomized over the
virtual aperture MNλ/2, as done in [16]. We use a set of multi-
tone waveforms hm(t) such that fm = (im − M+1

2 )Bh, where
im are integers chosen uniformly at random in [0,M). The re-
maining simulation parameters are: PRIT0 = 9μsec, bandwidth
Bh = 1 MHz, and carrier frequency fc = 10 GHz. Accordingly,
the value of L can be derived as L = 9. The parameters τk
and ϑk of each target are randomly generated on the delay-
angle grids defined in Section III-C with grid spacing Δτ = T0

72

andΔϑ = 2
96 , respectively, i.e., τk ∈ {0,Δτ , 2Δτ , . . . , T0} and

ϑk ∈ {−1,−1 + Δϑ,−1 + 2Δϑ, . . . , 1}. The received signals
are corrupted with i.i.d. additive proper-complex Gaussian noise
with zero mean and variance σ2

n. We define the SNR as SNR =
E{‖Φa‖22}
MNLKσ2

n
.

In the BiLiMO receiver, we define the compression ratio as
Δcr = MNL

J to evaluate the impact of the dimension of the
compressed vector s. Each block of the matrix MPH is a
complex Gaussian random matrix, with its entries being i.i.d.
circularly-symmetric complex Gaussian random variables with
zero mean and unit variance, if not specified. The number
of analog channels is set to be P = �J/L�. We compare the
BiLiMO receiver with the classic MIMO radar receiver, whose
architecture is illustrated in Fig. 4. In classic MIMO radar, the
receiver first separates each channel from the received signals
using a set of matched filters and then samples and quantizes
them regardless of the task, i.e., it utilizes a total of MN ADCs
operating at a sampling rate of Bh. Consequently, the classic
MIMO radar acquires Δcr more samples per second compare
to the BiLiMO receiver. We henceforth refer to the operation of
the classic MIMO radar as task-ignorant quantization.
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Fig. 4. Classic MIMO radar receiver.

Fig. 5. MSE in recovering s versus total number of bits (SNR=10 dB).

The quantized outputs of each of the considered radar re-
ceivers is used to identify the targets via sparse recovery. For the
MIMO radar without quantization, two different methods are
considered: One is to directly recover the target vectora from the
signal vector F̃(c+ n) = F̃(PΦa+ n) with F̃ � FH

L ⊗ IMN ,
i.e., the output signal after channel separation without using
any analog combining components. The second first computes
the LMMSE estimate s̃ from F̃(c+ n), and then recovers the
target vector a from the LMMSE estimate. The same sparse
recovery technique discussed in Section IV-E is applied here.
These two methods are denoted as “No Quan. (DR)” and “No
Quan. (LMMSE),” respectively. For sparse recovery we use
FISTA [50] to solve the LASSO problem (26). We evaluate
the various methods by repeating each experiment over 100
realizations.

B. Estimation Performance

We begin by evaluating the estimation performance in recov-
ering the target vector a, as well as the compressed vector s. The
relative MSEs ofa and s, respectively defined as ‖a− â‖22/‖a‖22
and ‖s− ŝ‖22/‖s‖22, are used as metrics. We considerK = 4 tar-
gets, and the targets reflection coefficients {αk} are randomized
as i.i.d. proper-complex Gaussian random variables with zero
mean and unit variance.

We first investigate the estimation performance versus the
overall bit budget. Fig. 5 depicts the relative MSEs in recovering
the compressed swith different compression ratioΔcr. To assert
our theoretical MSE derivation in Theorem 2, we also depict
the theoretical performance of BiLiMO, given by the sum of
the LMMSE and the resulting EMSE. It is observed that BiL-
iMO significantly outperforms the task-ignorant quantization
operating with the same number of bits. Furthermore, BiLiMO
achieves MSE performance which is within a small gap from

Fig. 6. MSE in recovering a versus total number of bits (SNR=10 dB).

the “No Quan.” methods, which operate with infinite resolution
ADCs, while operating with as few as two bits per input sample.
Comparing BiLiMO with different values of Δcr, we find that
BiLiMO with largerΔcr achieves more accurate representations
of s in the low bit-budget regime, since more bits can be assigned
to each ADC. However, for constraints of more than two bits
per sample, using the smaller compression of Δcr = 2 achieves
improved performance. The theoretical curves closely coincide
the simulated curves, validating our theoretical analysis.

