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Abstract
With the development of innovative applica-

tions that demand accurate environment informa-
tion, for example, autonomous driving, sensing 
becomes an important requirement for future 
wireless networks. To this end, integrated sensing 
and communication (ISAC) provides a promising 
platform to exploit the synergy between sensing 
and communication, where perceptive mobile 
networks (PMNs) were proposed to add accurate 
sensing capability to existing wireless networks. 
The well-developed cellular networks offer exciting 
opportunities for sensing, including large coverage, 
strong computation, communication power, and, 
most importantly, networked sensing, where the 
perspectives from multiple sensing nodes can be 
collaboratively utilized for sensing the same tar-
get. However, PMNs also face big challenges, such 
as the inherent interference between sensing and 
communication, the complex sensing environment, 
and the tracking of high-speed targets by cellular 
networks. This article provides a comprehensive 
review on the design of PMNs, covering the popu-
lar network architectures, sensing protocols, stand-
ing research problems, and available solutions. 
Several future research directions that are critical 
for the development of PMNs are also discussed.

Introduction
After several generations of development, wire-
less communications has evolved from a system 
with only communication services to an intelligent 
network that not only moves data but also per-
forms edge-computing and distributed learning/
inference tasks [1]. The advancement of innova-
tive applications, such as autonomous driving and 
environment monitoring further requires accurate 
sensing capabilities from future wireless networks. 
To this end, the recently proposed integrated sens-
ing and communication (ISAC) paradigm offers a 
promising way to share the spectrum, hardware, 
and software between sensing and communica-
tion applications, especially after millimeter wave 
(mmWave) was adopted for 5G and beyond sys-
tems. Perceptive mobile networks (PMNs) are a 
special type of ISAC system that focuses on add-
ing sensing capability to the cellular networks [2].

There are many favorable properties of cellu-
lar networks that can facilitate sensing. First, the 
well-developed mobile network with high-density 

base stations (BSs) can provide large sensing cov-
erage. The high-density nodes are very important 
because mmWave experiences severe pathloss and 
is, thus, not suitable for long-range sensing tasks. 
Second, the large number of distributed and con-
nected sensing nodes enables networked sensing, 
where multiple perspectives from different sens-
ing nodes are exploited to sense the same target. 
Finally, the strong computation and communication 
power of PMNs create a good platform for large-
scale environment estimation and mapping, which 
will not only benefit sensing but also enhance 
communication in terms of channel estimation, 
resource allocation, beam tracking, and more. 

However, there are also challenges faced by 
the design of PMNs [2]. Since PMNs integrate 
sensing and communication in one system, inter-
ference management is one of the most import-
ant issues to tackle. In particular, there exist three 
types of interference. First, if the same node, for 
example, a BS, is utilized for transmitting sens-
ing/communication signals and receiving radar 
echoes at the same time, there will be self-interfer-
ence (SI) [3]. Second, given both communication 
and sensing users are served in the same frequen-
cy band, there will be interference between the 
two sub-systems. Finally, prior information about 
the environment is critical for sensing and normal-
ly obtained by environment training (estimation). 
In conventional radar systems, the transmitted sig-
nal in the environment training and target sensing 
periods is the same, thus, guaranteeing the same 
covariance structure for the echoes reflected 
by the environment, known as clutter. Howev-
er, sensing and communication signals co-exist 
in PMNs and, due to the severe pathloss in the 
mmWave band, directional signals (beamforming) 
are utilized for both communication and sens-
ing purposes. As a result, the transmitted signals 
may be different in the environment training and 
sensing periods, which will lead to different clutter 
covariance structures. This can be regarded as 
interference to environment estimation.

Besides interference management, the imple-
mentation of networked sensing and environment 
estimation algorithms also faces several obstacles. 
On the one hand, although networked sensing can 
take advantage of the multiple perspectives from 
several sensing nodes, the collaborative sensing 
algorithm must be computation and communica-
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tion effi  cient due to strict latency requirements. On 
the other hand, the environment for networked 
sensing is much more complex than traditional 
radar systems because the communication users, 
the target and even the clutter patches in the envi-
ronment may move, for example, in city streets of 
urban areas. This makes environment estimation 
very challenging, especially with distributed sensing 
nodes. Furthermore, the stringent latency constraint 
precludes estimation algorithms that require a large 
amount of training data and heavy computation. 

