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Abstract—Subsampling of received wireless signals is impor-
tant for relaxing hardware requirements as well as the computa-
tional cost of signal processing algorithms that rely on the output
samples. We propose a subsampling technique to facilitate the
use of deep learning for automatic modulation classification in
wireless communication systems. Unlike traditional approaches
that rely on pre-designed strategies that are solely based on
expert knowledge, the proposed data-driven subsampling strat-
egy employs deep neural network architectures to simulate the
effect of removing candidate combinations of samples from each
training input vector, in a manner inspired by how wrapper
feature selection models work. The subsampled data is then pro-
cessed by another deep learning classifier that recognizes each of
the considered 10 modulation types. We show that the proposed
subsampling strategy not only introduces drastic reduction in
the classifier training time, but can also improve the classifica-
tion accuracy for the considered dataset. An important feature
herein is exploiting the transferability property of deep neural
networks to avoid retraining the wrapper models and obtain
superior performance through an ensemble of wrappers over
that possible through solely relying on any one of them.

Index Terms—Deep learning, wireless modulation classifica-
tion, data-driven subsampling.

I. INTRODUCTION

AUTOMATIC modulation classification plays an impor-
tant role in modern wireless communications. It finds

applications in various commercial and military areas. For
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example, Software Defined Radios (SDR) use blind recogni-
tion of the modulation type to quickly adapt to various com-
munication systems, without requiring control overhead. In
military settings, friendly signals should be securely received,
while hostile signals need to be efficiently recognized typically
without prior information. Under such conditions, advanced
real time signal processing and blind modulation recogni-
tion techniques are required. Modulation recognition is also
important for identifying the source(s) of received wireless
signals, which can enable various intelligent decisions for a
context-aware autonomous wireless communication system.

A typical modulation classifier consists of two steps: sig-
nal preprocessing and classification algorithms. Preprocessing
tasks may include noise reduction and estimation of signal
parameters such as carrier frequency and signal power. In the
second step, three popular categories of modulation recog-
nition algorithms are conventionally selected: Likelihood-
Based (LB) [2]–[7], Feature-Based (FB) [8]–[13] or using an
Artificial Neural Network (ANN) [14]–[18]. The first com-
pares the likelihood ratio of each possible hypothesis against
a threshold, which is derived from the probability density
function of the observed wave. Multiple likelihood ratio test
(LRT) algorithms have been proposed: Average LRT [19],
Generalized LRT [20], Hybrid LRT [7] and quasi-hybrid
LRT [2]. For the FB approach, the classification decision is
based solely on a subset of selected features. Both LB and
FB methods require precise estimates in the first step and
have only been derived to distinguish between few modulation
types [4], [19], [21], [22]. ANN structures such as Multi-Layer
Perceptrons (MLP) have been widely used as modulation type
classifiers [14]. Traditional MLP performs well on modula-
tion types such as AM, FM, ASK, and FSK. Recent work has
shown that deep neural networks with cutting-edge structures
could greatly improve the classification process (see, e.g., [23]
and [24]), and deliver superior performance to state-of-the-art
methods by enabling modulation recognition in the presence
of a wide variety of modulation types, and with little or no
requirements on the preprocessing step.

Deep neural networks have played a significant role in the
research domain of video, speech and image processing over
the past few years. The recent success of deep learning algo-
rithms is associated with applications that suffer from inac-
curacies in existing mathematical models and enjoy the avail-
ability of large data sets. Recently, the idea of deep learning
has been introduced for modulation classification using a Pure
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Convolutional Neural Network (PCNN) for distinguishing
between 10 different modulation types [23]. Simulation results
show that a PCNN not only demonstrates improved accu-
racy over current expert-based approaches, but also provides
more flexibility in detecting various modulation types. Other
deep neural network architectures like the Residual Network
(ResNet) [25] were also recently introduced to strengthen fea-
ture propagation in deep neural networks by creating shortcut
paths between different layers in the network. By adding the
bypass connections, an identity mapping is created, allowing
the deep network to learn simple functions. A ResNet archi-
tecture was shown to be successful for distinguishing between
24 different modulation types in [26]. A Convolutional Long
Short-term Deep Neural Network (CLDNN) was also recently
introduced in [27], by combining the architectures of the
PCNN and the Long Short-Term Memory (LSTM) into a
deep neural network and taking advantage of the comple-
mentarity of PCNNs, LSTMs, and conventional deep neural
network architectures. The LSTM unit is a memory unit of a
Recurrent Neural Network (RNN). RNNs are neural networks
with memory that are suitable for learning sequence tasks such
as speech recognition and handwritten recognition. LSTM
optimizes the gradient vanishing problem in RNNs by using
a forget gate in its memory cell, which enables the learning
of long-term dependencies. The authors in [24] demonstrated
the potential of LSTM units for accurately recognizing a wide
range of modulation types.