In Fig. 6, the relative MSE in recovering the target vector
a with respect to different bit budgets are shown. From this
figure, we see that the BiLiMO receiver substantially outper-
forms task-ignorant quantization when the bit budget is low,
e.g., when the total number of bits is less than twice the data
dimension. It is also observed that using high compression ratio
results in improved recovery at low quantization rates, as this
compression allows to trade sufficiency for reduced quantization
distortion by assigning more bits to each ADC without violating
the overall bit constraint. As the overall number of bits increases,
the errors induced due to compression become more notable
compared to the quantization distortion, and lower compression
ratios, e.g., Δcr ≤ 2, are preferred. This result is consistent with
Theorem 3 since the coherence μ(MΦ) becomes larger as the
compression ratio increases. In Fig. 6, we also depict the MSE
curve of the BiLiMO receiver with Δcr = 1 when M = IMNL,
i.e., using the identity matrix as the measurement matrix, which
achieves lower MSE values compared to task-ignorant quanti-
zation even in the high bit budget regime, demonstrating that
properly designed analog combiners contribute to the overall
performance even when they do not reduce the dimensionality
of the inputs. However, in the low bit budget regime, using
the identity matrix yields poor performance, demonstrating that
reducing the dimensionality of the inputs plays an important
effect on the performance when the bit budget is tight.

Next, we investigate the estimation performance versus the
SNR for different compression ratios for a given bit budget.
The MSEs in recovering s and a are depicted in Figs. 7-8,
respectively. Observing Figs. 7-8, we note that the MSEs in
recovering both s and a are largely decreased by applying the
BiLiMO receiver, compared with task-ignorant quantization.
For SNRs lower than −10 dB, BiLiMO approaches the per-
formance of the unquantized “No Quan. (LMMSE)” method
and achieves even better performance than the “No Quan.(DR)”
method. This demonstrates that designing the quantization strat-
egy based on the LMMSE estimator significantly decreases the
effect of noise on the estimation. As the SNR increases, the
quantization distortion becomes the dominant source of errors.
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Fig. 7. MSE in recovering s versus SNR (Budget of 2MNL = 1728 bits).

Fig. 8. MSE in recovering a versus SNR (Budget of 2MNL = 1728 bits).

Fig. 9. MSE in recovering a versus SNR with different compressive measure-
ment matrices (Budget of 2MNL = 1728 bits).

While BiLiMO notably outperforms conventional task-ignorant
strategies, its error does not become arbitrarily small as in the
infinite quantization resolution case. The performance of the
task-ignorant quantization becomes slightly worse as the SNR
increases, where the resulting distortion term is more highly
correlated with the signal components compared to lower SNRs.
This degradation thus likely follows from the inability of the
applied sparse recovery mechanism in handling the presence of
highly correlated distortion.

In Fig. 9, we compare the estimation performance by using
different settings of the matrix M. Besides the Gaussian matrix,
we show the performance curves using a matrix with Bernoulli-
distributed entries and a DFT matrix, both of which are widely
used in CS. We also show the performance curves using the
identity matrix, i.e., M = IMNL and Δcr = 1. As shown in
Fig. 9, when Δcr = 2 and Δcr = 4, the MSEs in recovering a
with different settings of M are almost the same, illustrating

Fig. 10. MSE in recovering a versus SNR of BiLiMO when designed with a
noisy version Rc.

that the specific choice of M hardly affects the performance
of BiLiMO. Comparing the MSEs with those compressive mea-
surement matrices, including Gaussian matrix, Bernoulli matrix,
and DFT matrix, with that of the identity matrix, it is clear
that reducing the data dimension significantly improves the
estimation performance.

