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D
eep learning, in general, focuses on train-
ing a neural network from large labeled 
datasets. Yet, in many cases, there is 
value in training a network just from the 

input at hand. This is particularly relevant in 
many signal and image processing problems 
where training data are scarce and diversity is 
large on the one hand, and on the other, there 
is a lot of structure in the data that can be ex-
ploited. Using this information is the key to 
deep internal learning strategies, which may 
involve training a network from scratch using 
a single input or adapting an already trained 
network to a provided input example at infer-
ence time. This survey article aims at cover-
ing deep internal learning techniques that have 
been proposed in the past few years for these 
two important directions. While our main fo-
cus is on image processing problems, most of 
the approaches that we survey are derived for 
general signals (vectors with recurring patterns 
that can be distinguished from noise) and are 
therefore applicable to other modalities.

Introduction
Deep learning methods have led to remarkable advances 
with excellent performance in various fields, including 
natural language processing, optics, image processing, au-
tonomous driving, text-to-speech, text-to-image, face rec-
ognition, anomaly detection, and many more applications. 
Common to all the above advances is the use of a deep neu-
ral network (DNN) that is trained using a large annotated 
dataset that is created for the problem at hand. The used da-
taset is required to represent faithfully the data distribution 
in the target task and allow the DNN to generalize well to 
new unseen examples. Yet, achieving such data can be bur-
densome and costly, and having strategies that do not need 
training data or can easily adapt to their input test data is of 
great value. This is particularly true in applications where 

generalization is a major concern, such as clinical applica-
tions and autonomous driving.

In scenarios where no training examples are available for 
a given problem, or one does not want to learn from examples 
that may not faithfully represent the true data, one is required 
to train the DNN only on the given input example. This may 
involve exploiting prior knowledge of the problem, such as 
internal self-similarity between patches in an image [1], [2], 
[3], or exploiting common models in signal processing, such 
as sparsity and other regularizers. Even in the case where 
training data do exist, training or fine-tuning a DNN on the 
input image can be useful in order to better adapt the DNN to 
its statistics. The input image may not be well represented in 
the training data [4], [5], and therefore, the input image can be 
used as another source for training the network to improve its 
performance. Structure on the data in the form of regularizers 
can also compensate for missing data, and it enables the use 
of many well-developed signal processing tools and concepts.
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In this survey article, we aim at covering internal learning 
techniques that allow training DNNs on a given input example. 
We see how the use of signal processing elements, such as mod-
els, statistics, priors, and more, can be utilized to compensate for 
the lack of data, forming a bridge between traditional signal pro-
cessing tools and modern deep learning. We divide our discus-
sion into techniques that train only on the input example [1], [2], 
[3], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], 
[18] and approaches that use a pretrained network but fine-tune 
on the input example at test time [4], [5], [19], [20], [21], [22], 
[23], [24], [25], [26], [27] for the tasks of reconstruction or gen-
eration/editing. Diverse internal learning strategies are surveyed, 
such as self-similarity, multiscale similarity, metalearning, statis-
tical loss functions, consistency loss functions, and, above all, the 
use of a network structure as a prior.

Our focus in this article is on internal learning in the context 
of deep learning. Note that there is rich literature about internal 
learning in the “predeep learning” era, which we do not cover 
in this survey. The interested reader may refer to [28]. In addi-
tion, we present mainly deep internal learning approaches in the 
context of images, which is also the focus of most of the deep 
internal learning works. There are also recent efforts to apply 
internal learning in other modalities, such as audio [29] and 3D 
graphics [30], [31], [32], [33], [34]. Thus, we believe that many 
of the ideas surveyed here can be beneficial in many other signal 
processing applications. Exposing the signal processing commu-
nity to these techniques in a unified manner can aid in promoting 
further research and applications of these important methods.

Brief background on external learning
To put our review of deep internal learning in context, let us begin 
with a brief discussion and formulation of the common theme in 
machine learning: training DNNs using massive external data in 
an offline phase. We name this approach “external learning” to 
emphasize its distinction from internal learning.

Deep learning methods are often based on massive training 
sets: pairs of input samples , ,x xN1 f" , and their correspond-
ing annotations , , .y yN1 f" ,  A DNN architecture ( ; )h $ i  is then 
designed, and its parameters i  are optimized in an offline train-
ing phase by minimizing a loss function

 ( ( ; ), )argmin L h x y
i

N

i i
1

i i=
i

=

u /  (1)

such that for a new input ,x0  the output of the trained DNN 
( ; )h x0 iu  approximates the unknown corresponding annota-

tion .y0

For example, in imaging tasks (e.g., low-level computer 
vision), each xi  in the training set may be a degraded version 
of an associated ground truth image that is used as the target 
of the network .y x ,i igt=  Specifically, the common practice to 
train a DNN for a specific task, e.g., superresolution with certain 
downsampling model ( )f $  [35], is to take a collection of ground 
truth high-resolution images , ,x x, ,N1gt gtf  and generate the low-
resolution input samples ( ), , ( )x f x x f x ,N N1 gt,1 gtf= =  using 
the predefined f.

Limitations of external learning
DNNs that are trained using the common external learning ap-
proach typically perform very well when the assumptions that 
have been made in the training phase (such as the observation 
model) are also satisfied by the data at test time. However, when-
ever there is a mismatch between the test and training data, these 
networks exhibit significant performance degradation [2], [4]. 
Furthermore, oftentimes, the degradation model is not known in 
advance, and thus, a supervised training approach cannot be uti-
lized. Another challenge is when ground truth data are scarce or 
possibly not available. These limitations are inherently bypassed 
by internal learning: training a DNN to recover the unknown im-
age xgt  using only the test time observation .x0

Overview of internal learning

What makes internal learning work?
There are two complementary factors that are necessary for mak-
ing internal learning beneficial. The first is information related, 
and the second is algorithmic related.

The information-related condition solely depends on the 
single observed signal :x0  recurrence of patterns, or, using 
common terminology, self-similarity. Such recurrence, which 
can be both within and across scales of resolution, allows a 
suitable learning algorithm to distinguish between compo-
nents of the signal and random noise or infrequent artifacts. 
Real-world signals, such as images, possess recurring patterns; 
see, e.g., [36] and [37].

The algorithmic-related requirement is that the learning algo-
rithm will indeed capture the components of the signal rather 
than the noise/artifacts even though no explicit supervision is 
provided and both are “mixed” in the single-input sample that is 
given. At first glance, this task seems very complicated. Indeed, 
before the groundbreaking deep image prior (DIP) paper [1] was 
published, it was not clear that modern DNNs, which are highly 
overparameterized and can easily (over)fit the entire noisy sam-
ple, would isolate the signal from the noise and artifacts. Nev-
ertheless, an intriguing experiment from [1], which is presented 
here in Figure 1, shows that the algorithmic requirement is pos-
sessed by optimization of a suitable DNN model ( ; ),x h z i=  
with random input z, to fit ,x0  a noisy or pixel-shuffled version 
of a true clean image .xgt  Specifically, Figure 1 shows that when 
optimizing the loss

 ( ; )min h z x0
2

i -
i

 (2)

with gradient-based methods (e.g., Adam [38]), the DNN fits the 
clean signal xgt  before it fits noise or other patternless artifacts. 
Thus, even when x0  is degraded, ( ; )x h z i=  estimates the clean 
signal if the optimization procedure is terminated “on time” (we 
elaborate on this point below).

The authors of [1] related this behavior to an implicit deep 
prior that is imposed by the DNN convolutional architecture 
itself. In [39], similar behavior was related to positional encoding 
and implicit representations. More recent theoretical studies on 
gradient descent and its stochastic variants hint that such simple 
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optimizers have implicit bias (“prior”) on their own: a tendency 
to converge to simple solutions, e.g., with low norms or repeti-
tions, among the many possible solutions that can be realized by 
an overparameterized DNN.

Brief background on internal learning
The proof-of-concept experiment that is presented in Figure 1 
motivates the general restoration approach that is proposed in the 
DIP paper [1]. There, the observation model is given by

 ( )x f x e0 gt= +  (3)

where x Rn
gt !  is an unknown true image, :f R Rn m"  is a 

known forward model/operator, and e Rm!  is the unknown 
noise (typically assumed to be white and Gaussian). Focusing on 
imaging, note that many acquisition processes can be modeled 
with a linear f. For example, blurring (in the deblurring task), 
downsampling (in the superresolution task), and, of course, the 
identity operator I (in the denoising task), are associated with 
linear instances of f.

Let ( ; )x h z Rn!i=  be an “hourglass” architecture (also 
known as “encoder–decoder” and similar to U-Net) and z be a 
random Gaussian input. It is proposed to optimize the DNN’s 
parameters i  by minimizing the least-squares loss

 ( ( ; ))min f h z x0
2

i -
i

 (4)

using gradient descent or Adam. The optimization is terminated 
via a suitable early stopping (in [1], a maximal number of it-
erations is manually tuned per task). Then, the unknown xgt  is 
estimated by ( ; ),x h z i= t  where it  denotes the DNN’s param-
eters at the early stopping point [i.e., not necessarily a global 
minimizer of (4)].

The DIP approach excludes any offline training, which typi-
cally requires a predefined forward (observation) model f and 
a collection of ground truth clean training samples. Therefore, 
its main advantage is that it offers full flexibility to the forward 
model and data distribution, and it avoids the significant perfor-
mance degradation that is observed when applying an offline-
trained DNN to a test image whose acquisition mismatches the 
assumptions that are made in the training phase.

On the other hand, the DIP has several major limitations, such 
as a large inference runtime (since the DNN parameters are opti-
mized at test time), the need for accurate early  stopping to avoid 
fitting the measurements’ noise/artifacts, and the potential per-
formance drop due to not exploiting any data other than the test 
time input. Accordingly, many follow-up works have proposed 
techniques for addressing these limitations while continuing to 
exploit the benefits of internal learning. This, however, often-
times requires focusing on a more specific observation model 
than the general one in (3) (e.g., certain classes of forward mod-
els, f, and certain distributions of the noise e).

In “Internal Learning by Deep Image Prior,” we present sev-
eral visual results from the application of the DIP. Notice the 
flexibility of this method in terms of the observation model. 