In this work, we first present three different architectures
that deliver higher classification accuracy than the PCNN
introduced in [23] as well as the CLDNN of [24]. We design
our own PCNN and CLDNN architectures for the modulation
recognition task, as well as derive an optimized version of the
ResNet architecture of [26] by tuning the number of residual
stacks. In contrast to the 75% high SNR classification accuracy
acheived by the PCNN of [23] using the RadioML2016.10b
dataset that was first considered in the same work, our PCNN,
CLDNN, and ResNet architectures deliver high SNR accuracy
values of 83.8%, 88.5%, and 92%, respectively. However, we
find that the performance of all these architectures, as well as
the ones in [23] and [24], suffers degradation, even at high
SNR, due to confusions between similar modulation types, in
particular those of QAM16 and QAM64 and those of AM-
DSB and WBFM. Another major challenge facing machine
learning algorithms based on deep neural network architec-
tures is the long training time. For example, for the problem at
hand, even the simple PCNN architecture in [23] takes approx-
imately 40 minutes to train using three Nvidia Tesla P100 GPU
chips. This creates a serious obstacle towards the feasibility
of applying such algorithms in real time, where online train-
ing is needed to adapt the network architecture to changing
environmental conditions. In particular, applying deep learning
to autonomous wireless communication systems anticipated
in next-generation networks requires significant reduction in
training time compared to state-of-the-art methods. In such
systems, it is likely that training will be frequently needed to
accommodate new environmental conditions. Hence, reducing
training time becomes essential for the success of these algo-
rithms. The third major challenge is hardware requirements

due to sampling the received signal at high rates, which can
be cumbersome in real time, particularly in wideband settings.

In summary, the motivating factors for this work can be
described as follows.

1) Existing results in the literature shed light on the promise
of sub-Nyquist sampling for reducing hardware cost
and computational efficiency gains with minimal loss in
performance [28], [29]. This potential has not been well
investigated in the context of employing deep learning
for modulation classification.

2) Existing subsampling schemes rely on fixed strategies
rather than data-driven adaptive strategies that alter the
subsampling mechanism based on intrinsic input fea-
tures. On the other hand, the proven success of deep
learning for wireless communications in general, and
modulation classification in particular, suggests potential
significant improvements due to data-driven techniques.

3) Connecting between recent advances in deep learning
models for modulation classification - and in general for
wireless communication systems - and the literature on
Wrapper methods that employ machine learning models
for feature selection.

4) State of the art machine learning models for modula-
tion classification encounter difficulty in distinguishing
between close pairs such as QAM16/QAM64 and AM-
DSB/WBFM, which draws a relatively low ceiling on
achievable performance. For example, typical PCNNs
that are custom-tailored for classifying the ten modu-
lation types of the RadioML2016.10b dataset, achieve
a maximum classification accuracy of around 89% at
high SNR.

We tackle these challenges by introducing a data-driven
subsampling stategy that relies on an ensemble of the three
deep neural network classifiers presented in this work, as well
as the ResNet as a final deep neural network classifier that
recognizes the modulation type. Our strategy relies on the
learning transferability property of deep neural networks, as
we determine the optimal set of samples based on simulations
that employ a diverse set of architectures, all of which are
suitable for the considered classification task. These simula-
tions are inspired by how wrapper feature selection methods
work through model-based evaluations of feature sets. The
obtained results demonstrate that not only does the proposed
data-driven subsampling strategy lead to significant reduction
in the required training time, but it also leads to achiev-
ing unprecedented classification accuracy values. Further, it
almost fully resolves the confusions - suffered by traditional
methods as well as previous deep learning-based methods -
between similar pairs of modulation types like QAM16 and
QAM64 as well as AM-DSB and WBFM at higher SNR val-
ues (above 2 dB). Using the RadioML2016.10b dataset of [23],
the ResNet high SNR classification accuracy increases with
subsampling rates as low as 1

16 , and goes above 99% when
subsampling with a rate of 1

4 or higher. As further illustrated in
Section VI, subsampling led to increase in classification accu-
racy in our experiments, due to its effect in reducing overfitting
by projecting samples onto a lower dimensional subspace that
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admits a distinction between different classes through simple
decision boundaries.

The contributions of this work can be summarized as
follows.

1) We identify three deep neural architectures, namely a
Pure Convolutional Neural Network (PCNN), a new
Convolutional Long Short-term Deep Neural Network
(CLDNN), and a new Residual Network (ResNet), each
delivering state of the art performance for the task
of modulation classification based on the extensively
studied RadioML2016.10b dataset.

2) We then use the identified classifiers as Ranker Models
for subsampling, via ranking the importance of the dif-
ferent samples through simulations of sample subset
removals without re-training the model. This is inspired
by the literature of Wrapper Feature Selection methods.

3) We next introduce the Holistic Subsampler, which relies
on an effective strategy for combining the rankings pro-
vided by the three ranker models, for robust subsampling
that generalizes to unseen testing data.

4) When analyzing the performance of the Holistic
Subsampler, we observe drops in accuracy at certain
SNR values, which indicates a potential for improving
the set of selected sample indices in these cases. We
introduce the ε-Greedy Search algorithm that identifies
best sample indices whenever the Holistic Subsampler
solely fails to do so.