This article aims to provide a comprehensive 
overview on the design of PMNs. For that purpose, 
we will first introduce and compare several exist-
ing network architectures and sensing protocols. 
In-depth discussions about the key research prob-
lems will then be given, revealing the key design 
opportunities and challenges in interference man-
agement, networked sensing and environment esti-
mation. Future research directions that are critical 
for the development of PMNs and their service to 
other applications will also be covered. Different 
from the existing reviews about ISAC [3–6], this 
article mainly focuses on PMNs especially the ben-
efi ts of networked sensing.

networK ArchItecture And sensIng Protocol
Network architecture and sensing protocol are 
the two most fundamental frameworks for inte-
grating sensing into current cellular networks. 

networK ArchItecture desIgn
There are three main network architectures pro-
posed for PMNs in the literature. In traditional 
cellular networks, interconnected BSs will serve 
mobile user terminals (UEs). It is, thus, natural to 

select the BSs as the transmitter for the sensing 
signal and the receiver for the echo signal [7]. 
This is referred to as the mono-static dual-function 
radar and communication (DFRC) system, where 
the BSs are required to work in full-duplex mode 
for transmitting and receiving signals at the same 
time. Another architecture [2] integrates sensing 
into the cloud radio access network (C-RAN) 
where remote radio units (RRUs) are densely dis-
tributed. To address the full-duplex issue, some 
RRUs are selected as dedicated receivers in the 
downlink sensing time, such that the sensing 
transmitter and receiver are separated to be dif-
ferent RRUs. We will refer to this scheme as the 
PMN-RRU architecture.

A new PMN architecture was proposed in [8] 
where another layer of passive target monitoring 
terminals (TMTs) are added to the convention-
al cellular networks. TMTs are nodes designed 
for Internet of Things (IoT) applications with only 
passive sensing functionalities, such as radar and 
vision [9]. They are distributed in a target area 
and connected with the BSs through low laten-
cy links. Given that TMTs will serve as dedicat-
ed radar receivers, BSs only need to serve as the 
transmitter for sensing signals, thus saving the 
need for full-duplex operation. We will refer to 
this design as the PMN-TMT architecture.

Both PMN-RRU and PMN-TMT avoid the 
full-duplex operation at the cost of network syn-
chronization. Compared with RRUs, TMTs are low 
cost IoT devices with only passive sensing functions 
that can also be utilized for other types of IoT ser-
vices. TMTs work as passive radar detectors, but 
are diff erent from traditional passive radar because 
they are connected with the BSs, which enables 

TABLE 1. Comparison of existing ISAC networks.

Sensing Transmitter Sensing Receiver Full-Duplex Synchronization

Mono-static DFRC BS BS Required Not Required

PMN-RRU RRU RRU Not Required Required

PMN-TMT BS TMT Not Required Required

FIGURE 1. Illustration of the PMN-TMT architecture.
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joint transceiver design. Table 1 compares the 
three architectures and Fig. 1 shows an example 
of the PMN-TMT scheme. Note that all three archi-
tectures may perform collaborative or networked 
sensing but with different sensing nodes, that is, 
BSs, RRUs, and TMTs, respectively. In the following, 
we will simply use TMTs as the sensing nodes and 
all discussions apply to the other two architectures.

Protocol Design
ISAC systems have inherent interference issues 
and proper protocols play the key role in inter-
ference management and resource allocation 
between sensing and communication [5]. In [4], 
the authors proposed a three-stage protocol to 
coordinate communication and sensing modules 
for a mono-static DFRC system. In Stage 1, the 
BS utilizes the omni-directional beam to search 
the sensing targets and scatterers, and receives 
the uplink pilot from the UEs. In Stage 2, the 
BS transmits the directional communication and 
sensing signals to the UEs and the sensing target, 
respectively, where the transmission directions are 
estimated in Stage 1. In Stage 3, the BS receives 
the radar echoes and the uplink signals from the 
UEs for target detection and tracking. A two-stage 
protocol was proposed in [10] to achieve joint 
target detection and channel estimation. In the ini-
tial stage, the BS sends omni-directional downlink 
pilots to search for the target, where the channel 
estimation is performed based on uplink pilots 
from the UEs. Based on the initial results about 
the target and communication scatterers obtained 
in the first stage, the BS sends directional down-
link pilots in the second stage for refined target 
detection and channel estimation.