In this review article, we present a taxonomy for the different 
learning approaches that utilize internal learning. The basis level 
of separation among techniques is whether they are fully based 
on internal learning, i.e., exploiting only the input sample x0  that 
is given at test time, or whether they incorporate internal learn-
ing with learning that is based on external data, e.g., fine-tuning 
pretrained models at test time using .x0  The latter can be sepa-
rated into offline training methods that require ground truth clean 
images and “unsupervised” methods that do not require clean 
data. As will be highlighted, techniques that train DNNs with-
out the need for clean data oftentimes can be readily adapted for 
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FIGURE 1. Learning curves for the reconstruction task, using a natural image, the same plus independent identically distributed noise, the same randomly 
scrambled, and white noise. Natural-looking images result in much faster convergence, whereas noise is rejected. MSE: mean square error. (Taken from 
[1] and used by permission of the authors.)
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internal learning. Within each of these subgroups, we distinguish 
among techniques according to their assumptions about the 
observation model and the input sample as well as according to 
algorithmic aspects, such as the DNN architecture, loss function, 
and regularization. We discuss how each technique addresses the 
main limitations of internal learning, such as the long inference 
runtime and the sensitivity to early stopping. The categoriza-
tion according to the use of external data and the dependency 
on the observation model is visualized in Figure 2 using several 
representative methods, which are among the methods that are 
surveyed in this article. For each such method, we mention its 
key internal learning ingredients. A list of such ingredients is dis-
played in Figure 3.

In the “Learning Using a Single-Input Example” section, 
we discuss methods that train a DNN from scratch using only a 
single example .x0  Most of these techniques are closely related 
to the DIP framework [1] and essentially try to mitigate its limita-
tions while continuing to use a massive U-Net-like architecture. 
The modifications include loss functions different than (4) and 
various regularization techniques that can boost the results [9], 
[11], be less sensitive to accurate early stopping [7], [16], [40], or 
both [14], [15]. In this part, special attention is given to the clas-
sical Stein unbiased risk estimator (SURE) [41] and its general-
ization [42] (GSURE), which provides a formula that estimates 
the mean square error (MSE) of ( ; )h $ i  with respect to the latent 
xgt  (independent of ) .xgt  Unlike the traditional least-squares 
loss, whose minimization can eventually lead to fitting noise, 
the SURE criterion includes a term that regularizes the optimiza-
tion and resolves this issue. Many recent works utilize (G)SURE 
[15], [19], [20], [21], [22]. They demonstrate how concepts used 
in signal processing aid in self-supervision.

In addition to methods that use overparameterized DNN 
architectures that are similar to DIPs, we present other internal 
learning techniques, such as zero-shot superresolution (ZSSR) 
[2] and the deep decoder (DD) [8], that eliminate the need for 
early stopping by using DNNs with fewer parameters. We also 
present approaches for learning generative models from a single 
image [3], [17], [18].

It is worth mentioning that ZSSR, which was published con-
currently with the DIP, coined the term deep internal learning. 
Furthermore, as detailed below, the mechanism of these two 
methods differs beyond their architectures. Specifically, the 
DIP exploits the signal prior that is implicitly imposed by the 
DNN during unsupervised training (mapping random noise z 
to the observations ) .x0  On the other hand, ZSSR explicitly 
exploits the across-scale similarity of signal/image patterns via 
self-supervised training (mapping a lower-resolution version of 
x0  to ) .x0

The main limitation of “pure” internal learning—which uses 
only the single observed image for training DNNs—is the poten-
tial performance drop due to not exploiting the massive amount 
of external data that are available for many tasks. This led to the 
idea of incorporating offline external and test time internal learn-
ing to get the best of both worlds [4].

In the “Adapting a Network to the Input at Inference Time” 
section, we discuss different methods for test time fine-tuning 

The deep image prior (DIP) approach [1] provides a flexible 
method to estimate an image xgt  from its observations 

( ) ,x f x e0 gt= +  where f  is a known degradation model 
and e  is noise. In the DIP, the estimate is parameterized by 
a U-Net deep neural network, ( ; ),x h z i=  with a random 
noise input z  and parameters i  that are obtained by

( ( ; )) .min f h z x0
2

i -
i

No offline training phase, based on external data, and 
no explicit prior terms are used.

The same approach, potentially with some hyperpa-
rameter tuning, can be applied to a wide variety of 
tasks, as illustrated in Figure S1.

The main limitation of DIPs is that whenever their 
observations contain noise or artifacts (e.g., in denois-
ing and JPEG artifacts removal), accurate early stop-
ping is required to avoid fitting them.

Internal Learning by Deep Image Prior

(d)

(a)Corrupted DIP

(b)
Corrupted DIP

(c)
Corrupted DIP

Corrupted DIP

FIGURE S1. Applications of the DIP approach: (a) superresolution, 
(b) denoising, (c) JPEG artifacts removal, and (d) inpainting. (Images 
taken from [1] and used by permission of the authors.) 
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of DNNs that have already been pretrained offline. Focusing on 
image restoration, we present methods that adapt deep priors, 
such as convolutional neural network (CNN) denoisers [4] and 
generative adversarial networks (GANs) [47], as initiated in [5] 
and its follow up works [25], [48]. All these methods may be 

plugged into quite general frameworks that can tackle different 
restoration tasks. In other words, they allow flexibility in the 
observation/forward model ( ),f $  contrary to offline-trained task-
specific DNNs.

When adapting pretrained models to the test image at hand, 
special care should be taken to make 
sure that useful semantics/patterns that 
have been captured offline will not be 
overridden or “forgotten” during the 
test time optimization. This risk, which 
is typically addressed by early stopping, 
can be further mitigated by optimizing 
only a small set of the pretrained mod-
el’s parameters [26]. Another limita-
tion of test time tuning that is important 
to address is the additional inference 
runtime that is added to the pretrained 
model. To mitigate this issue, several 
metalearning approaches have been 
used [23], [24].

Learning using a single-input 
example
In this section, we discuss different 
methods that train a DNN from scratch 
using only a single example .x0  Our ref-
erence point will be the DIP approach 
[1], which has been described in the 
“Overview of Internal Learning” section. 
In the “Architecture-Based Approaches” 
section, we focus on architectural varia-
tions of the DIP, and in the “Optimiza-
tion-Based Approaches” section, we 
focus on algorithmic variations, mainly 
in terms of the optimization objective 
[i.e., alternatives to the loss function in 
(4)]. These variations aim to improve the 
reconstruction accuracy of the DIP or 
to mitigate its large inference time and 
sensitivity to early stopping. The meth-
ods that are discussed in this section are 
summarized in Table 1.

Architecture-based approaches
The core idea of the DIP is that the 
network structure is an implicit signal 
prior. The most widely used network 
structure for the DIP ( ; )h z i  [see (4)] 
is the “hourglass” (also known as “en-
coder–decoder”) architecture [1], which 
is ( ; ) ( ( ; ); ),h z h h zd e e di i i=  where 

( ; )h ze ei  is the encoder, whose outputs 
are the latent vector as well as skip con-
nections; ( ; )hd d$ i  is the decoder, whose 
output is the enhanced image; and i  is 
the network parameter vector, which is 
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FIGURE 2. Internal learning approaches can be divided into two high-level classes: 1) techniques that learn 
only from a single example and 2) techniques that take an already trained network and fine-tune it at test 
time. Several representative methods are presented, some of which can be utilized for both approaches. 
The vertical axis presents the state of the input sample at test time (x0  in the article’s notation). Editing/
generation techniques require it to be a ground truth (“clean”) sample, while reconstruction techniques 
attempt to recover the unknown ground truth sample from a degraded input sample, under some assump-
tions about the degradation model. In this review article, we mainly focus on strategies for signal/image 
reconstruction, which is a classical task in the signal processing community. DD: deep decoder; SURE: 
Stein unbiased risk estimator; GSURE: generalized SURE; GAN: generative adversarial network; IAGAN: 
image-adaptive GAN; kNN: k-nearest neighbors; PnP: plug and play; DGP: deep generative prior.
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a concatenation of the encoder network parameter vector ei  and 
the decoder network parameter vector .di  The encoder network 
consists of sets of convolution, batch normalization, and nonlinear 
activation with downsampling, and the decoder network consists 
of sets of the same components but replaces downsampling with 
upsampling. The encoder and decoder networks are additionally 
connected via skip connections at the same spatial resolution of 
features. Note that this architecture is highly overparameterized. 
In general, the widespread belief is that overparameterization 
facilitates optimization in deep learning. However, in our case, 
where only a single image x0  is given, overparameterization also 
allows overfitting the noise and artifacts in x0  after a large num-
ber of optimization iterations (see Figure 1), which is undesired 
and the core reason for accurate early stopping.

Different regularization structures have also been proposed 
as alternatives to the DIP architecture. The DD [8] removed the 
encoder network and enforced a simple tensor product struc-
ture in the decoder network architecture ( ; ) .h zd di  The limited 
capacity of the DD compared to the DIP makes it robust to the 
stopping point of the optimization, at the price of a performance 
drop compared to the DIP with optimal early stopping (which 
may not be feasible in practice). A decoder-only regularization 
structure for dynamic magnetic resonance imaging was also 
investigated in [49], where a low-dimensional manifold structure 
in z encodes the temporal variations of images, unlike a static 
random vector z in most DIP works.

Similarly to the DD, another concise network structure has 
been proposed for ZSSR [2]. This approach focuses on the super-
resolution task; namely, :f R Rn m"  in the observation model 
(3) is a downsampling operation ( )d $  (with ),m n%  which is 
a composition of filtering with an arbitrary low-pass kernel and 
subsampling. The DNN (·, )h i  used in [2] is a relatively simple 
eight-layer fully convolutional network. Since the dimension 
of the output of this DNN is the same as the dimension of the 
input to the first convolutional layer, before reaching the DNN, 
the input image goes through bicubic upsampling [regardless of 
the low-pass kernel in ( ),d $  which can be arbitrary] such that 
the network’s output is of higher dimension and can estimate the 
unknown high-resolution image. Training this DNN is different 
from the DIP and DD. The low-resolution x0  is downsampled 
itself to create an even lower-resolution image, ( ),d x0  and then 
a network is trained to reconstruct from it the given input image, 

,x0  which is of higher resolution. Specifically, the loss function 
used in ZSSR is given by

 ( ( ); )h P d x P xi i
i

0 0 2
2

i -/  (5)

where Pi  denotes patch extraction and the sum goes over the dif-
ferent patches (including those obtained by various augmenta-
tions). After the optimization phase, the trained DNN is applied 
to the original low-resolution image x0  to produce its higher-res-
olution version, which is an estimate of .xgt  The ZSSR scheme is 
described in Figure 4. A similar technique has also been used for 
learning to improve 3D shapes [34]. The idea behind this tech-
nique is that signals like natural images have recurring patterns 
even across scales of resolution and not only within the same scale.