The design of BiLiMO relies on knowledge of the under-
lying statistical model, and particularly that of the covariance
matrices Rc and Rw. To study the robustness of BiLiMO to
inaccurate knowledge of these quantities, we evaluate its MSE
performance when it is provided with a noisy estimate of Rc.
In this experiment, whose results are reported in Fig. 10, we
deliberately add a Gaussian distributed noisy disturbance Nc

to the covariance matrix Rc. We compare the performance of
BiLiMO with noiseless Rc to that achieved when the energy
of the noisy disturbance Nc is 10% and 20% of the original

covariance matrixRc, i.e., ‖Nc‖2F
‖Rc‖2F

= 10% and 20%, respectively.
We observe in Fig. 10 that the MSE increases slightly in the
high SNR regime due to the noisy disturbance of the covariance
matrix, as the mismatch becomes the dominant source of errors
and dictates the error floor in the high SNR regime. As the gap
in the relative MSE due to this error floor is relatively minor,
these results indicate the robustness of BiLiMO to inaccurate
knowledge of the statistical model.

We conclude our evaluation of the estimation performance
of BiLiMO with studying the effect of the compression ratio,
namely, how different settings of the length of the compressed
representation J affect the target recovery MSE. To that aim,
we evaluate the MSE curves of the BiLiMO receiver and the
“No Quan. (LMMSE)” method versus the compression ratio
Δcr = MNL

J , in Fig. 11. For comparison, we also depict the
MSE curves of the task-ignorant quantization and the “No
Quan. (DR)” method. Under the given bit budget, increasing the
compression ratio allows more bits to be assigned to each ADC,
at the cost of recovering a further compressed representation
of the targets grid. This operation effectively trades sufficiency
for quantization distortion, hence for a given overall bit budget
we observe a minimum point in which the compression ratio
minimizes the overall MSE performance of the BiLiMO re-
ceiver. In particular, for the scenario depicted in Fig. 11, the
BiLiMO receiver achieves the minimal MSE when Δcr = 4,
corresponding to 4 bits per ADC. The fact that increasing Δcr

results in a representation from which sparse recovery induces
additional errors is clearly demonstrated by the MSE curve of
the “No Quan. (LMMSE)” method. The results show that the

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on August 02,2023 at 10:03:17 UTC from IEEE Xplore.  Restrictions apply. 



XI et al.: BILIMO: BIT-LIMITED MIMO RADAR VIA TASK-BASED QUANTIZATION 6279

Fig. 11. MSE in recovering a versus Δcr (2MNL = 1728 bits,
SNR=10 dB).

Fig. 12. Hit rate versus SNR (K = 4, budget of 2MNL = 1728 bits).

task-based quantization gives rise to a trade-off between the
quantization error and the sparse recovery error when setting
Δcr, demonstrating the ability of the BiLiMO receiver to balance
these error types. The presence of such an MSE-minimizing
compression ratio value when operating under quantization
constraints bears some similarity to the optimal tradeoff between
sampling and quantization resources studied in the context of
quantized compressed sensing in [56].

C. Detection Performance

We next evaluate the detection accuracy of BiLiMO, i.e., its
ability to detect the positions of the targets encapsulated in the
sparsity pattern of a. We use the hit rate performance metric, in
which a “hit” means that the delay-angle estimate is identical to
the true target position. In our experiments, the amplitude of the
reflection coefficients of each target is fixed to unity while its
phase is randomly distributed between [0, 2π].

We first evaluate the hit rate versus SNR for a bit budget
equivalent to one bit per input sample. As shown in Fig. 12,
BiLiMO outperforms task-ignorant quantization, and is within
a small gap from the “No Quan.” method. In particular, BiLiMO
with Δcr = 2 achieves 100% hit rate when the SNR is as low
as −10 dB, while task-ignorant quantization does not detect
all the target even when the SNR is 30 dB due to its dominant
quantization error. Moreover, in low SNRs, BiLiMO withΔcr =
2 outperforms the “No Quan. (DR)” method. This is due to
introducing the matrix M used in formulating the compressed
vector, which improves the coherence μ(MΦ).