In PMNs, sensing nodes will receive both the 
target echo and the clutter. To handle target sens-
ing in complex environment with the presence of 
the clutter, the authors of [11] proposed a two-
stage sensing protocol where environment estima-
tion (EE) and target sensing (TS) are performed in 
two consecutive periods as illustrated in Fig. 2. In 

particular, the downlink transmission time is divided 
into two periods, namely, the EE period and the TS 
period. In the EE period, the covariance matrix of 
clutter caused by communication signals is estimat-
ed, which is then utilized for sensing the target in 
the TS period. There are two interference manage-
ment issues with this protocol:
•	 Interference between sensing and communication.
•	 Interference to environment estimation.

Key Research Problems:  
Opportunities and Challenges

The design of PMNs is still in its infancy. In the fol-
lowing, we identify several key research problems 
and discuss the design challenges, opportunities, 
and existing solutions.

Interference Management
There are three types of interference in PMNs:
•	 In the mono-static DFRC, the BS needs to trans-

mit and receive signals at the same time, caus-
ing SI.

•	 As a special type of ISAC system, there is inher-
ent interference between sensing and commu-
nication in PMNs.

•	 Due to the use of narrow beams in the 
mmWave band, both communication and sens-
ing signals may change the environment statis-
tics in the TS period, and this can be regarded 
as interference to environment estimation.

In the following, we discuss existing solutions for 
managing the above-mentioned interference.

Self Interference: Conventional pulse radar 
works in a half-duplex mode to avoid SI. In each 
pulse repetition period, antennas will utilize a long 
time to receive the potential echoes after transmit-
ting the sensing signal. However, half-duplex mode 
will not work for PMNs because BSs need to trans-
mit communication signals all the time. Among 
the three architectures mentioned above, the 
mono-static DFRC scheme requires the BS to work 
in full-duplex mode to transmit and receive signals 

FIGURE 2. Frame structure for the two-stage sensing and communication protocol [11].
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at the same time. Under such circumstances, the SI 
is mitigated by self-interference cancellation tech-
niques, which unfortunately are not very mature 
[12]. On the other hand, the PMN-RRU and PMN-
TMT architectures naturally avoid SI.

Interference between Sensing and Communi-
cation: There are several unique features of sens-
ing and communication signals in PMNs:
•	 The sensing signals will interfere with the UEs and 

may degrade the communication performance.
•	 The communication signals reflected by the tar-

get can be utilized to probe the target as they 
are known by the BSs [7].

•	 The communication signals reflected by the 
environment will cause the clutter for sensing.

Depending on the design objective, different 
approaches have been proposed to manage the 
interference between sensing and communication.

There are works that consider both sensing and 
communication performance. Along this line, 
spectrum sharing between sensing and com-
munication was investigated in [13] by dynamic 
spectrum access and mutual interference mitiga-
tion. In [8], the authors maximized the weighted 
average of sensing and communication perfor-
mance by jointly designing the transmitter and 
receiver, where the sensing metric is selected as 
the signal-to-clutter-plus-noise ratio (SCNR) and 
the communication metric is the signal-to-interfer-
ence-plus-noise ratio (SINR). An alternating opti-
mization (AO) based framework is proposed to 
iteratively update the transmit and receive beam-
formers. There are also works that prioritize one 
side of the ISAC system. For example, the com-
munication performance was maximized in [14] 
by treating radar signals as interference. 

In terms of the transceiver design, besides the 
AO-based method that jointly optimizes the trans-
mitter and receiver, linear transceivers have also 
been considered to reduce the computation com-
plexity. For example, zero-forcing (ZF) and beam 
synthesis (B-syn) transmitter, and the minimum 
variance distortionless response (MVDR) receiver 
were investigated in [8]. These linear transceiv-
ers not only reduce the computation complexity 
but also provide interesting physical insights. For 
example, “leaking” energy from communication 
signals to the sensing target (ST)1 is more efficient 
than forming a dedicated sensing signal, and the 
amount of energy leaked from one UE to the ST 
depends on their channel correlation, which is 
determined by their locations. 