Further extension of the DIP was proposed for decomposing 
images into their basic components by exploiting the represen-
tation power of the DIP on low-level statistics of an image [6] 
(dubbed “double-DIP”). The network structure of double-DIP 
consists of two DIP networks, or ( ; ) ( )m h z m11 19 9i + -  

( ; )h z2 2i  such that ( ; ) .m h zm mi=  Then, two basic compo-
nents in a complex image can be represented with ( ; )h z1 1i  and 

( ; ),h z2 2i  respectively, and the separation mask m will be esti-
mated with ( ; )h zm mi  under some assumptions on m, such as a 
binary mask (for segmentation problems) or smooth mask (for 
dehazing tasks). In this case, the data fidelity term in the loss that 
is used is given by

 ( ; ) ( ; ) ( ( ; )) ( ; )h z h z h z h z x11 1 2 2 0 2
2

9 9i i i i+ - -  (6)

to which two additional terms are added: ( ( ; ),L h z1 1Ex i  
( ; )),h z2 2i  which reduces the correlation between the gradi-

ents of the two components, and a task-specific regularization 
( ( ; )) .L h zReg i

Finally, while our article mostly focuses on using internal 
learning for classical signal and image processing tasks, which 
aim to estimate xgt  given ,x0  we note that internal learning has 
also been used for generative modeling: synthesizing new sam-
ples given .xgt

A prominent work in this line is SinGAN [3], which is based 
on advances in GANs [47]. In GANs, the goal is to train a genera-
tor network, ( ; ) : ,h R Rk n"$ i  to map a low-dimensional Gauss-
ian vector z Rk!  to an image in Rn  such that another trainable 
network, the discriminator (or critic) ( ; ) : [ , ]c 0 1Rn "$ iu  (with 
0 = fake and 1 = real), fails to distinguish between the genera-
tor’s outputs and images that belong to the real training data. 
Commonly, the networks are trained by alternating minimiza-
tion with respect to i  and maximization with respect to iu of the 
adversarial loss:

( ( ; ), ) ( ) ( ( ( ; ); ))log logL h z x c x c h z1adv gt gti i i= + - u

where z and xgt  are drawn at each optimization iteration from 
( , )I0N k  and from the training data, respectively.
Despite the possibility of using a generator network similar 

to the U-Net-like architecture of the DIP, the generator network 
used in SinGAN is different. Instead of having only a single 
input z to the network with dimensions similar to x ,gt  a multi-
resolution approach is used: an image pyramid of xgt  using a 
downsampling operation ( )x d x,i igt gt=  (i denotes the resolution 
level) as well as a pyramid of CNNs ( , ; ),hi i$ $ i  where the first 
argument is the latent (noise) vector and the second argument is 
the output of the previous lower-resolution level .i 1+  Starting 
from the lowest resolution and gradually reaching to the original 
resolution, ( , ; )hi i$ $ i  is trained to map random input zi  of the 
same dimension as ,x ,igt  conditioned on an upsampled version 
of the output of the lower-level ( ),u xi 1+t  by minimizing a loss 
function of the form

( ( , ( ); ), ) ( , ( ); )L h z u x x h u x x0, ,i i i i i i i i i1 1 2
2

adv gt gti i+ -+ +t t
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where Ladv  is an adversarial loss with a patch-based discrimina-
tor and the second term is a reconstruction loss term. In [3], it 
has been shown that the internally learned generator can produce 
perceptually pleasing variations of the given .xgt

Recently, score/diffusion-based generative models [50], [51] 
have been shown to be a powerful alternative to GANs. In this 
approach, during the training, a U-Net Gaussian denoising net-
work, conditioned on the noise level (or, equivalently, “time 
index”), is trained for a large range of noise levels. In contrast to 
the U-Net-like network used in the DIP, the input to the network 
used for score/diffusion-based generation is the noisy images 
x egt +  (where e is controlled, as this is supervised training), 
and at the network’s low-resolution levels, there is usage of self-
attention that allows capturing global semantics. At inference 
time, new images are generated by initializing a noise image 
xT  and, iteratively, given ,xt  generating the next image xt 1-  by 
denoising and adding synthetic noise, both with decreasing noise 
levels, until reaching x0  that resembles a sample from the data 
distribution. Utilizing a multiscale approach, similar to SinGAN, 
it has been recently shown that this score/diffusion-based sam-
pling approach can be used with a denoiser trained on a single 
ground truth image xgt  for generating its variations [17], [18].

Optimization-based approaches
Most follow-up works to the DIP do not modify its DNN archi-
tecture much but, rather, try to improve its performance or miti-
gate its limitations by modifying network optimization.

A natural way to mitigate the DIP’s tendency to fit the obser-
vation noise, and potentially to improve the reconstruction per-
formance, is by utilizing regularization techniques. The authors 
of [7] argued that merely adding norm-2,  regularization for 
the network’s parameters i  (i.e., weight decay) is insufficient 
for preventing fitting the observations’ noise. Instead, they pro-
posed a DIP–stochastic gradient Langevin dynamics (SGLD) 
approach, based on a technique known as SGLD, which can be 
motivated from a Bayesian point of view. In the method, a differ-
ent noise realization is added to ,Ti  the gradient update of ,i  in 
each optimization iteration t:

 t tTi h+  (7)

where ( , ),I0Nt +h e  with a hyperparameter e  that obeys 
tt 3eR =  and .t t

2 31eR  Empirically, it is then demonstrated 
that the need for accurate early stopping is spared.

Focusing on the denoising task, i.e., f I=  in the observa-
tion model (3), another technique that regularizes the optimiza-
tion via stochasticity is Self2Self [16]. In this method, multiple 
random Bernoulli masks bi" , are zero pixels of the input image 

,x b xi i 09=t  and a loss function of the form

 ( ) ( ; ) ( )b h x b x1 1i i i
i

0 2
2

9 9i- - -t" ,/  (8)

is used for optimizing the network’s parameters i  to fill the 
missing pixels in all masked scenarios jointly. Moreover, drop-
out regularization is used in the optimization of the decoder 

part of (·; ) .h i  This approach is not sensitive to early stopping 
in the denoising task and boosts the result (compared to the 
DIP) if the ensemble of estimates, associated with the different 
masks, is aggregated.

The loss function of Self2Self can be understood as a gener-
alization of the loss used in a related denoising method named 
Noise2Void [45]:

 ( ; )b h x b xi i i
i

0 2
2

9 9i -t" ,/  (9)

where bi  is deterministically chosen as a single-pixel mask (i.e., 
it erases the ith pixel) and the sum goes over the image patches. 
Originally, this method was not proposed for internal learning 
but, rather, for training a denoiser based on a dataset of noisy 
images without associated clean ground truth versions (and 
without multiple realizations of noise per image, contrary to 
its predecessor Noise2Noise [44]). Thus, the objective in (9) is 
further summed over the training samples. However, note that 
since this loss does not require knowledge of ,xgt  it can be used 
for internal learning as well, as later demonstrated in a follow-
up work, Noise2Self [46], for a large single image. All these 
methods [16], [45], [46] exploit the prior knowledge that there 
is a dependency among the intensity levels of neighboring pix-
els in clean natural images. This is in sharp contrast with the 
characteristics of noise, under the assumption that the noise dis-
tribution is independent per pixel. Therefore, fitting the noise is 
mitigated by masking pixels.

Other regularization techniques include adding a regulariza-
tion term to the loss function stated in (4). In the signal process-
ing community, the total variation (TV) criterion is a prominent 
regularizer that is based on the observations that many signals 
are piecewise constant, and thus, their gradients are sparse (have 
many zeros). Specifically, for a 2D signal x, the anisotropic TV 
regularizer is given by

( ) , .L x x x x xi j, , ,
,

i j i j i j
i j

1 1TV = - + -+ +/

D
ow

ns
ca

le

Test Image

X0

Test Image

X0

X0 ↓ s

X0 ↑ s

FIGURE 4. The ZSSR approach. Given a known downsampling model 
( ) ( )f s.$ $=  and the low-resolution observation ( ) ,x x s0 gt .=  internal learn-

ing is performed by training a moderate-size CNN to map ( )x s0 .  to x0  
(with patch extraction and augmentations). After the optimization phase, 
the network is applied on x0  to estimate .xgt  (Taken from [2] and used 
by permission of the authors.)
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In [9] it has been shown that DIP-TV, a variant of the DIP where 
TV regularization is added to the loss function,

 ( ( , )) ( ( ; ))f h z x L h z0 2
2

TVi m i- +  (10)

yields performance gains. Yet, since natural images are not really 
piecewise constant, this boost is obtained with a small regular-
ization parameter ,m  and thus, early stopping is still required, as 
shown in [11].

Maintaining the TV term, the authors of [11] suggested 
another modification to the loss function. Specifically, motivated 
by [52] and [53], they replaced the least-squares data fidelity 
term (4) with a specific type of weighted least squares, dubbed 
the back projection (BP) term, given by

 ( ( , ))ff I f h z x/T 1 2
0

2
e i+ -
-^ h " ,  (11)

where the forward operator f is assumed to be linear and some 
diagonal regularization is used when ff T  is not well conditioned. 
In [52] and [53], it has been shown that using BP rather than 
least squares yields better results in the low-noise regime and 
accelerates optimization. Recently, the concept has been gener-
alized to the high-noise regime by smoothly shifting from BP 
to least squares along the optimization [54]. In agreement with 
previous observations, the proposed BP-TV in [11] has been 
shown to yield better results than DIP-TV in the low-noise re-
gime and, importantly, with many fewer optimization iterations. 
This is especially advantageous for internal learning methods, as 
the optimization is done at inference (test) time. Yet, the need for 
accurate early stopping remains.

Instead of utilizing an explicit regularization term, a prom-
ising direction in recent years is to use off-the-shelf/pretrained 
denoisers to impose the signal’s prior, which mostly follows 
the plug-and-play (PnP) [55] and regularization by denoising 
(RED) [56] approaches. Let :g R Rn n"  denote an off-the-shelf 
denoiser. PnP conceptually adds a prior term :s R Rn "  to the 
loss function but then replaces its proximal operator in proxi-
mal optimization algorithms [the alternating direction method 
of multipliers (ADMM), proximal gradient methods, and so on] 
by the denoiser g. RED, on the other hand, adds to the gradi-
ent of the data fidelity term a (scaled) gradient of the implicit 
prior s, which takes the form of ( ) .x x g x7 -  Applying these 
approaches to impose regularization via modern denoisers has 
demonstrated better results than using classical techniques like 
TV. As a constructive example, a scheme of proximal gradient-
based PnP is given in the “Enhancing Pretrained Models via 
Internal Learning” section, where internal learning is used for 
fine-tuning a pretrained denoiser.

Advances in PnP and RED have also been utilized in internal 
learning. The authors of [13] proposed DIP-RED as a method that 
boosts the result of the plain DIP via existing denoisers. Similarly, 
[12] and [15] improved the results of the DIP via a PnP approach. 
Yet, PnP/RED adaptations of the DIP have some disadvantages, 
such as increasing the inference time, due to alternating between 
multiple network optimization (plain DIP) and denoiser applica-
tions as well as not addressing the stopping time issue.