5) Based on the above contributions, we propose the
main method of this work: The Ensemble Wrapper
Subsampler, which delivers performance superior to the
state of the art and unveils the potential of deep-learning-
based sub-Nyquist sampling, particularly via resolving
confusions between difficult modulation pairs such as
the QAM16/QAM64 and the AM-DSB/WBFM pairs.

6) We perform an ablation study to justify the addition of
each component of the proposed method, and compare
the final performance with that obtained through state
of the art methods.

The rest of this paper is organized as follows. In Section II,
we describe the problem. We then provide a detailed descrip-
tion of the proposed approach in Section III, and highlight
the obtained results in Section IV. We provide a detailed jus-
tification for every step of the proposed approach through a
benchmarking and ablation study in Section V. Finally, we dis-
cuss our results in Section VI and provide concluding remarks
in Section VII.

II. PROBLEM DESCRIPTION

We study the classification of the modulation type of
received wireless signals, using deep neural network classi-
fiers and subsampling techniques. We consider ten widely
used modulation schemes: eight digital and two ana-
log modulations. These consist of BPSK, QPSK, 8PSK,
QAM16, QAM64, BFSK, CPFSK, and PAM4 for digi-
tal modulations, and WBFM, and AM-DSB for analog
modulations.

A general expression for the received baseband complex
envelope is

r(t) = s(t ;u i) + n(t), (1)

where for 0 ≤ t ≤ KT ,

s(t ;u i) = aie
j2π�ftejθ

K∑

k=1

ejφk s
(i)
k

× g(t − (k − 1)T − εT ), (2)

is the baseband complex envelope of the received signal, and
n(t) is the instantaneous channel noise at time t. In (2), ai
is the received signal amplitude, Δf is the carrier frequency
offset, θ is the time-invariant carrier phase introduced by
the propagation delay, φk is the phase jitter, {s(i)k , 1 ≤
k ≤ K} denotes K complex symbols taken from the i th

modulation format, T represents the symbol period, ε is
the normalized epoch for time offset between the transmit-
ter and signal receiver, g(t) = Ppulse(t) ⊗ h(t) is the
composite effect of the residual channel with h(t) denoting
the channel impulse response and ⊗ denoting mathematical
convolution, and Ppulse(t) is the transmit pulse shape. We

denote {ai , Δf , θ, ε, g(t), {φk}Kk=1, {s(i)k }Kk=1} by u i;
the multidimensional vector that includes the deterministic
unknown signal or channel parameters for the i th modulation
type.

Our goal is to recognize the modulation type i from a
sampled version of the received signal r(t). This is achieved
through a supervised machine learning algorithm that has
access to labeled sample vectors. We assume that the data
available for training and testing are equi-sized and equally
split across the ten modulation types. We further study this
problem under constraints on the allowed sampling rate. Such
constraints could reflect a training time limitation, which is
analyzed in this work, as well as hardware requirements (e.g.,
of RF sensors).

Using the RadioML2016.10b dataset that consists of sam-
ples taken at around 6 times the Nyquist rate and 8 samples
per symbol, a PCNN architecture was shown to achieve 75%
classification accuracy at 18 dB SNR [23]. As detailed below,
we first present three deep neural network architectures that
deliver state-of-the-art performance, with classification accu-
racy values reaching 92% at high SNR. Then, we present
a data-driven subsampling strategy that employs the ensem-
ble of the presented architectures and relies on wrapper-based
recursive simulations, to deliver accuracy values that exceed
99% at high SNR with sampling rates around the Nyquist rate,
and remain above the no subsampling accuracy with sampling
rates at or above 37.5% of the Nyquist rate. To the best of
our knowledge, the accuracy values obtained by applying our
method with subsampling rates at or above 1

16 are higher at
high SNR than those obtained by applying existing methods in
the literature on the same dataset, even with no subsampling.
This superior performance is uniform across the studied SNR
range from −20 dB to 18 dB when applying our method with
subsampling rates at or above 1

4 .
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III. DESIGNING THE ENSEMBLE WRAPPER SUBSAMPLER

The proposed strategy utilizes training data, originally sam-
pled at a high rate, to search for the optimal set of sample
indices using an ensemble of deep neural network architectures
that were found empirically to be well fit for the considered
task. Once the sample indices are determined, we only sam-
ple at the corresponding times for training and testing the
modulation type classifier. We will show in the sequel that
samples chosen by this strategy lead to classification accu-
racy values that are drastically higher than the state-of-the-art.
It is important to note that even if the process of determin-
ing the best sample indices is computationally intensive, the
overall cost can be negligible as this process needs to be
carried out only occasionally with significant environmental
changes, and the subsampler can be used in real-time with-
out frequent re-training. It is also worth mentioning that we
assume a perfect SNR estimate available to the subsampler
both during its training and for selecting possibly different
sample indices for different SNR values. Relaxing this SNR
availability assumption is left for future investigations.