AO, B-syn, and ZF represent three different 
ways to tackle interference between sensing and 
communication. In particular, AO allows inter-
ference between sensing and communication 
and handles it by joint transceiver design, B-syn 
only allows interference from communication 

to sensing and utilizes communication signals as 
the sensing signal, while ZF eliminates all inter-
ference between sensing and communication by 
designing a dedicated sensing signal that will not 
interfere with the UEs. The interference pattern 
between sensing and communication with AO, 
B-syn, and ZE is illustrated in Table 2.

Figure 3 compares the sensing performance 
of the three transmitters with high and low com-
munication requirements (CR), respectively. It can 
be observed that, under both circumstances, the 
performance of AO is the best, and B-syn outper-
forms ZF. Note that different transceiver structures 
have different tolerance for interference, and the 
stronger the orthogonality constraint (ZF>B-syn-
>AO), the worse the sensing performance. Fur-
thermore, when the CR is high, the gap between 
the three schemes is smaller. This is partially due 
to the less energy left for sensing when the CR 
is high. On the other hand, when the CR is low, 
high interference is acceptable to the UEs, thus it 
is not necessary to completely eliminate the inter-
ference from sensing to communication. Howev-
er, high CR forces AO to avoid the interference 
from sensing to communication like what B-syn 
does. Therefore, the gap between AO and B-syn 
becomes smaller. When their performance is 
comparable, B-syn is preferred because its com-
putational complexity is much lower than AO.

Interference to Environment Estimation: For 
the two-stage schemes proposed in [11], the 
signals transmitted in the EE and TS periods are 
different. In particular, in the EE period, the BS 
transmits the communication signals to serve the 
UEs, and the TMTs estimate the clutter covariance 
matrix based on the echoes triggered by the com-
munication signals. However, in the TS period, the 
BS transmits the designed ISAC signal to serve the 
UEs and probe a target, simultaneously, while the 
TMTs utilize the sensing echo (SE) reflected by 

TABLE 2. Comparison of the beam patterns for 
AO, B-syn and ZF.

Interference 
from Sensing to 
Communication

Interference from 
Communication 
to Sensing

AO Allowed Allowed

B-Syn Not Allowed Allowed

ZF Not Allowed Not Allowed

FIGURE 3. Comparison of SCNR between AO, B-syn, and ZF under different 
CR. The BS employs a ULA with Nt = 16 antennas. The receiver employs a 
hybrid beamforming structure with Nr = 16 antennas and NRF = 4 RF chains. 
The signal-to-noise ratio and clutter-to-noise ratio are 17dB and 40dB, 
respectively.
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the target and clutter patches for target sensing. 
Therefore, the received clutter in the TS period 
may have different covariance matrix from that 
in the EE period. To tackle this issue, the sensing 
signal in the TS period must be designed to avoid 
generating any echoes from the clutter patches, 
such that the covariance matrix of the clutter 
received by TMTs will be the same as that in the 
EE period. For that purpose, the idea of B-syn can 
be adopted such that the sensing signal has no 
energy toward the clutter patches. 

Networked Sensing
Networked sensing is one of the most exciting 
opportunities for PMNs, where the multiple per-
spectives from different TMTs can be collabora-
tively utilized to improve sensing performance. 
The biggest advantage of networked sensing 
comes from the macro-diversity of multiple TMTs. 
Note that, similar to wireless communications, 
the macro-diversity gain improves the reliability 
of target detection, because the chance that all 
the perspectives from different TMTs are blocked 
is very low. However, the impact of the multiple 
antennas at one TMT on sensing is different from 
that for wireless communications. The influence 
of both the number of TMTs and the number 
of antennas per TMT was analyzed in [11] with 
some interesting observations. 

Contribution of One Multi-Antenna TMT: The 
contribution of a single multi-antenna TMT comes 
from several aspects. First, the distance between 
the ST and the TMT affects the receive SNR expo-
nentially due to pathloss. Second, one TMT has its 
unique perspectives (AODs) toward the target and 
the clutter patches in the environment. The relation 
between those AODs dictates how easy it is for the 
TMT to separate the target from the clutter patch-
es. Finally, the number of antennas at one TMT 
affects sensing in two aspects. On the one hand, 
the receive SNR at the TMT is directly proportional 
to the number of antennas, which is referred to 

as the antenna array gain. On the other hand, the 
number of antennas determines the array resolu-
tion, which indicates the TMT’s ability to extract the 
target echo from the clutter. In particular, arrays 
with larger number of antennas can separate closer 
target and clutter patches.