Finally, we evaluated the hit rate of various methods versus the
number of targetsK. The results depicted in Fig. 13 demonstrate

Fig. 13. Hit rate versus K (SNR=10 dB, budget of 2MNL = 1728 bits).

TABLE I
MIMO RADAR SYSTEM PARAMETERS

that the BiLiMO receiver with Δcr = 2 improves the hit rate
over the task-ignorant quantization, and that the hit rates of all
the methods decrease as the number of targets increases. It is
also observed that the detection performance of the BiLiMO
receiver is degraded if we increase the compression ratio from
Δcr = 2 to Δcr = 4. This is due to the deterioration of the
sparse recovery performance as the compression ratio increases.
Nonetheless, the BiLiMO receiver with Δcr = 4 still outper-
forms task-ignorant quantizers when K ≤ 12, further demon-
strating the benefits of task-based quantization when operating
under tight bit constraints.

D. BiLiMO Receiver Configuration Example

We conclude our experimental study with a BiLiMO receiver.
To be able to visualize the analog filters utilized by BiLiMO, we
consider a smaller scale setup compared to that detailed in Sec-
tion V-A. In particular, we focus on a MIMO radar with M = 2
transmit elements and N = 4 receive elements, with parameters
given by Table I. For this scenario, we implement the BiLiMO
receiver with P = 4 ADCs to achieve compression ratio of
Δcr = 2 under a bit budget bbudget = MNL bits. Our design
applies Algorithm 1 while settingM to be thePL×MNLDFT
matrix. For this setup, BiLiMO applies P = 4 analog filters to
each of the incomingN = 4 received signals after down conver-
sion to baseband, and thus a total of 16 analog filters are used and
combined to produce P = 4 streams ỹ0(t), . . . , ỹ3(t). The four
analog filters applied to the first receive elements, i.e., tox0(t), as
computed by Algorithm 1, are visualized in Figs. 14(a)-14(d).
Each stream ỹp(t), p ∈ {0, . . . , P − 1}, is first mixed by the
periodic signal q(t) = cos(2πft)with (f = 1MHz), after which
it is filtered by an LPF with cutoff frequency of 1 MHz, and
acquired by an ADCs with sampling rate of 2 MHz and quan-
tization resolution of b = 4 levels. Consequently, the BiLiMO
receiver acquires a total of 8 M samples per second.

For comparison, we consider the classic MIMO radar receiver
designed for the same setup detailed in Table I. This receiver
appliesM = 2matched filters to each incoming signal, yielding
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Fig. 14. Baseband analog filters applied to x0(t) by BiLiMO (a− d) and by classic MIMO radar (e− f ).

a total of 8 analog filters, where the filters applied to x0(t) are
visualized in Figs. 14(e)-14(f). It is observed in Fig. 14 that
the classic MIMO radar uses filters which are more structured,
compared to those used by BiLiMO, that are affected by the
setting of M. As this receiver applies a dedicated ADC to the
output of each analog filter, the ADCs use a single bit per sample,
and an overall amount of 16 M samples per second are acquired,
i.e., the sampling rate is twice that of BiLiMO.

To conclude, this example demonstrates that the derivation
of BiLiMO summarized in Algorithm 1, which is numerically
shown in the previous subsections to achieve accurate target
identification under bit constraints, also yields a concrete hard-
ware architecture. Compared to classic MIMO radar, BiLiMO
can use lower sampling rates and requires additional analog
filters. The fact that the structure of these filters depends on
the setting of the design parameter M, as opposed to classic
MIMO radar whose filters are fixed by the waveform setting,
indicates that one can potentially optimize M to yield analog
filters which are simple to implement in hardware. Nonetheless,
we leave this study for future investigation.

VI. CONCLUSION

In this work we designed a bit-limited MIMO radar receiver,
operating with a HAD architecture. We jointly optimized the
components of the hybrid receiver, allowing it to accurately
recover the targets while operating with low resolution scalar
ADCs. Our design is built upon the combination of compressive
sensing and task-based quantization, allowing to accurately
quantify the MSE in recovering the desired target parameters
via sparse recovery. Our numerical results demonstrate that the
proposed BiLiMO receiver notably outpeforms the conventional
approach of recovering the targets solely in the digital domain,
and allows to approach the performance achievable with infinite
resolution quantizers while operating with a bit budget equiva-
lent to one bit per sample.