We begin by introducing three deep classifiers, each achiev-
ing high classification results on fully sampled data. Then, we
build wrapper models - that we call Subsampler Nets - using
each of the three architectures. We then use the ensemble of
these models to build a Holistic Subsampler that exploits the
diversity in performance delivered by the three models. Finally,
we introduce a deterministic variant of ε-Greedy search that
finesses the obtained classification performance, by exploit-
ing the available wrapper-based sample ranking. We present
results obtained through the proposed approach and justify
the need for each of its components in Sections IV and V,
respectively.

A. Deep Neural Network Architectures

Our strategy employs a PCNN, CLDNN, and ResNet, whose
details we provide below. We chose these architectures through
experimental trials as well as an extensive literature survey.
In particular, we found these three architectural types besides
the pure Long Short-Term Memory (LSTM) to be the most
commonly successful across recent studies on deep learning
for modulation classification. However, as we illustrate below,
since our criterion was not only to find a good classifier, but
also to find a model that would work well for ranking samples
as part of a wrapper subsampling approach, pure LSTM archi-
tectures were found experimentally to not be good candidates
for our purpose.

For all architectures, we use the Adam optimizer and the
categorical cross entropy loss function. We also use ReLu acti-
vation functions for all layers, except the last dense layer,
where we use Softmax activation functions. Robustness and
diversity were the key design factors that guided our choice
of architectures. The former indicates that each architecture
is well fit for the task, even at low sampling rates, which
we verified through experimental results; the latter indicates
that the three architectures are independently trained and rely
on different mechanisms for capturing task-relevant features.
While a PCNN relies on a fixed hierarchical representation that

Fig. 1. Architecture diagrams of (a) PCNN, and (b) CLDNN.

first extracts lower-level features through a large number of
convolutional kernels, and then captures higher-level semantics
through less kernels whose outputs have a wide input recep-
tive field, the ResNet relies on shortcut connections between
convolutional layers that are far apart, which provides stable
training for deeper layers and allows for dynamically choos-
ing an effective architecture while training (see [29, Chs. 8–9]
for more illustration). Also, the ResNet is significantly deeper
than the PCNN, which makes it likely to reach very dif-
ferent solutions. Unlike these two architectures, the CLDNN
includes a gated LSTM layer that captures long-term temporal
correlations in the convolutional output feature maps.

1) PCNN: We modify the CNN2 architecture, that was
proposed in [23] by having four, in lieu of two, convolutional
layers, and two dense layers, as depicted in Figure 1a, as we
found this modification to lead to better classification accuracy
than the original CNN2 architecture. The first parameter below
each convolutional layer in the figure represents the number of
filters in that layer, while the second and third numbers show
the size of each filter. For the two dense layers, we use 128
and 10 neurons in order of their depth in the network.

2) CLDNN: Inspired by [27], we proposed a CLDNN in [1]
by adding an LSTM layer into the PCNN architecture. The
detailed architecture considered for the CLDNN is shown in
Figure 1b. The extra LSTM layer is placed between the con-
volutional layers and the dense layers. In our experiments, an
LSTM layer with 50 cells provided the best accuracy.

3) ResNet: As neural networks grow deeper, their learn-
ing performance is challenged by problems like vanishing or
exploding gradient and overfitting, and therefore both train-
ing and testing accuracy start to degrade after the network
reaches a certain depth. The Deep Residual Network (ResNet)
architecture that was introduced in the ImageNet and COCO
2015 competitions [25], tackles accuracy degradation issues
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Fig. 2. (a): The ResNet architecture, (b) A residual unit, and (c) A residual
stack.

in deeper neural networks and has been shown to be a robust
choice for a wide range of machine learning tasks. Inspired by
the ResNet architecture in [26], we designed a similar ResNet
but with three residual stacks instead of six, as we found
that choice to lead to increased classification accuracy. In
our network, three residual stacks are followed by three fully
connected layers, where each residual stack consists of one
convolutional layer, two residual units, and one max-pooling
layer. As seen in [26], for each residual unit, a shortcut connec-
tion is created by adding the input of the residual unit with the
output of the second convolutional layer of the residual unit.
Finally, each convolutional layer in the residual unit uses a fil-
ter size of 1x5 and is followed by a batch normalization layer
for optimization stability. The overall architecture is observed
in Figure 2. As we illustrate below, this architecture delivered
the best - or very close to the best - performance among all
considered architectures for a wide range of SNR values that
only excludes extremely low values.

B. Subsampler Nets: A Wrapper Feature Selection Approach

The first building block in our ensemble method that
employs the architectures provided above, is a super-
vised wrapper feature selection algorithm that we call the
Subsampler Net, which uses a deep neural network to rank
the importance of each sample in accordance to the relative
drop in classification accuracy that occurs when that sam-
ple is removed (set to 0). Similar to other wrapper feature
selection methods, a Subsampler Net relies on a classifier to
rank sample importance. We will refer to this classifier as the
Ranker Model. We use pre-trained models for each of the
above three architectures as Ranker Models to construct three
separate Subsampler Nets.