However, multiple antennas no longer provide 
diversity gain for sensing. Note that multi-antenna 
receivers achieve diversity gain in wireless com-
munications because the channel coefficients of 
different transmitter-receiver antenna pairs are not 
fully correlated or even independent. However, 
in sensing, only the line-of-sight (LoS) component 
is considered, and all non-LoS components are 
regarded as part of the clutter. As a result, the 
channel between the ST and the TMT becomes 
deterministic and no diversity can be achieved by 
the multiple antennas of one TMT.

Macro-Diversity and TMT Selection: Due to 
the different perspectives and independent reflec-
tion coefficients, the channels between the ST and 
different TMTs are normally independent. As a 
result, multiple TMTs will provide macro-diversity 
gain for sensing. But, this does not mean that we 
should include as many TMTs as possible, because 
the detection probability is not a monotonic 
increasing function of the number of TMTs. This 
phenomenon was analyzed and discussed in [11]. 
Assume there are already L TMTs participating in 
the networked sensing. A new TMT, that is, the 
(L+1)-th TMT, will change the distribution of the 
decision statistics under both the target-absence 
(TA) and target-presence (TP) hypotheses. Con-
sider an extreme case where the new target-TMT 
link is blocked. Under such circumstances, the 
(L+1)-th TMT will only contribute noise under both 
hypotheses, and thus cause worse performance. 
As a result, it is unnecessary and even harmful to 
activate all TMTs to sense one target, making TMT 
selection a critical task. In [11], a sufficient condi-
tion for the contribution of one more TMT to be 
positive was derived, with which a TMT selection 
algorithm was proposed.

Data Fusion: The fusion of the target information 
collected by multiple TMTs is another challenge for 
PMNs, which can be achieved in two levels:
•	 Signal level fusion: The TMTs transmit their local 

data to the central processing unit (CPU). Then, 
the CPU performs collaborative sensing based 
on data from all TMTs.

•	 Information level fusion: Each TMT performs 
individual sensing based on its own data. The 
intermediate results, for example, the sensing 
parameters, are collected and fused at the CPU.
In general, the signal level fusion can achieve 

better performance than the information level 
fusion, at the cost of higher computation, commu-
nication, and hardware resources.

Environment Estimation
Another challenge for PMNs is EE. A compressed 
sensing-based method was proposed in [15] to 
achieve EE by utilizing the spatial parameters 
and Doppler shift of the clutter. Unfortunately, 
the computational cost of the compressed sens-
ing-based method can be extremely high, due to 
the continuous and rapidly-changing environment 
parameters in the space and Doppler domains. 
This issue will be more serious when multiple dis-
tributed TMTs are involved in the networked sens-

FIGURE 4. Detection performance versus the batch size for different environ-
ment estimation methods. The number of the antennas at one TMT and the 
number of TMTs are set as NR = 16, and L = 3, respectively.
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ing where information sharing between different 
TMTs is necessary. Thus, a communication effi-
cient EE algorithm is desired.

To reduce the number of required data sam-
ples for EE, the authors of [11] proposed the 
expectation-maximization (EM)-based covari-
ance estimation algorithm. The low rank clutter 
in the mmWave band [13] makes it possible to 
estimate the clutter covariance by using partial 
samples of the received signal. However, the esti-
mated covariance matrix may be ill-conditioned 
due to the limited data samples. To this end, the 
EM-Net algorithm was proposed by unfolding the 
EM detector with several learnable parameters, 
which achieves accurate estimation with less data 
samples than existing methods. Figure 4 shows 
that EM-Net outperforms both the EM approach 
and the conventional sample covariance matrix 
(SCM) based method, and the detection perfor-
mance will improve as the batch size increases. 
The lower requirement on data samples reduces 
the hardware (memory) requirement, data pro-
cessing time, and more importantly, communica-
tion workload, which significantly decreases the 
latency of the system.

Future Research Directions
In this section, we list several future research 
directions for the development of PMNs.