We next introduce a family of methods that overcome the 
requirement for early stopping while still being based on an 
explicit analytical objective. To introduce the core idea behind 
these methods, let us focus on the denoising task; i.e., f I=  in 
the observation model (3), and e is white Guassian noise with 
known variance 2v  (though the following discussion can be 
generalized to other exponential noise distributions). Let ( )x x0t  
denote an estimator of the clean .xgt  The plain least-squares 
loss used in DIP (2) [equivalently, (4), with ]f I=  can easily fit 
the noisy ,x0  which is aligned with ( )x x x0 0=t  being the mini-
mizer of ( ) .x x x0 0

2
-t  If, on the other hand, an oracle would 

have given us the MSE criterion ( ) ( ) ,x x x xMSE E 0
2

gt= -t t  
where the expectation is taken over the noise in ,x0  then no noise 
overfitting can occur (and obviously, we can expect better per-
formance). However, xgt  is the unknown image that we need to 
estimate in the first place.

In a foundational work [41], Stein proposed an unbiased risk 
(MSE) estimate, nowadays known as SURE:

 ( ) ( ) ( ( ))x n x x x x x2SURE div2
0 0

2 2
0v v=- + - +t t t  (12)

where the divergence operator reads as /( ( ))h u udiv i i2 2R= ^ h 
[ ( )] .x u i  The unbiasedness of SURE reads as [ ( )]xSUREE =t  

( ) .xMSE t  Crucially, in our case, the divergence term penalizes 
the estimator for being sensitive to ,x0  which essentially hardens 
fitting the noise. To facilitate the usage of SURE, it is common to 
approximate the divergence term by

( ( ))
( ( ) ( ))

x x
x x x x

div
T

0
0 0

.
e

h eh+ -t
t t

with small 02e  and ( , ) .I0N+h
In the past, the SURE criterion has been mostly used to tune 

only one or two parameters of an estimator. However, following 
the advances in deep learning, works have suggested utilizing 
SURE even for ( )x x0t  (over)parameterized by DNNs [14], [19]. 
In the context of internal learning, [14] proposed a DIP-SURE 
approach: mitigating the problem of the DIP fitting the noise by 
parameterizing ( )x x0t  by the DIP’s architecture ( ) ( ; ),x x h x0 0 i=t  
with the difference that the input is the observations x0  rather 
than a drawn noise image z, and optimizing the DNN’s param-
eters i  by minimizing ( ( ; ))h xSURE 0 i  rather than the typical 
least-squares term. In [10], the method was further improved by 
adding random perturbations to x0  in the input and in the diver-
gence term.

In “Internal Learning Using the Stein Unbiased Risk Estima-
tor Criterion and Deep Neural Network Parameterization,” we 
present figures that demonstrate the importance of the additional 
divergence term in SURE. Specifically, the increase in the diver-
gence of the network is an indicator of fitting the noise in the 
observations. Thus, penalizing it, as done in SURE, resolves the 
need for accurate early stopping.

We now turn to discuss a more general observation 
model, specifically, the case of the linear forward operator f. 
A  generalized version of SURE (GSURE) suitable for this case 
has been derived in [42]:
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( ) ( ) ( )

( ( ))

x f f f f x u f x

f f x u2

GSURE Tr

div

T2
0

2

2

v

v

=- + -

+

@ @ @ @

@

t t

t
 

(13)

where f @  denotes the pseudoinverse of f and u Rn!  is a suf-
ficient statistic (e.g., ) .u f xT

0=  This expression is an unbiased 
estimate of the “projected MSE,” namely, the component of the 
signal in the row range of f: ( ( ) ) .f f x u xE

2
gt-@ t  Accordingly, 

[15] proposed DIP-GSURE as an extension of DIP-SURE that 
can address tasks other than denoising (e.g., deblurring and su-
perresolution) and showed robustness to the stopping iteration. 
The empirical faster convergence of minimizing (13) than the 
plain least-squares objective is explained in [15] by showing that 
minimizing GSURE is equivalent to minimizing the sum of the 

BP term (11) with the divergence term. The latter term is also the 
reason that no additional regularization is required when han-
dling measurements at high noise levels. We note that [15] also 
explored boosting performance by combining GSURE with PnP  
denoisers. Several visual examples of GSURE compared to the 
DIP, with and without a PnP denoiser, are presented in Figure 5.

Adapting a network to the input at inference time
The main limitation of “pure” internal learning, where mod-
els are being trained from scratch based on ,x0  is the potential 
performance drop due to not exploiting the massive amount of 
external data that are available for many tasks. Accordingly, in 
this section, we discuss different methods for adapting DNNs, 
which have already been pretrained offline, to better perform on 

Stein unbiased risk estimator (SURE) criterion-based 
approaches [14], [19], [42] tackle the denoising task: 
estimating xgt  from ,x x e0 gt= +  where ( , ) .e I0 0N 2+ v  
Similarly to the deep image prior (DIP), they utilize the 
implicit prior induced by U-Net parameterization of the 
estimate ( , ),x h u i=t  but unlike the DIP, the input to the 
deep neural network (DNN) is a sufficient statistic of 
the problem u x0=  rather than noise, and instead of 
minimizing the plain least-squares loss ( , ) ,h x x0 0

2
i -  

they minimize the estimate of the mean square error 
(MSE) given by

( ( , )) ( ; ) ( ( ; )) .min minx u h x x h x2SURE div0 0
2 2

0i i v i= - +
i i

t

Thus, the key difference between the plain DIP and SURE 
is penalizing the optimization according to the network 
divergence (essentially, the trace of its Jacobian). This regu-
larization hardens fitting the noise, as it prevents sensitivity 
to pixel-wise changes in .x0

Figure S2 shows the advantages of minimizing the SURE 
criterion instead of a typical least-squares criterion in image 
denoising. In Figure S2(a), the network’s divergence is not con-
trolled (as in the DIP), and the (normalized) MSE increases 
since the DNN starts fitting the noise. In Figure S2(b), the SURE 
criterion controls the divergence, and an increase in the MSE 
is prevented; thus, no accurate early stopping is required.

See the main article for details on the generalization of 
SURE beyond the image denoising setting.

Internal Learning Using the Stein Unbiased Risk Estimator Criterion and Deep Neural Network 
Parameterization

NMSE Training Loss Network Divergence
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FIGURE S2. The advantages of minimizing the SURE criterion instead of a least-squares criterion in image denoising. The (a) U-Net data fidelity 
training loss and (b) U-Net SURE training loss. (Taken from [14] and used by permission of the authors.) NMSE: normalized MSE. 
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the given test time observations .x0  In the “Enhancing Pretrained 
Models via Internal Learning” section, we discuss methods that 
incorporate offline external and test time internal learning by 
using off-the-shelf pretrained models. In the “Metalearning” 
section, we discuss an alternative approach. Instead of using off-
the-shelf pretrained models, knowing in advance that a model 
is about to be fine-tuned at test time allows using metalearning 
techniques in the offline phase, with the goal of reducing the 
fine-tuning time at the inference phase. The methods that are dis-
cussed in this section are summarized in Table 2.

Enhancing pretrained models via internal learning
An immediate approach to incorporating external and internal 
learning is to use off-the-shelf pretrained models, which enjoy 
the existence of massive amounts of data and the generalization 
capabilities of deep learning, and fine-tune them at test time us-
ing x0  instead of training a DNN from scratch. The end goal of 
this tuning is to specialize the network on the patterns of the spe-
cific unknown xgt  to better reconstruct it. In practice, of course, 
the adaptation can use x0  and the observation model f rather 
than the unknown .xgt  (In the context of image editing, the situ-

ation is slightly different, as discussed below.) The key risk, 
which is shared by all the methods in this section, is that exag-
gerated tuning will override or mask useful semantics/patterns 
that have been captured in the offline phase. Thus, most of the 
methods below fine-tune pretrained DNNs using only a small to 
moderate number of iterations with relatively low learning rates. 
As for the loss functions that can be used for fine-tuning, poten-
tially, any data fidelity term that is suitable for the observation 
model and does not depend on xgt  can be used: least squares 
(4), Noise2Void loss (9), (G)SURE (12), BP term (11), and vari-
ous regularizations. Another possibility is to use loss functions 
that are based on extracting/synthesizing pairs of input target 
patches from x0  or utilizing the similarity of external images to 
x0  to enlarge the fine-tuning data. We survey such approaches 
in this section.

Essentially, each of the methods discussed in the “Learning 
Using a Single-Input Example” section can be applied to a DNN 
that has already been pretrained, rather than with a DNN that is 
trained from scratch. For example, in the “Learning Using a Single-
Input Example” section, we discussed using the SURE criterion for 
training a DNN for Gaussian denoising in a DIP-like manner: from 

Superresolution

(a) (b) (c)

(d) (e) (f)
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DIP Scenario 5
GSURE Scenario 5

FIGURE 5. Superresolution ×3, with a bicubic kernel and noise level of / .10 255  (a) The peak signal-to-noise ratio average over set 5 versus the Adam 
iteration number. (b) An observed image, with a noisy low-resolution .x0  (c) DIP recovery. (d) GSURE recovery. (e) DIP-PnP [block matching and 3D 
filtering (BM3D)] recovery. (f) GSURE-PnP (BM3D) recovery. As observed in (a), the DIP recoveries start fitting the noise at some iteration, while the 
GSURE recoveries do not suffer from this issue. In this example, both the DIP and GSURE benefit from an additional prior imposed by the PnP BM3D 
denoiser. (Taken from [15] and used by permission of the authors.)
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scratch at test time, using only the noisy 
x0  [see (12)]. Yet, SURE can also be 
used for offline training based on noisy 
external data with no clean ground truth 
samples [19]. Specifically, for each noisy 
training sample ,x ,i0  one uses (12) as the 
loss function instead of, e.g., an MSE 
criterion that requires having .x ,igt  This 
pretrained denoiser can then be fine-
tuned at test time, with x0  using the same 
SURE criterion [19].

Potentially, the direct fine-tuning 
approach, which is mentioned above, 
can be used for DNNs trained for gen-
eral tasks (e.g., by using least-squares 
loss or GSURE if f is a linear opera-
tor). However, it has been shown that 
a model that has been trained for a 
specific task, i.e., a specific instance of 
the forward/observation model f and a 
specific class of images, suffers from a 
significant performance drop when it is 
tested on data that (even slightly) mis-
match the training assumptions [2], [4]. 
Therefore, a promising line of research 
focuses on fine-tuning pretrained mod-
els that can be used to tackle solely the 
signal’s prior, allowing for flexibility in 
the observation model at test time.