Suppose we want to obtain k samples from a pool of d sam-
ples. As shown in Figure 3, the Subsampler Net first starts by
setting a sample to 0 (setting both the real and imaginary parts
of that sample to 0) in a batch of training validation examples
and evaluating it using the Ranker Model, which will then pro-
vide us with a classification accuracy for that batch. Setting
a sample to 0 means that the input neurons to the model for
the two features corresponding to that complex sample are
dead, which allows us to simulate the removal of that sample
from the signal as all the weights from these neurons in the
input layer will not contribute to the outcome of the model.

Fig. 3. Subsampler Net that chooses k representative samples out of a pool
of d samples.

Algorithm 1: Subsampler Net

Inputs: k: Final No. of samples; trainSet: Training
Dataset; rankerModel: Trained Model that ranks samples
Outputs: sampleList: List of k selected sample indices

function SUBSAMPLERNET(k, trainSet, rankerModel)
Initialize sampleList to an empty list
for i = 0 to k do

Initialize accList to an empty list
Set candidateList as set of sample indices not in

sampleList
for j in candidateList do

Set sample with index j to 0 in trainSet
accuracy = rankerModel(trainSet)
Append (j, accuracy) to accList
Set sample with index j back to original value

end
Sort accList by order of increasing accuracy
Append sample index with lowest accuracy in

accList to sampleList
Permanently set this sample to 0 for all examples

in trainSet
return (sampleList)

end function

This is done d times by setting each of the d samples to 0.
After evaluating each of the d samples, we are left with d
classification accuracies that correspond to the ability of the
model to classify the signal if each of the samples were to
be removed. The most important sample, which is the sample
whose removal results in the lowest classification accuracy,
is then permanently set to 0 for this batch of training exam-
ples and added to the final set of samples. Now, we are left
with d − 1 samples and this process is repeated until we are
finally left with k samples. The Subsampler Net construction
is detailed in Algorithm 1.

While attempting this method, we found that normalizing
the data by setting the mean of each sample to 0 and the
variance to 1 improves performance because when we set an
input sample to 0, we are effectively setting it to the mean, and
lower variances now manifest as lower weights in the input
layer [30]. We also observed, from experiments that rely on
a discrete set of SNR values, that the sample indices chosen
for batches of validation examples belonging to the same SNR
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Fig. 4. Tier Division.

value were the same in most cases, while they were likely to
be distinct from those chosen for batches belonging to dif-
ferent SNR values. Therefore, we divide the available data
according to SNR value and obtain a set of k sample indices
for each SNR. While presenting our experimental results in
Secion IV, we further highlight this SNR sensitivity by show-
ing the percentage of overlap between selected sample sets
among different SNR values.

C. The Holistic Subsampler: The Best of All Worlds

We next introduce the notion of the Holistic Subsampler,
which combines the ability of all three Ranker Models in order
to capitalize on their diversity of performance. After the sets
of samples, that match the required sampling rate, are col-
lected for each of the three Ranker Models, we divide these
samples into three tiers, as illustrated in the Venn diagram in
Figure 4. Tier 1 consists of the intersection of all three sets
of samples, Tier 2 consists of the samples that belong to two
of the three sets of samples, and Tier 3 consists of samples
that are selected by only one Subsampler Net. The samples
within each of the tiers are sorted according to the sum of the
classification accuracy values that occur when that sample is
removed using the corresponding Ranker Models. For exam-
ple, for Tier 2 samples, we sort the samples using the sum
of the two obtained classification accuracy values when the
sample is removed (set to 0). Akin to the Subsampler Net, the
Holistic Subsampler is a recursive algorithm that first selects
the best sample, then sets the value of the corresponding sam-
ple index to 0 for the whole training set, and calls itself again
to find the next best sample. This is done until the desired
number of samples k is reached. To find the best sample, the
top sample - corresponding to the lowest sum of classification
accuracy values - is selected from Tier 1. If Tier 1 is empty,
then the top sample from Tier 2 is selected. If Tiers 1 and 2
are both empty, then the top sample from Tier 3 is selected.

D. ε-Greedy Search: The Final Piece of The Puzzle

We note that the Subsampler Net merely selects the best
sample at each iteration, without regard to how the selection
of a subsequent sample will affect the importance of the cur-
rently selected sample to the classification task. We chose to
do this in the interest of saving training time of Subsampler

Algorithm 2: ε-Greedy Search

Inputs: d: Total No. of samples; k: Final No. of samples;
ε: exploration factor that is the fraction of total samples
to be explored; prevSnrAcc: Classification accuracy at
the preceding SNR value; trainSet: Training Dataset
Outputs: finalIdx: Set of sample indices whose removal
leads to the lowest accuracy among combinations
explored; finalSNRAcc: Accuracy obtained using trainSet
when the sample indices in finalIdx are selected

function ε-GREEDY(k, ε, prevSnrAcc, trainSet)
Call SubsamplerNet using PCNN, CLDNN, and

ResNet as the Ranker Models
Set sampleIdx as the ordered set of the k sample

indices selected by the Holistic Subsampler
Set currSnrAcc as accuracy of ResNet architecture

when trained with selected samples
if k = 0 then

return (sampleIdx, currSnrAcc) if currSnrAcc >
prevSnrAcc

return (NULL, NULL) otherwise
else

for i = 0 to min(k , εd) do
Set trainSet[sampleIdx[i]] to 0
Set (finalIdx, finalSnrAcc) =