Target Tracking
A big challenge for networked sensing is to track 
a moving target. This is because, different from 
traditional radar, the coverage of one TMT is 
very limited. Thus, the sensing task needs to be 
smoothly handed over to another TMT when the 
target is moving. The situation is even worse for 
networked sensing where the handover is not 
from one TMT to another TMT, but from one 
group of TMTs to another group with possible 
overlapping between two groups. Note that han-
dover is not a new problem, as it is also required 
for wireless communication services. However, 
the problem is not the same for sensing due to 
several reasons. First, the synchronization require-
ment for networked sensing makes the problem 
much more difficult. Second, the handover criteria 
are more complex. Specifically, besides the signal 
strength which is normally the criterion for hando-
ver in communication, angles (AOA/AOD) and 
moving direction of the target also matter a lot for 
sensing. Third, for a fast moving target, for exam-
ple, an autonomous vehicle on the highway, the 
narrow sensing beams may have difficulty follow-
ing the target so that “predictive” sensing beams 
may be required.

To this end, besides the Kalman filter (KF) based 
method, machine learning or data-driven approach-
es may play a more important role due to several 
reasons. On the one hand, the physical environ-
ment, for example, the roads, for a fast moving 
target is relatively fixed, making it easier to extract 
useful information from history data. On the other 
hand, the strong computation and communication 
power of PMNs make it possible to build a map of 
the environment, that is, Simultaneous Localization 
and Mapping (SLAM). Furthermore, graph neural 
networks (GNNs) have been shown effective to 
handle wireless network design problems, such 
as traffic prediction, resource allocation, and data 

detection, and the handover problem can also be 
formulated as a graph optimization problem.

Joint Networked and Individual Sensing
Networked sensing can be utilized to facilitate 
the design of many smart applications. For exam-
ple, in autonomous driving, a key task for the 
vehicle is to understand the environment, includ-
ing the road, other vehicles, pedestrians, and so 
on. Currently, this is mainly achieved by many 
sensors installed on the vehicle, such as vision, 
lidar, and radar. We will refer to this as individual 
sensing. Networked sensing by PMNs can help 
measure the position and velocity of a moving 
vehicle. Due to latency requirement, such results 
can not be directly utilized to control the vehicle. 
However, networked sensing may provide useful 
complement for individual sensing in autonomous 
driving applications.

There are several promising research directions. 
First, networked sensing is able to reduce the work-
load of individual sensing. For example, networked 
sensing can build up and keep updating a map 
about the static environment, saving the need for 
individual sensing to construct such a map. Sec-
ond, networked sensing will be able to monitor the 
changing environment, for example, other moving 
vehicles, to provide assistant information for indi-
vidual sensing. Finally, many long-term tasks such 
as routing and traffic management can be taken 
over by networked sensing.

Intelligent Reflecting Surfaces (IRS)-aided Sensing
Compared with the sub-6GHz band, mmWave 
experiences high pathloss which makes direc-
tional transmission by spatial beamforming inev-
itable. As a result, both mmWave sensing and 
communication rely heavily on the LoS link, which 
unfortunately can be easily blocked. Intelligent 
reflecting surfaces (IRSs) have been proposed to 
create an alternative link between the transmitter 
and receiver, and attracted much attention in the 
design of wireless communication. The ability of 
IRSs in creating semi-LoS links can be utilized to 
facilitate the design of PMNs in several aspects, 
including interference management, networked 
sensing, and velocity estimation. In particular, 
due to the complex environment, it is possible 
that the sensing target has the same AoA/AoD as 
some UEs with respect to one TMT. Under such 
circumstance, IRSs will be able to create another 
link and avoid the interference between sensing 
and communication users. The same idea can be 
utilized for networked sensing, when one TMT’s 
perspective to the target is blocked. In fact, with 
proper phase-shift design, one IRS can help mul-
tiple TMTs.

The application of IRS in sensing is not lim-
ited to creating alternative paths. The addition-
al perspective can also help improve velocity 
estimation. For example, with the conventional 
mono-static radar, only the radial projection of 
the true velocity can be estimated due to the 
nature of Doppler effect. As a result, if the tar-
get is moving on the direction perpendicular 
to the line connecting the target and one TMT, 
the velocity estimation will not be accurate. The 
additional path provided by the IRS can provide 
another perspective to observe the target, which 
is useful to recover the true velocity.