While generative models are natural 
candidates for models that can be used 
to impose only the signal’s prior, the lit-
erature on PnP/RED [55], [56] has dem-
onstrated that plain Gaussian denoisers 
can take this role as well. Incorporating 
external and internal learning by fine-
tuning pretrained CNN denoisers via the 
given x0  and plugging them into a PnP/
RED scheme was proposed in [4]. This 
paper uses a PnP based on the proxi-
mal gradient optimization method (in 
the signal processing community, this 
algorithm is oftentimes referred to as the 
iterative soft thresholding algorithm), 
which we present here. The goal of this 
approach is to minimize with respect to 
x an objective function of the form

 ( , ) ( )x x s x0, b+  (14)

which is composed of a data fidel-
ity term ( ; )x x0,  [e.g., the least-squares 
term ( , ) ( ) ,]x x f x x0 0

2, < <= -  a signal 
prior term ( ),s x  and a positive hyper-
parameter b  that balances them. Tradi-
tionally, the prior term s is a nonsmooth Ta
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explicit function. This motivates computing a gradient step up-
date only for the data term ,  while handling s with a proximal 
operation. Formally, starting with an initial ,x( )0  the proximal 
gradient method reads as

 ( , )x x x x( ) ( ) ( )t t
x

t1
0d ,n= -+u  (15)

 ( )xx prox( ) ( )
( )

t t
s

1 1= $nb
+ +u  (16)

where n  is a step-size and the operation

 ( ) ( )argminx z x s z
2
1prox ( )s

z

2
|= - +$  (17)

is known as the proximal mapping of ( )s $  at the point .x  Notice 
that every iteration of the algorithm is decoupled into two steps. 
The first reflects the effect of the observation model, and the sec-
ond reflects the effect of the prior. The core idea behind the PnP 
approach is recognizing (17) as the optimization problem that 
is associated with Gaussian denoising (which holds true even 
if f reflects a different observation model) and thus, instead of 
explicitly defining the function s and computing (16), replacing 
(16) with the execution of an off-the-shelf denoiser ( )h xv)  with a 
suitable noise level ,v)  namely, ( ) .x h x( ) ( )t t1 1= v

+ +) u

The PnP concept can be similarly utilized when minimiz-
ing (14) with other optimization methods that include a proxi-
mal mapping step like (16), e.g., the ADMM [55]. It has been 
shown that the approach is especially beneficial when using pre-
trained modern DNN denoisers, ( ; )h $ i  (where we omitted the 
denoiser’s noise level for brevity), rather than model-based (e.g., 
sparsity-based) denoisers.

The work in [4] suggested adapting a pretrained CNN denois-
er ( ; )h $ i  to x0  before plugging it into a PnP scheme. Specifi-
cally, the authors used the scheme in (15) and (16), but with a 
BP fidelity term (11) rather than a plain least-squares term, and 
named the method iterative denoising and backward projection 
(IDBP)–CNN–image adaptation (IA) (in light of the similarity to 
the algorithm in [52], which does not include IA). In this case, 
(15), with step-size ,1h =  forms a (back) projection of x( )t  onto 
the subspace : ( ) :x f x x0=" ,

 
( )

( ) .

x f x I f f x

x f x fx

( )
( )

( ) ( )

t
t

t t

1 0

0

= + -

= + -

@ @

@

+u
 

(18)

In many cases (e.g., deblurring and superresolution), f @  (the 
pseudoinverse of f) can be implemented as efficiently as .f T  In 
PnP/RED methods, the trainable model ( ; )h $ i  is a denoiser. As-
suming that the given observation x0  contains noticeable pat-
terns of the original ,xgt  the fine-tuning procedure can be done by 
synthetically injecting Gaussian noise into .x0  Specifically, the 
objective for the fine-tuning optimization is given by

 ( ; )h P x P xi i i
i

0 0 1h i+ -/  (19)

where Pi  denotes patch extractions, ih  is Gaussian noise (with 
a standard deviation that matches the pretrained denoiser) that is 

randomly drawn at each optimization iteration, and the sum goes 
over the different patches (some of which are obtained by stan-
dard augmentations). Essentially, the adapted denoiser scheme is 
akin to the ZSSR scheme in Figure 4, but instead of synthetically 
downsampling ,x0  it is synthetically noised.

The IDBP-CNN-IA was examined in different superresolu-
tion settings, where the assumption of the existence of patterns 
of xgt  in ,x0  possibly under some level of noise, is justified. The 
method was shown to outperform ZSSR (due to utilizing exter-
nal data in the pretrained denoiser) as well as task-specific DNN 
superresolvers in cases where f and the noise level at test time 
mismatch those used in training (contrary to the flexibility of the 
PnP/RED approaches).

As we mentioned above, it is also natural to specialize gen-
erative models on a given image .x0  Interestingly, while GANs 
are significantly different than denoisers, the recent generative 
approaches based on score/diffusion models [50], [51] are based 
on offline training of Gaussian denoisers and iterative execution 
of them for image synthesis in a way that shares  similarity with 
PnP/RED methods. Accordingly, instead of fine-tuning a gen-
eral-purpose denoiser, [27] has suggested adapting off-the-shelf 
networks of diffusion models via a procedure that resembles 
(19). Nevertheless, the proposed approach in [27], dubbed adap-
tive diffusion for image reconstruction, has a major difference 
from the one in [4], which can essentially be applied to any plain 
denoiser ( ; )h $ i  in PnP/RED frameworks. Instead of building on 
the assumption that x0  contains noticeable patterns of the origi-
nal ,xgt  which limits the applicability of the approach, the authors 
propose to use x0  for retrieving related clean images from an 
external dataset, which will be used to tune the denoiser in lieu 
of x0  in (19). In more detail, it is proposed to look for k-nearest 
neighbors (kNNs) of x0  in a diverse external dataset, with dis-
tance that is computed in neural embedding space, specifically, 
the Contrastive Language–Image Pretraining (CLIP) embedding 
space. Empirically, it is shown that even for a degraded x0  (e.g., 
a blurry version of ),xgt  the kNNs of x0  in CLIP’s embedding 
space are similar to the unknown ,x0  typically containing the 
same kind of key objects.

Since their invention [47], GANs have also been shown to 
be a powerful technique for generative modeling. This has natu-
rally led to using pretrained GANs as priors in imaging inverse 
problems [57]. The outcome of training a GAN is a genera-
tor that maps a low-dimensional Gaussian vector z Rk!  to a 
signal space in Rn  ( ) .k n%  To maintain notation consistency 
across the article, we denote the generator by ( ; ),h $ i  where i  
are the GAN’s parameters that have already been optimized in 
the offline phase. Consequently, given ,x0  one can search for a 
reconstruction of xgt  only in the range of the generator. This can 
be done by setting ( ; ),x h z i=t u  where zu  is obtained by minimiz-
ing a data fidelity term:

 ( ( ; )) .min f h z x
z

0
2

i -  (20)

This method, known as compressed sensing using generative 
models (CSGM), has been proposed in [57]. However, already 
in [57], and later, with more focus, in [5], it has been shown that 
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while GANs can generate visually pleasing synthetic samples, 
the above procedure tends to fail to produce successful estimates 
of ,xgt  as it is very unlikely that an image in the range of h will 
sufficiently match an arbitrary image xgt  (this issue has been 
oftentimes called “limited representation capabilities” or “mode 
collapse” of GANs).

The image-adaptive GAN (IAGAN) method [5] has sug-
gested addressing this limitation via internal learning at test time. 
Specifically, the IAGAN approach suggests carefully tuning the 
generator’s parameters and the latent vector simultaneously at 
test time by

 ( ( ; ))min f h z x
,z

0
2

i -
i

 (21)

where z is initialized by zu  [optimizing z alone in (20)] and i  is 
initialized by the pretrained parameters. Denoting the  minimizers 
by zt  and ,it  the latent image is estimated as ( ; ) .x h z i=t t t  In the 
noiseless case, a postprocessing BP step, as stated in the “En-
hancing Pretrained Models via Internal Learning” section (with 
xt  in lieu of ),x( )t  is suggested for boosting the results. The IA-
GAN has different follow up works, such as the deep genera-
tive prior [25], which used it also for image editing, and pivotal 
tuning inversion [58], which applied it for image editing with 
StyleGAN specifically.

In “Adapting a Pretrained Generative Adversarial Network 
to the Test Image Using an Image-Adaptive Generative Adver-
sarial Network,” we present visual results of the IAGAN for 
compressed sensing and superresolution and compare them with 
the results of the DIP and CSGM. These results showcase the 
benefits of incorporating internal and external learning. 

At this point, let us emphasize the differences and similarities 
between image reconstruction (solving inverse problems) and 
image editing in the context of fine-tuning a generative model. 
The main difference is that in image editing, the user is given the 
clean ground truth image, ,x x0 gt=  which they aim to perceptu-
ally modify, e.g., change the object color or expression. Clearly, 
evaluating the success of such tasks is subjective in nature, and 
the tasks’ implementation nowadays is typically based on pre-
trained generative models, such as GANs. Since a clean image, 

,x x0 gt=  is given to the user, finding the best latent vector z that 
expresses the projection of the image to the model’s range [e.g., 
via (20), with ]f I=  is easier than in inverse problems, where 
x0  might be a seriously degraded version of .xgt  Moreover, in 
editing, there is no risk of fitting noise/artifacts into the inversion.

Based on the above, one may ask, Why is the fine-tuning/
internal learning of a pretrained model required for image edit-
ing? The answer to this question is very similar to the reason 
fine-tuning is required for inverse problems [5], [58]. Even gen-
erative models that are specifically trained to allow easy editing, 
such as StyleGAN, tend to perform worse when they are given 
an arbitrary image rather than an image generated by the model 
itself. The fine-tuning itself resembles (21) (with )f I=  but uses 
a metric like the learned perceptual image patch similarity (dis-
tance in some neural embedding) [59] that is more aligned with 
human perception than the MSE. Also, even though there is no 
danger of fitting noise, the statement that we made at the begin-

ning of this section still holds true: exaggerated tuning will over-
ride or mask useful semantics/patterns (required for editing, in 
this case) that have been captured in the offline phase. Therefore, 
early stopping is still used for image editing tasks [25], [58].

So far, we have discussed methods that fine-tune all the 
DNN’s parameters. Potentially, restricting the number of param-
eters being optimized at test time can mitigate the need for early 
stopping. The work in [48] considers using pretrained GANs for 
inverse problems and takes an approach similar to the IAGAN 
[5]: also optimizing the generator’s parameters, not only the 
latent vector [see (21) and (20)]. However, the authors suggest 
optimizing only the intermediate layers of the network rather 
than all the parameters. As the focus of their paper is on expand-
ing the range of the generator, robustness to overfitting noise has 
not been examined in [48].  Focusing on the denoising task, the 
work in [26] has suggested a gain tuning approach. Specifically, 
each learned filter (and its bias) in a pretrained CNN denoiser is 
multiplied by a newly introduced scalar gain parameter, which is 
initialized with 1. Then, test time fine-tuning involves optimizing 
only the gain parameters. The authors examined the optimization 
objectives of both SURE and Noise2Void. As CNN filters are 
typically of size 3 3#  (so, each filter and its bias introduce 10 
parameters), the number of parameters optimized in gain tuning 
is 10% of the original model. This restricted optimization, which 
affects only the filters’ gains, has been empirically shown to 
resolve the problem of fitting noise. Also, it has been shown that, 
while in synthetic experiments, SURE has led to better results, 
when testing a denoiser, which is trained with simulations, on 
real electron microscope images, the Noise2Void tuning loss 
has been shown to be beneficial. A limitation of restricting the 
tunable parameters may arise for out-of-distribution test imag-
es, which are significantly different from the training data. Yet, 
improvements gained by the approach have been shown in [26] 
for various out-of-distribution cases.