ε-GREEDY(k − 1, ε, prevSnrAcc, trainSet)
Set trainSet[sampleIdx[i]] back to original

value
Add sampleIdx[i] to finalIdx
return (finalIdx, finalSnrAcc) if returned

values are not NULL

done
return (NULL, NULL)

end
end function

Nets in order to render the implementation of the proposed
method feasible using low-power communication devices. We
next propose a variant of the ε-greedy algorithm [31] in order
to explore candidate combinations for subsequent best samples
while taking into account dependence relationships between
the selected samples.

According to Algorithm 2, we introduce ε, the exploration
factor that determines the number of candidate samples con-
sidered for selection at each step. If ε = 0.1, then in every
step, we explore the 10% best samples according to the rank-
ing provided by the Holistic Subsampler. This is unlike the
conventional ε-greedy algorithm, where ε represents the prob-
ability that the decision taken deviates from the top greedy
choice. Our variant of the algorithm explores all of the top
routes and ε is the parameter that determines the number
of top routes explored. The rationale behind our deviation
from the conventional ε-Greedy Algorithm is as follows. The
Multi-Armed Bandit problem [32], which is one of the most
popular applications of the traditional ε-Greedy Algorithm, is
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Fig. 5. Illustration of ε-Greedy Search with ε = 2
d , where d is the total

number of available samples, and a subsampling rate of 4
d . A 0 corresponds to

removing the best sample, while a 1 corresponds to removing the second best
sample, according to the ranking of the Holistic Subsampler. The samples are
re-ranked after each removal.

based on a scenario where there is a single top choice and all
the other choices are of the same importance before explo-
ration. However, in our case, the choices apart from the top
choice have a ranking that reflects their relative importance.
Therefore, unlike the Multi-Armed Bandit problem, we do not
need to waste time exploring unknown paths.

As observed in Figure 5, the ε-Greedy Search can be rep-
resented as a traversal algorithm over an εd -ary tree whose
depth is equal to the desired number of samples k, where the
subsampling rate is k

d . Each node in the tree corresponds to
the selection of a combination of sample indices. The nodes at
the same depth are arranged by increasing order of accuracy
when removed, which implies that the combination of samples
corresponding to the left child of a node has higher priority
than that corresponding to the right child of the same node,
for the case when εd = 2. The root node does not represent
any sample and is added just for the sake of illustration of
tree formation. The leaf nodes are searched from left to right
until a classification accuracy that is satisfactory is reached.

We note that setting ε = 1
d is equivalent to having an

unaltered Holistic Subsampler that greedily chooses the best
sample at each iteration, which leads to the leftmost leaf of
the tree in Figure 5. This corresponds to node 0000 because
only a tree with a single branch is formed with the nodes 0,
00, 000, and 0000. Increasing the value of ε expands the scope
of exploration and exponentially increases the size of the tree.

E. Ensemble Wrapper Subsampling

We here finalize the specification of the proposed approach.
Given input data with d samples per example, we first initial-
ize ε to 1

d and invoke the ε-Greedy Search. As mentioned
earlier, this is the same as invoking the Holistic Subsampler
on its own. Next, we proceed to the next SNR value avail-
able in the training set. The ε-Greedy Search is invoked with
an ε value of 1

d for this next training set belonging to the
next SNR value. If the accuracy is lower than the accuracy
for the previous SNR value, then ε-Greedy Search is invoked
again after doubling the ε value to 2

d . The ε-Greedy Search
stops exploring once the accuracy is greater than the accuracy
obtained for the previous SNR value. We repeatedly double
ε and invoke ε-Greedy Search until this stopping criterion is
met. The pseudocode for this strategy is given in Algorithm 3.

The function described in Algorithm 3 returns the selected
set of k sample indices for each SNR value. Note that doubling

Algorithm 3: Ensemble Wrapper Subsampler

Inputs: d: Total No. of samples; k: Final No. of samples;
trainSet: Training Dataset
Outputs: idxDict: Dictionary with SNR as key and sets
of k sample indices each as values

function ENSEMBLEWRAPPERSUBSAMPLER(k, trainSet)
Divide trainSet based on SNR
Initialize idxDict as an empty dictionary
Initialize prevSnrAcc to 0
for snrValue in set of SNR values do

Initialize ε = 1
d

Initialize snrIdx as NULL
while snrIdx is NULL do

Set (snrIdx, snrAcc) = ε-GREEDY(k, ε,
prevSnrAcc, trainSet)

Set ε = 2ε
done

Set snrIdx as the value to snrValue key in idxDict
Set prevSnrAcc as snrAcc
done

return idxDict
end function

Fig. 6. High-level framework for data generation.

the value of ε for the ε-Greedy Search corresponds to searching
for combinations of sample indices in a tree that has twice the
arity.