A big challenge for 
networked sensing 

is to track a moving 
target. This is because, 

different from tradition-
al radar, the coverage 

of one TMT is very 
limited. Thus, the sens-

ing task needs to be 
smoothly handed over 
to another TMT when 

the target is moving.
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Joint Active and Passive Sensing

The above discussions considered networked sens-
ing in an active manner, that is, the BS actively 
transmits the sensing signal and TMTs perform the 
detection based on the echoes. The active mode 
works for any targets. However, if the PMNs want 
to locate the UEs, which also use the communi-
cation service, there is another mode of passive 
sensing. In particular, the UEs will transmit signals 
in the uplink period, which can also be used for 
radar detection. For targets with weak electromag-
netic wave reflection characteristics, for example, 
pedestrians, the passive method can provide a 
good detection performance. The passive mode 
is also more power-efficient as there is no trans-
mission overhead. However, it loses several advan-
tages of active sensing, such as the well-designed 
waveform, flexible transmitting beam, and higher 
detection range. As a result, it may not be sufficient 
to only utilize the passive mode to achieve accu-
rate sensing performance. A joint design between 
active and passive sensing in PMNs is an interest-
ing direction to investigate, which is especially use-
ful for sensing-aided communication.

Sensing-Aided Communication
By far, we have been focusing on the design of 
PMNs for sensing purposes by exploiting the 
well-developed communication network. On the 
other hand, sensing can also be utilized to assist 
communication especially in the mmWave band 
where highly directional signals are transmitted in 
a sparse channel.

Sensing-Aided Channel Estimation: The 
transmission of highly directional beams over a 
sparse channel creates challenging problems for 
channel estimation, because of the very large 
searching space in the angular domain plus the 
limited measurements. Among other solutions, 
the compressed sensing-based methods were 
widely studied to exploit the sparse structure, but 
they suffer from high computational complexity 
and are not robust to noise, hardware-led errors 
in array response, and the off-grid issues. To this 
end, the sensing results by PMNs can be of great 
assistance. In particular, the sparse channel is com-
posed of several main scatterers whose locations 
can be obtained by sensing. As a result, sensing 
results can significantly reduce the searching space 
for channel estimation and improve the estimation 
performance with limited measurements.

Sensing-Aided Beam Tracking: Beam align-
ment is a fundamental issue in mmWave com-
munication. The narrow mmWave beams are 
very sensitive to the change of environment, for 
example, the movement of the UEs. As a result, 
beam alignment becomes more difficult in highly 
mobile scenarios, as the state of a UE can change 
before beam training has been completed. Thus, 
under certain circumstance, “predictive” beams 
are required to maintain good communication per-
formance. To this end, the powerful capability of 
sensing in location and velocity estimation will be 
able to help for tracking the moving UE and form-
ing communication beams.

Clock Synchronization
Clock synchronization (CS) is an inherent chal-
lenge for networked sensing, due to the distribut-

ed nature of the network [10]. Both software and 
hardware based CS methods have been developed 
for wired and wireless networks. In general, hard-
ware based solutions can provide better synchroni-
zation accuracy than software based methods but 
at the cost of additional hardware requirements.

PMNs face special challenges in CS. First, the 
network structure in PMNs is very complex, includ-
ing the BSs, the sensing nodes (TMTs), and the UE 
(passive sensing), making CS very challenging. Sec-
ond, the mobility of the target will lead to the hand-
over issue between different sets of sensing nodes, 
causing additional difficulties for CS.

Conclusion
Networked sensing brings unprecedented oppor-
tunities to exploit the well-developed infrastructure 
of cellular networks for sensing purposes, but at 
the same time faces serious challenges in interfer-
ence management and environment estimation. 
Joint processing among distributed nodes over the 
network also incurs difficulties in designing com-
munication and computation-efficient algorithms. 
Existing network architectures, sensing protocols, 
and transceiver design could tackle some of the 
challenges while achieving favorable results, such 
as the macro-diversity from multiple sensing nodes, 
the array gain by multiple receive antennas, and 
the efficient environment estimation with data-driv-
en methods. However, the development of ISAC/
PMNs is in its infancy and there are still many 
obstacles to conquer before we can fully enjoy the 
synergy between sensing and communication to 
support more innovative applications.
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