Metalearning
In this section, we discuss methods that, instead of using off-
the-shelf pretrained models, use metalearning techniques in the 
offline phase, with the goal of reducing the fine-tuning time at 
the inference phase [23], [24].

Focusing on the superresolution task (i.e., f d=  is a downs-
ampling operator), metatransfer learning for ZSSR (MZSR) [23] 
and missing information-based fidelity and learned regulariza-
tion for single-image superresolution (MLSR) [24] proposed to 
incorporate ZSSR as the metatest phase of the model-agnostic 
metalearning (MAML) framework [60], which attempts to train 
a model such that it can be adapted to multiple tasks within a few 
optimization iterations at test time. Let us present MZSR (MLSR 
follows a similar idea). The starting point is a relatively light 
DNN, ( ; ),h $ i  similar to the one used by ZSSR, which (con-
trary to ZSSR) exploits offline external learning via a large-scale 
dataset of ground truth images ,x ,igt" ,  a bicubic downsampling 
kernel setting ( ) ,x d x ,i igt=" ,  and norm-1,  loss [see (1)]. Then, 
the DNN parameters are offline tuned by a metatraining scheme, 
which is applied after defining a family of Gaussian downsam-
pling kernels d j" , from which “tasks” will be drawn.
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An iteration of metatraining includes drawing an image (or 
minibatch) from the dataset x ,igt  and a task, i.e., a downsampling 
kernel .d j  Let the jth task loss be ( ) ( ( ); ) .h d x x, ,j j i i 1gt gt, i i= -  
An update that will decrease this loss is given by

( ) ( ) .j jd,i i i a i= -u

The objective that is actually being used for updating i  in this 
iteration attempts to minimize the total loss, averaged over all the 
tasks (kernels), at the look-ahead point :ji

 ( ( )) .min j j
j

, i i
i

l

l

u/  (22)

Instead of using internal learning for training deep neu-
ral networks (DNNs) from scratch using the observed 
image, it is beneficial to adapt DNNs, which have 
already been trained on massive external data, to the 
observed image.

The prior information in a generative adversarial net-
work’s (GAN’s) generator, ( ; ),h $ i  trained to map low-
dimensional Gaussian vectors z  to data of the type of xgt  
(e.g., natural images of a certain class), can be utilized for 
estimating xgt  from its observations ( ) ,x f x e0 gt= +  where 
f  is a known degradation model and e  is noise.
The popular compressed sensing using generative mod-

els (CSGM) method [57] has suggested the estimator 
( ; ),x h z i=t u  where i  is fixed to its pretrained values and 

zu  is obtained by

( ( ; )) .min f h z x
z

0
2

i -

Yet, CSGM fails to produce results that are aligned with 
the object in ,xgt  due to the limited representation capabili-
ties (“mode collapse”) of generative models.

The image-adaptive GAN (IAGAN) [5] approach 
addresses this limitation via internal learning at test time. 
Specifically, the IAGAN reconstructs the signal as 

( ; ),x h z i=t t t  where the generator’s parameters it  and the 
latent vector zt  are obtained by simultaneously minimizing

( ( ; ))min f h z x
,z

0
2

i -
i

where z  is initialized by zu  (optimizing z  alone) and i  is 
initialized by the pretrained parameters.

In the noiseless case, a postprocessing back propagation 
step, as stated in the “Enhancing Pretrained Models via 
Internal Learning” section, is suggested for boosting the results.

Figure S3 displays the benefit of this test time adaptation 
in several tasks.

Adapting a Pretrained Generative Adversarial Network to the Test Image Using an Image-Adaptive 
Generative Adversarial Network

(a)

(b)

FIGURE S3. (a) Compressed sensing (CS), with 50% pixels and a noise level of 10/255. (b) Superresolution (SR) ×8, with a bicubic kernel and noise 
level of 10/255. From left to right: the inverse fast Fourier transform (CS), or bicubic upsampling (SR), of ;x0  deep image prior (internal learning); 
CSGM [externally learned progressive growing GAN (PGGAN)]; and IAGAN (internally + externally trained PGGAN). (Taken from [5] and used by 
permission of the authors.)
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Essentially, MAML tries to reach a point that is one gradient step 
from being optimal for the sum of tasks. Oftentimes, more than 
one gradient step is taken (unfolded) when defining ( )ji iu  (e.g., 
[23] used five steps). The main difference between [23] and [24] 
is that the latter uses metatraining based on ZSSR, without using 

,x ,igt  though it still has the same “supervised” initial training.
At test time, the metatest fine-tuning is performed exactly 

as described for ZSSR in (5). However, now, instead of train-
ing the network from scratch, the weights are initialized at the 
point obtained via MAML. The gain of its offline training is that 
this approach has been shown to be competitive with ZSSR, with 
only a single optimization step at test time and outperforming it 
with more steps.

The MZSR scheme appears in Figure 6. Though being con-
ceptually elegant, note that the main difficulty of this approach is 
obtaining a successful metalearning stage, as MAML is known 
to suffer from stability issues.

Open problems and challenges
We conclude this review with a discussion of open problems and 
challenges in internal learning and the role of signal processing 
in addressing them.

As described in this article, the main limitation of “pure” 
internal learning, where models are trained from scratch based 
on ,x0  is the potential performance drop due to not exploiting the 
massive amount of external data that are available in many tasks. 
On the other hand, the main benefit is bypassing any assump-
tions made in the offline training phase (e.g., on the ground truth 
data and the observation model) that can mismatch the situation 
at test time.

Therefore, whenever informative ground truth external data 
are available, a good balance between the pros and cons of inter-
nal and external learning can be obtained by offline training 
powerful models that will serve only as the signal’s prior. Such 

models may be generative models (e.g., GANs and diffusion 
models) or, as discussed, even plain denoisers. Another alterna-
tive is using deep unfolding to generate neural architectures with 
their optimization objectives [61], [62]. At test time, these mod-
els may be adapted to observations and used for restoring the 
latent test image. The main limitations of this adaptation are the 
dependency on the level of degradation in the observations and 
the additional computational cost at test time.

Tools and ideas from signal processing can be utilized to 
mitigate these issues. For example, since the “training data” for 
internal learning consist merely of the degraded image, one can 
use traditional signal processing methods to enhance the obser-
vations. Furthermore, the data that are used at test time may be 
enriched via transformations of observations beyond regular 
augmentations. As for reducing the fine-tuning time, one may try 
to utilize “universal representations,” such as wavelets for imag-
es, within the network, in lieu of learnable parameters that may 
overfit in the offline training phase, and by that, reduce the num-
ber of parameters that need to be fine-tuned. Alternatively, low-
rank matrix factorization strategies can be utilized, as recently 
done in [63], in order to reduce the dimension of the optimization 
variables at test time.

Another challenge is the “blind setting,” where the obser-
vation model f in (3) is fully unknown or semiunknown. The 
focus of this article was on nonblind cases, where f is known. 
In fact, in the blind setting, external learning is oftentimes not 
possible, while some of the methods discussed here can be 
applied after an initial phase of estimating f (e.g., kernel esti-
mation in deblurring and superresolution). The quality of this 
estimation obviously affects the succeeding image reconstruc-
tion. In the signal processing community, there are various 
approaches to estimating such nuisance parameters. Incor-
porating them with internal learning may boost their perfor-
mance, as shown in [64] and [65].

External Large-Scale Dataset

Large-Scale Training

Metatransfer Learning

θ0

θ1

θ2

θT
θM

θM θ̂k

θN

θN–1

Input LR

Input LR

Downsample

Metatest

Self-Supervised Internal Learning

Dataset Involvement
Parameter Updates

Superresolution With CNN
Downsampling With Specific Kernel

FIGURE 6. The MZSR approach. During metatransfer learning, the external dataset is used. Internal learning is done during metatest time. From random 
initial point ,0i  large-scale dataset DIV2K, with bicubic degradation, is exploited to obtain .Ti  Then, metatransfer learning learns a good representation 

Mi  for superresolution tasks with diverse blur kernel scenarios. In the metatest phase, ZSSR-based self-supervision is used, with the test blur kernel and 
the test image. LR: low resolution. (Taken from [23] and used by permission of the authors.)
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Finally, note that theoretical understanding of internal learn-
ing is at its infancy. For example, no recovery guarantees, such as 
those that have been established in the compressed sensing litera-
ture, exist when the signal is parameterized by a neural network. 
Theoretical advances of this kind would be highly significant.

Acknowledgment
Tom Tirer was supported by the Israel Science Foundation (ISF), 
under Grant 1940/23. Raja Giryes was supported by European 
Research Council (ERC) Starting Grant 757497, by the Tel Aviv 
University Center for AI and Data Science, and by a KLA grant. 
Se Young Chun was supported by an Institute of Information and 
Communications Technology Planning and Evaluation (IITP) 
grant, funded by the Korean government [Ministry of Science 
and ICT (MSIT)], [Grant 2021-0-01343, Artificial Intelligence 
Graduate School Program (Seoul National University)], and Na-
tional Research Foundation of Korea (NRF) grants, funded by the 
Korean government (MSIT) (Grants NRF-2022R1A4A1030579 
and NRF-2022M3C1A309202211). Yonina C. Eldar was sup-
ported by the ERC, under European Union Horizon 2020 re-
search and innovation program Grant 101000967; by the ISF, 
under Grant 536/22; and by an Amazon research fund.

Authors
Tom Tirer (tirer.tom@gmail.com) received his Ph.D. degree in 
electrical engineering from Tel Aviv University, Tel Aviv, Israel, 
in 2020. He is currently an assistant professor with the Faculty 
of Engineering, Bar-Ilan University, Ramat-Gan 5290002, 
Israel. He received the Weinstein Prize for research in signal 
processing (2016, 2017, and 2019) and a KLA excellence 
award (2020). His research interests include signal and image 
processing, machine learning, optimization, and their intercon-
nections. He is a Member of IEEE. 