APPENDIX

A. Proof of Theorem 2

Under Assumption A1, we first find for each block diagonal
matrix B̄ an optimal unitary and block diagonal matrix, which
minimizes the ε(B̄) given in (20). Defining Ti � MiRci , the
result is stated in the following lemma:

Lemma A.1: For any block diagonal matrix
B̄ = blkdiag{B1, . . . ,BL}, we can find an op-
timal unitary and block diagonal matrix Ūo,
such that ε(B̄) ≥ ε(ŪoB̄) =

∑L
i=1 Tr[Ti(Σ

−1
i −

BH
i (BiΣiB

H
i + 4η2

3b2LP

∑L
i=1 Tr(BiΣiB

H
i )IP )

−1Bi)
TH

i ].
Proof: Note that for any unitary and block

diagonal matrix Ū, it follows from (20) that
ε(ŪB̄) = Tr[TΣ−1TH ]− Tr[TB̄H(B̄ΣB̄H + 4η2

3b2 maxi
{(F̄ŪB̄ΣB̄HŪHF̄H)i,i}ILP )

−1B̄TH ], where T =
MPTRc. Thus, the optimal unitary and block diagonal
matrix Ūo which minimizes the EMSE is given by

Ūo = argmin
Ū

max
i=1,...,LP

{(F̄ŪB̄ΣB̄HŪHF̄H)i,i}

s.t. Ū = blkdiag{U1, . . . ,UL}. (A.1)

Note that F̄ is also unitary. Since for any vector x ∈ CL,
FH

L diag(x)FL is a circulant matrix with identical diagonal
entries, then F̄B̄ΣB̄HF̄H has block structure with identical
blocks, where each block has P elements. Thus, (A.1) is equiv-
alent to finding U1, . . . ,UL s.t. each block of ŪB̄ΣB̄HŪH ,
i.e., UiBiΣiB

H
i UH

i , has identical diagonal entries. �
By Majorization theory [48, Cor. 2.4], it holds that

minUi
maxi(UiBiΣiB

H
i UH

i ) = 1
P Tr(BiΣiB

H
i ). Plugging

this into the expression for ε(ŪB̄) and exploiting the block
diagonal structure of T, B̄, and Σ, proves the lemma.
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Next, we characterize the block diagonal matrix B̄

which minimizes ε(ŪoB̄). Let B̃i � BiΣ
1/2
i , Γ̃i � TiΣ

−1/2
i .

Our objective is equivalent to
∑L

i=1Tr[Γ̃iB̃
H
i (B̃iB̃

H
i +

4η2

3b2PL

∑L
i=1 Tr(B̃iB̃

H
i )IP )

−1B̃iΓ̃
H

i ]. Now the right hand side
of the objective is invariant to replacing B̃i with αUiB̃i

for any α > 0 and for any unitary Ui. So we can fix
Tr(B̃iB̃

H
i ) = 1, and write B̃i = ΛiV

H
i , where Λi ∈ RP×MN

is a diagonal matrix whose entries are arranged in a de-
scending order, and Vi is unitary. Our objective now be-

comes
∑L

i=1 Tr[Γ̃
H

i Γ̃iViΛ
T
i (ΛiΛ

T
i +

4η2

3b2P IP )
−1ΛiV

H
i ], sub-

ject to Tr(ΛiΛ
T
i ) = 1 for each i. This is the same as solving

max
Λi,Vi

Tr

[
Γ̃
H

i Γ̃iViΛ
T
i

(
ΛiΛ

T
i +

4η2

3b2P
IP

)−1

ΛiV
H
i

]
,

for each i, subject to Tr(ΛiΛ
T
i ) = 1, which is equivalent to [31,

Eq. (C.8)]. Hence, following the derivation in [31, Appendix C]
proves the theorem.
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