IV. EXPERIMENTAL RESULTS

In this section, we present an experimental evaluation of
the proposed method. First, we specify the dataset used, the
programming environment, and the hyperparameter settings.
Then, we present the obtained classification accuracy results
while highlighting important insights, and finally quantify the
reduction in training time for the final classifier with different
subsampling rates.

A. Dataset

We use the RadioML2016.10b synthetic dataset generated
in [23] as the input data. Details about the generation of this
dataset can be found in [33]. Figure 6 shows a high-level
framework for the data generation process. For digital modula-
tions, the entire Gutenberg works of Shakespeare in ASCII is
used, with whitening randomizers applied to ensure equiprob-
able symbols and bits. For analog modulations, a continuous
voice signal consisting of acoustic voice speech with some
interludes and off times is used as input. The modulation rate
is 8 samples per symbol.
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Fig. 7. One-sided normalized FFT for a BPSK signal. A value of 0.5 on
the horizontal axis corresponds to the Nyquist rate (Bandwidth is half the
sampling rate). Most of the signal energy is within a band of around 1

12 of
the sampling rate.

The dataset is split equally among all ten considered mod-
ulation types. For the channel model, physical environmental
noises like thermal noise and multipath fading were simulated.
The models for generating random channel and device imper-
fections, that determine the parameters in (2), are detailed
in [33].1 When packaging data, the output stream of each
simulation is randomly segmented into vectors as the orig-
inal dataset with a sample rate of 1M samples per second.
Similar to the way that an acoustic signal is windowed in
voice recognition tasks, a sliding window extracts 128 sam-
ples with a shift of 64 samples, which forms a sample vector in
the dataset. 160,000 sample vectors generated using the GNU-
radio library developed in [33] are segmented into training and
testing datasets. Each example consists of 128 samples, that
are represented as a 2 × 128 vector with real and imaginary
parts separated. The SNR of the samples is uniformly dis-
tributed from −20 dB to 18 dB, with a step size of 2 dB,
i.e., the dataset is equally split among all SNR dB values in
{−20,−18,−16, . . . , 18}.

We note from the frequency domain representation of the
input waveform depicted in Fig. 7 that the sampling rate of
the input waveform is around 6 times the Nyquist rate.

B. Implementation Details

We used Keras with TensorFlow as a backend, and a GPU
server equipped with three Tesla P100 GPUs with 16 GB
memory. For all architectures, we used a batch size of 1024,
and a learning rate of 0.001. Only the training set is used
by the subsampling algorithm described in Section III with
a validation split of 0.25. After selecting the set of sample
indices for each of the 20 considered SNR values, we train the
ResNet classifier with the corresponding samples, as we found
it to deliver the best performance among the three considered
architectures.2

1Dataset generation parameters are also available at
https://github.com/radioML/dataset.

2Code is available at: https://github.com/dl4amc/dds.

Fig. 8. (a) ResNet Confusion Matrix after Ensemble Wrapper Subsampling
using a subsampling rate of 1

2 at 18 dB SNR. (b) Accuracy vs SNR for ResNet
with Ensemble Wrapper Subsampling.

C. Classification Accuracy

We present the obtained results at different sampling rates
in Figure 8. From our results, we note the following.

• Subsampling can Lead to Higher Accuracy: Applying
the proposed ensemble wrapper subsampling strategy
can result in dramatic improvements in classification
accuracy, particularly at low SNR values. The direct
cause for this phenomenon at high SNR is resolv-
ing confusions between the QAM16/QAM64 and AM-
DSB/WBFM pairs, as we illustrate in Section V. To
the best of our knowledge, state-of-the-art methods fail
at resolving these confusions. We believe that this is
because our subsampling strategy reduces overfitting, as
we elaborate in Section VI-B.

• Sub-Nyquist Sampling: As noted above, the consid-
ered data is originally sampled at around 6 times
the Nyquist rate. A subsampling rate of 1

16 hence
corresponds to around 37.5% of the Nyquist rate,
and leads to slightly higher classification accuracy at
very high SNR and significantly higher accuracy at
very low SNR, than the case with no subsampling.
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TABLE I
COMPARISON OF TRAINING TIME AND HIGH SNR ACCURACY FOR THE

RESNET AFTER ENSEMBLE WRAPPER SUBSAMPLING

This observation could carry important implications in
practice, as the sampling hardware requirements can
be dramatically simplified (see [28], [29] for further
illustration).

• Minimal Sample Set: Based on the loss in classifica-
tion accuracy, we can choose the smallest set of samples
(smallest value of k) that gives us a classification accuracy
higher than a given classification accuracy requirement.
For instance, 20 is the smallest number of samples
(around Nyquist rate) that can be selected such that the
classification accuracy has to be higher than 99% at 18 dB
SNR. Similarly, 8 is the smallest number of samples
(around 37.5% of Nyquist rate) that can be selected given
that the classification accuracy has to be higher than 90%
at 18 dB SNR.