Raja Giryes (raja@tauex.tau.ac.il) received his Ph.D. degree 
in computer science from Technion in 2014 under the supervi-
sion of Prof. Michael Elad. He is an associate professor in the 
School of Electrical Engineering, Tel Aviv University, Tel Aviv 
69978, Israel. He is an associate editor of IEEE Transactions on 
Pattern Recognition and Machine Intelligence, IEEE 
Transactions on Image Processing, and Pattern Recognition. He 
has received several awards, including the Intel Research and 
Excellence Award (2005 and 2013) and the Texas Instruments 
Excellence in Signal Processing Award (2008). His research 
interests include signal and image processing and machine 
learning and, in particular, deep learning, inverse problems, 
sparse representations, computational photography, and signal 
and image modeling. He is a Senior Member of IEEE and a 
member of the Israel Young Academy. 

Se Young Chun (sychun@snu.ac.kr) received his Ph.D. 
degree in electrical engineering systems from the University of 
Michigan, Ann Arbor, MI, USA, in 2009. He is currently a pro-
fessor in the Department of Electrical and Computer Engineering 
and with the Interdisciplinary Program in AI, Seoul National 
University, Seoul 08826, South Korea. He is an associate editor 
of IEEE Transactions on Image Processing and IEEE 
Transactions on Computational Imaging as well as a member of 

IEEE Bio Imaging and Signal Processing Technical Committee. 
He was the recipient of the 2015 Bruce Hasegawa Young 
Investigator Medical Imaging Science Award from the IEEE 
Nuclear and Plasma Sciences Society. His research  interests 
include computational imaging algorithms using deep learning 
and statistical signal processing for applications in medical imag-
ing, computer vision, and robotics. He is a Member of IEEE. 

Yonina C. Eldar (yonina.eldar@weizmann.ac.il) received her 
Ph.D. degree in electrical engineering and computer science 
from the Massachusetts Institute of Technology (MIT), 
Cambridge, MA, USA, in 2002. She is currently a professor in 
the Department of Mathematics and Computer Science, 
Weizmann Institute of Science, Rehovot 7610001, Israel, where 
she heads the Center for Biomedical Engineering and Signal 
Processing and holds the Dorothy and Patrick Gorman 
Professorial Chair. She is also a visiting professor at MIT, a visit-
ing scientist at the Broad Institute, and an adjunct professor at 
Duke University. She is the editor-in-chief of Foundations and 
Trends in Signal Processing, a member of several IEEE techni-
cal and award committees, and the head of the Committee for 
Promoting Gender Fairness in Higher Education Institutions in 
Israel. She is a Fellow of IEEE, a member of the Israel Academy 
of Sciences and Humanities, and a fellow of the European 
Association for Signal Processing.

References
[1] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in Proc. IEEE 
Conf. Comput. Vis. Pattern Recognit., 2018, pp. 9446–9454, doi: 10.1109/
CVPR.2018.00984.

[2] A. Shocher, N. Cohen, and M. Irani, “zero-shot super-resolution using deep 
internal learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, 
pp. 3118–3126, doi: 10.1109/CVPR.2018.00329.

[3] T. R. Shaham, T. Dekel, and T. Michaeli, “SinGAN: Learning a generative 
model from a single natural image,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 
Oct. 2019, pp. 4569–4579, doi: 10.1109/ICCV.2019.00467.

[4] T. Tirer and R. Giryes, “Super-resolution via image-adapted denoising CNNs: 
Incorporating external and internal learning,” IEEE Signal Process. Lett., vol. 26, 
no. 7, pp. 1080–1084, Jul. 2019, doi: 10.1109/LSP.2019.2920250.

[5] S. Abu Hussein, T. Tirer, and R. Giryes, “Image-adaptive GAN based reconstruction,” 
in Proc. AAAI Conf. Artif. Intell., 2020, pp. 3121–3129, doi: 10.1609/aaai.v34i04.5708.

[6] Y. Gandelsman, A. Shocher, and M. Irani, “‘Double-dip’: Unsupervised image 
decomposition via coupled deep-image-priors,” in Proc. IEEE Conf. Comput. Vis. Pattern 
Recognit. (CVPR), Jun. 2019, pp. 11,018–11,027, doi: 10.1109/CVPR.2019.01128.

[7] Z. Cheng, M. Gadelha, S. Maji, and D. Sheldon, “A Bayesian perspective on the 
deep image prior,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 
2019, pp. 5438–5446, doi: 10.1109/CVPR.2019.00559.

[8] R. Heckel and P. Hand, “Deep decoder: Concise image representations from 
untrained non-convolutional networks,” 2018, arXiv:1810.03982. 

[9] J. Liu, Y. Sun, X. Xu, and U. S. Kamilov, “Image restoration using total varia-
tion regularized deep image prior,” in Proc. IEEE Int. Conf. Acoust., Speech Signal 
Process. (ICASSP), Piscataway, NJ, USA: IEEE, 2019, pp. 7715–7719, doi: 
10.1109/ICASSP.2019.8682856.

[10] Y. Jo, S. Y. Chun, and J. Choi, “Rethinking deep image prior for denoising,” in 
Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 5067–5076, doi: 
10.1109/ICCV48922.2021.00504.

[11] J. Zukerman, T. Tirer, and R. Giryes, “BP-DIP: A backprojection based deep image 
prior,” in Proc. 28th Eur. Signal Process. Conf. (EUSIPCO), 2020, pp. 675–679, 
doi: 10.23919/Eusipco47968.2020.9287540.

[12] Z. Sun, F. Latorre, T. Sanchez, and V. Cevher, “A plug-and-play deep image 
prior,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), 2021, 
pp. 8103–8107, doi: 10.1109/ICASSP39728.2021.9414879.

[13] G. Mataev, P. Milanfar, and M. Elad, “DeepRED: Deep image prior powered 
by RED,” in Proc. IEEE Int. Conf. Comput. Vis. Workshops, 2019, pp. 1–10. 

[14] C. Metzler, A. Mousavi, R. Heckel, and R. Baraniuk, “Unsupervised learning 
with Stein’s unbiased risk estimator,” in Proc. Int. Biomed. Astronomical Signal 
Process. (BASP) Frontiers Workshop, 2019.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on November 21,2024 at 19:13:30 UTC from IEEE Xplore.  Restrictions apply. 

mailto:tirer.tom@gmail.com
mailto:sychun@snu.ac.kr
mailto:yonina.eldar@weizmann.ac.il
http://dx.doi.org/10.1109/CVPR.2018.00984
http://dx.doi.org/10.1109/CVPR.2018.00984
http://dx.doi.org/10.1109/CVPR.2018.00329
http://dx.doi.org/10.1109/ICCV.2019.00467
http://dx.doi.org/10.1109/LSP.2019.2920250
http://dx.doi.org/10.1609/aaai.v34i04.5708
http://dx.doi.org/10.1109/CVPR.2019.01128
http://dx.doi.org/10.1109/CVPR.2019.00559
http://dx.doi.org/10.1109/ICASSP.2019.8682856
http://dx.doi.org/10.1109/ICCV48922.2021.00504
http://dx.doi.org/10.1109/ICASSP39728.2021.9414879


57IEEE SIGNAL PROCESSING MAGAZINE   |   July 2024   |

[15] S. Abu-Hussein, T. Tirer, S. Y. Chun, Y. C. Eldar, and R. Giryes, “Image res-
toration by deep projected GSURE,” in Proc. IEEE/CVF Winter Conf. Appl. 
Comput. Vis. (WACV), Jan. 2022, pp. 91–100, doi: 10.1109/WACV51458. 
2022.00017.

[16] Y. Quan, M. Chen, T. Pang, and H. Ji, “Self2self with dropout: Learning self-
supervised denoising from single image,” in Proc. IEEE/CVF Conf. Comput. Vis. 
Pattern Recognit. (CVPR), 2020, pp. 1887–1895, doi: 10.1109/CVPR42600. 
2020.00196.

[17] Y. Nikankin, N. Haim, and M. Irani, “SinFusion: Training diffusion models on 
a single image or video,” 2022, arXiv:2211.11743.

[18] V. Kulikov, S. Yadin, M. Kleiner, and T. Michaeli, “SinDDM: A single image 
denoising diffusion model,” in Proc. Int. Conf. Mach. Learn., PMLR, 2023, 
pp. 17,920–17,930, doi: 10.5555/3618408.3619146/

[19] S. Soltanayev and S. Y. Chun, “Training deep learning based denoisers without 
ground truth data,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2018, 
pp. 3261–3271. 

[20] M. Zhussip, S. Soltanayev, and S. Y. Chun, “Training deep learning based 
image denoisers from undersampled measurements without ground truth and with-
out image prior,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 
Jun. 2019, pp. 10,247–10,256, doi: 10.1109/CVPR.2019.01050.

[21] M. Zhussip, S. Soltanayev, and S. Y. Chun, “Extending Stein’s unbiased risk 
estimator to train deep denoisers with correlated pairs of noisy images,” in Proc. 
Adv. Neural Inf. Process. Syst. (NeurIPS), 2019, pp. 1465–1475. 

[22] K. Kim, S. Soltanayev, and S. Y. Chun, “Unsupervised training of denoisers for 
low-dose CT reconstruction without full-dose ground truth,” IEEE J. Sel. Topics 
Signal Process., vol. 14, no. 6, pp. 1112–1125, Oct. 2020, doi: 10.1109/JSTSP. 
2020.3007326.

[23] J. W. Soh, S. Cho, and N. I. Cho, “Meta-transfer learning for zero-shot super-
resolution,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 
2020, pp. 3513–3522, doi: 10.1109/CVPR42600.2020.00357.

[24] S. Park, J. Yoo, D. Cho, J. Kim, and T. H. Kim, “Fast adaptation to super-reso-
lution networks via meta-learning,” in Proc. Eur. Conf. Comput. Vis.(ECCV), 2020, 
pp. 754–769, doi: 10.1007/978-3-030-58583-9_45.

[25] X. Pan, X. Zhan, B. Dai, D. Lin, C. C. Loy, and P. Luo, “Exploiting deep gen-
erative prior for versatile image restoration and manipulation,” in Proc. Eur. Conf. 
Comput. Vis. (ECCV), 2020, pp. 262–277. 

[26] S. Mohan, J. Vincent, R. Manzorro, P. Crozier, C. Fernandez-Granda, and E. 
Simoncelli, “Adaptive denoising via gaintuning,” in Proc. Adv. Neural Inf. Process. 
Syst. (NeurIPS), 2021, pp. 1–14.

[27] S. Abu-Hussein, T. Tirer, and R. Giryes, “ADIR: Adaptive diffusion for image 
reconstruction,” 2022, arXiv:2212.03221.

[28] M. Irani, “‘Blind’ visual inference by composition,” Pattern Recognit. Lett., 
vol. 124, pp. 39–54, Jun. 2019, doi: 10.1016/j.patrec.2017.10.021.

[29] G. Greshler, T. R. Shaham, and T. Michaeli, “Catch-a-waveform: Learning to 
generate audio from a single short example,” in Proc. Adv. Neural Inf. Process. 
Syst., A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., 2021, 
pp. 1–13.

[30] F. Williams, T. Schneider, C. Silva, D. Zorin, J. Bruna, and D. Panozzo, 
“Deep geometric prior for surface reconstruction,” in Proc. IEEE Conf. Comput. 
Vis. Pattern Recognit., 2019, pp. 10,122–10,131, doi: 10.1109/CVPR.2019. 
01037.

[31] R. Hanocka, G. Metzer, R. Giryes, and D. Cohen-Or, “Point2Mesh: A self-pri-
or for deformable meshes,” ACM Trans. Graph., vol. 39, no. 4, pp. 126:1–126:12, 
Jul. 2020, doi: 10.1145/3386569.3392415.

[32] A. Hertz, R. Hanocka, R. Giryes, and D. Cohen-Or, “Deep geometric texture 
synthesis,” ACM Trans. Graph., vol. 39, no. 4, pp. 108:1–108:11, Jul. 2020, doi: 
10.1145/3386569.3392471.

[33] G. Metzer, R. Hanocka, D. Zorin, R. Giryes, D. Panozzo, and D. Cohen-Or, 
“Orienting point clouds with dipole propagation,” ACM Trans. Graph., vol. 40, 
no. 4, pp. 1–14, Jul. 2021, doi: 10.1145/3450626.3459835.

[34] G. Metzer, R. Hanocka, R. Giryes, and D. Cohen-Or, “Self-sampling for neu-
ral point cloud consolidation,” ACM Trans. Graph., vol. 40, no. 5, pp. 1–14, Sep. 
2021, doi: 10.1145/3470645.

[35] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional net-
work for image super-resolution,” in Proc. 13th Eur. Conf. Comput. Vis. – 
(ECCV), Zurich, Switzerland. Cham, Switzerland: Springer-Verlag, Sep. 6–12, 
2014, pp. 184–199, doi: 10.1007/978-3-319-10593-2_13.

[36] D. Glasner, S. Bagon, and M. Irani, “Super-resolution from a single image,” in 
Proc. IEEE 12th Int. Conf. Comput. Vis., Piscataway, NJ, USA: IEEE, 2009, 
pp. 349–356, doi: 10.1109/ICCV.2009.5459271.

[37] M. Zontak and M. Irani, “Internal statistics of a single natural image,” in 
Proc. Conf. Comput. Vis. Pattern Recognit., Piscataway, NJ, USA: IEEE, 2011, 
pp. 977–984, doi: 10.1109/CVPR.2011.5995401.

[38] D. P. Kingma and J. Ba, “ADAM: A method for stochastic optimization,” 2014, 
arXiv:1412.6980.

[39] N. Shabtay, E. Schwartz, and R. Giryes, “PIP: Positional-encoding image 
prior,” 2023, arXiv:2211.14298.

[40] H. Wang, T. Li, Z. Zhuang, T. Chen, H. Liang, and J. Sun, “Early stopping for 
deep image prior,” Trans. Mach. Learn. Res., 2023. 

[41] C. M. Stein, “Estimation of the mean of a multivariate normal distribution,” 
Ann. Statist., vol. 9, no. 6, pp. 1135–1151, Nov. 1981, doi: 10.1214/aos/1176345632.

[42] Y. C. Eldar, “Generalized SURE for exponential families: Applications to regu-
larization,” IEEE Trans. Signal Process., vol. 57, no. 2, pp. 471–481, Feb. 2009, 
doi: 10.1109/TSP.2008.2008212.

[43] Y. Mansour and R. Heckel, “Zero-shot noise2noise: Efficient image denoising 
without any data,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. 
(CVPR), 2023, pp. 14,018–14,027, doi: 10.1109/CVPR52729.2023.01347.

[44] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and 
T. Aila, “Noise2Noise: Learning image restoration without clean data,” in Proc. Int. 
Conf. Mach. Learn. (ICML), 2018, pp. 2965–2974. 

[45] A. Krull, T.-O. Buchholz, and F. Jug, “Noise2void-learning denoising from 
single noisy images,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, 
pp. 2124–2132, doi: 10.1109/CVPR.2019.00223.

[46] J. Batson and L. Royer, “Noise2Self: Blind denoising by self-supervision,” in 
Proc. 36th Int. Conf. Mach. Learn., 2019, vol. 97, pp. 524–533. 

[47] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, 
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proc. Adv. Neural 
Inf. Process. Syst., 2014, pp. 2672–2680. 

[48] G. Daras, J. Dean, A. Jalal, and A. Dimakis, “Intermediate layer optimization 
for inverse problems using deep generative models,” in Proc. 38th Int. Conf. Mach. 
Learn., 2021, vol. 139, pp. 2421–2432. 

[49] J. Yoo, K. H. Jin, H. Gupta, J. Yerly, M. Stuber, and M. Unser, “Time-
dependent deep image prior for dynamic MRI,” IEEE Trans. Med. Imag., vol. 40, 
no. 12, pp. 3337–3348, Dec. 2021, doi: 10.1109/TMI.2021.3084288.

[50] Y. Song and S. Ermon, “Generative modeling by estimating gradients of the 
data distribution,” in Proc. Adv. Neural Inf. Process. Syst., 2019, vol. 32, pp. 1–13.

[51] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in 
Proc. Adv. Neural Inf. Process. Syst., 2020, vol. 33, pp. 6840–6851.

[52] T. Tirer and R. Giryes, “Image restoration by iterative denoising and backward 
projections,” IEEE Trans. Image Process., vol. 28, no. 3, pp. 1220–1234, Mar. 
2019, doi: 10.1109/TIP.2018.2875569.

[53] T. Tirer and R. Giryes, “Back-projection based fidelity term for ill-posed linear 
inverse problems,” IEEE Trans. Image Process., vol. 29, pp. 6164–6179, 2020, doi: 
10.1109/TIP.2020.2988779.

[54] T. Garber and T. Tirer, “Image restoration by denoising diffusion models with 
iteratively preconditioned guidance,” 2023, arXiv:2312.16519. 

[55] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors for 
model based reconstruction,” in Proc. IEEE Global Conf. Signal Inf. Process., 
Piscataway, NJ, USA: IEEE, 2013, pp. 945–948, doi: 10.1109/GlobalSIP.2013.6737048.

[56] Y. Romano, M. Elad, and P. Milanfar, “The little engine that could: 
Regularization by denoising (RED),” SIAM J. Imag. Sci., vol. 10, no. 4, pp. 1804–
1844, 2017, doi: 10.1137/16M1102884.

[57] A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing using 
generative models,” in Proc. Int. Conf. Mach. Learn., PMLR, 2017, pp. 537–546. 

[58] D. Roich, R. Mokady, A. H. Bermano, and D. Cohen-Or, “Pivotal tuning for 
latent-based editing of real images,” ACM Trans. Graph. (TOG), vol. 42, no. 1, 
pp. 1–13, 2022, doi: 10.1145/3544777.

[59] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable 
effectiveness of deep features as a perceptual metric,” in Proc. IEEE/CVF Conf. Comput. 
Vis. Pattern Recognit. (CVPR), 2018, pp. 586–595, doi: 10.1109/CVPR.2018.00068.

[60] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast 
adaptation of deep networks,” in Proc. Int. Conf. Mach. Learn., PMLR, 2017, 
pp. 1126–1135. 

[61] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable, efficient 
deep learning for signal and image processing,” IEEE Signal Process. Mag., vol. 38, 
no. 2, pp. 18–44, Mar. 2021, doi: 10.1109/MSP.2020.3016905.

[62] N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis, “Model-based deep 
learning,” Proc. IEEE, vol. 111, no. 5, pp. 465–499, May 2023, doi: 10.1109/
JPROC.2023.3247480.

[63] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. 
Chen, “LoRA: Low-rank adaptation of large language models,” 2021, 
arXiv:2106.09685. 

[64] S. Bell-Kligler, A. Shocher, and M. Irani, “Blind super-resolution kernel estimation 
using an internal-GAN,” in Proc. Adv. Neural Inf. Process. Syst., 2019, vol. 32, pp. 1–10.

[65] S. A. Hussein, T. Tirer, and R. Giryes, “Correction filter for single image 
super-resolution: Robustifying off-the-shelf deep super-resolvers,” in Proc. IEEE/
CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 2020, pp. 1425–1434, doi: 
10.1109/CVPR42600.2020.00150.

 
SP

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on November 21,2024 at 19:13:30 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/WACV51458
http://dx.doi.org/10.1109/CVPR42600.2020.00196
http://dx.doi.org/10.1109/CVPR.2019.01050
http://dx.doi.org/10.1109/JSTSP.2020.3007326
http://dx.doi.org/10.1109/CVPR42600.2020.00357
http://dx.doi.org/10.1007/978-3-030-58583-9_45
http://dx.doi.org/10.1016/j.patrec.2017.10.021
http://dx.doi.org/10.1109/CVPR.2019.01037
http://dx.doi.org/10.1145/3386569.3392415
http://dx.doi.org/10.1145/3386569.3392471
http://dx.doi.org/10.1145/3450626.3459835
http://dx.doi.org/10.1145/3470645
http://dx.doi.org/10.1007/978-3-319-10593-2_13
http://dx.doi.org/10.1109/ICCV.2009.5459271
http://dx.doi.org/10.1109/CVPR.2011.5995401
http://dx.doi.org/10.1214/aos/1176345632
http://dx.doi.org/10.1109/TSP.2008.2008212
http://dx.doi.org/10.1109/CVPR52729.2023.01347
http://dx.doi.org/10.1109/CVPR.2019.00223
http://dx.doi.org/10.1109/TMI.2021.3084288
http://dx.doi.org/10.1109/TIP.2018.2875569
http://dx.doi.org/10.1109/TIP.2020.2988779
http://dx.doi.org/10.1109/GlobalSIP.2013.6737048
http://dx.doi.org/10.1137/16M1102884
http://dx.doi.org/10.1145/3544777
http://dx.doi.org/10.1109/CVPR.2018.00068
http://dx.doi.org/10.1109/MSP.2020.3016905
http://dx.doi.org/10.1109/JPROC.2023.3247480
http://dx.doi.org/10.1109/JPROC.2023.3247480
http://dx.doi.org/10.1109/CVPR42600.2020.00150
http://dx.doi.org/10.1109/JSTSP.2020.3007326
http://dx.doi.org/10.1109/CVPR.2019.01037
http://dx.doi.org/10.5555/3618408.3619146/
http://dx.doi.org/10.1109/CVPR42600.2020.00196

	040_41msp04-giryes-3385950
	Untitled