D. Training Time

As a result of subsampling, the training time of the
classifier is reduced due to the reduced input dimensions.
We show the reduction in training times and high SNR
classification accuracy of the ResNet classifier for differ-
ent subsampling rates in Table I. Note that a subsam-
pling rate as low as 1

16 , which corresponds to the sub-
Nyquist regime with around 37.5% of the Nyquist rate, and
results in approximately 1

3 of the original training time, still
results in a classification accuracy higher than that without
subsampling.

V. BENCHMARKING AND ABLATION STUDY

Supported by experimental results, we first provide an
analysis of our proposed approach with regard to traditional
approaches, and then provide a justification for each of its
components. We begin by motivating the need for deep learn-
ing via analyzing the performance of a Bayes classifier. Then,
we present the results obtained with the considered deep
neural network architectures with no subsampling, and high-
light the modulation type pairs that are difficult to distinguish
even at high SNR. We then compare the results obtained
through our proposed approach with conventional subsam-
pling and feature selection schemes. Finally, we present an
ablation study to demonstrate the performance degradation
caused when removing any of the components of the proposed
method.

TABLE II
GAUSSIAN NAIVE BAYES CLASSIFIER RESULTS FOR DIFFERENT

MODULATION PAIRS AT ALL SNRS AND AT 18 DB SNR

A. Gaussian Naive Bayes Classifier

The Gaussian naive Bayes classifier can be described
through the conditional probabilities:

P(xi |y) = 1√
2πσ2y

e
− (xi−μy )

2

2σ2
y , (3)

where P(xi |y) is the likelihood of an observed instance xi
belonging to a certain class y, σ2y is the observed variance of
class y, and μy is the observed mean of class y. The predicted
output of xi is the class that maximizes the likelihood function.
Instead of trying to classify all ten modulation types, we only
used certain pairs to further demonstrate the performance of
the Gaussian naive Bayes classifier for simpler tasks.

From the results in Table II, we note that even when the
Bayes classifier is trained to distinguish pairs that are not chal-
lenging at the maximum SNR value, its maximum accuracy is
82%. Further, for challenging pairs, the performance is similar
to random guessing even at high SNR.

B. Deep Learning With No Subsampling

We present in Figure 9 the classification accuracy of the
considered architectures using the outlined dataset with no
subsampling. We note that - similar to previous work on deep
learning for modulation classification - most of the misclas-
sifications at high SNR are due to confusions between the
AM-DSB/WBFM and the QAM16/QAM64 pairs, which is
evident from the ResNet 18 dB confusion matrix depicted in
Figure 9a. We observe by comparing to Figure 8 how the
proposed data-driven subsampling method leads deep neural
network classifiers to clear this confusion. We believe that
this is due to overfitting reduction, as further illustrated in
Section VI. We further note that we also considered a pure
LSTM architecture by fine tuning that of [34] for the task.
Even though this architecture delivered good performance with
no subsamlping as shown in Figure 9b, we chose not to use
it in our proposed method as it suffered drastic performance
degradation with subsampling. We believe that this is due to
extreme sensitivity of the captured temporal correlations to
absence of few samples.

In Figure 10, we provide the results obtained when using
recent architectures that were introduced at the time of writing
- or slightly after - the first draft of this work. These archi-
tectures are the MCNet [35], the Accu-polar CNN [36], and
the Depthwise and Depthwise Separable CNNs [37]. We note
that the performance obtained is very similar to our consid-
ered architectures, as the aforementioned confusions present a
challenge even at high SNR. We plan to investigate in future
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Fig. 9. Baseline results with no subsampling for modulation classification.

work the use of the CNN variants introduced in these works
in our holistic subsampler.

C. Conventional Subsampling

We provide in Figure 11a a comparison between the
proposed approach and four different subsampling techniques;
namely: 1) Uniform Subsampling: where a sample is taken
every fixed amount of time, 2) Random Subsampling: where
the indices of selected samples are determined randomly with
equal probabilities, 3) Magnitude Rank Subsampling: where
the indices corresponding to samples with top magnitude val-
ues in each example are selected, and 4) Principal Component
Subsampling (PCS), where first Principal Component Analysis
(PCA) is done over the training set, and the indices cor-
responding to samples with the top PCA coefficient total
magnitude values are selected. A more thorough explanation of
these methods is available in [38]. We note that the proposed
method leads to - uniformly across all SNR values - superior
performance than all these methods. The figure demonstrates
results slightly below the Nyquist rate, but this observation
extends to all considered subsampling rates. In particular, ran-
dom subsampling delivers better performance that the other
three methods at lower rates, which agrees with the intuition

Fig. 10. Deep learning with no subsampling - state of the art results.

in [28], but this performance remains lower than that of the
proposed approach.

D. Conventional Feature Selection

Feature selection algorithms aim at identifying important
input vector elements. In the considered setup, a direct applica-
tion of a feature selection algorithm for 2 × 128 input vectors,
would treat each of the 256 elements separately. We handle this
with a slight modification to tie the real and imaginary parts
of each sample, as illustrated below. In Figure 11b, we show
a comparison between the proposed method and four popular
feature selection algorithms; namely: 1) Laplacian Score [39]:
which is an unsupervised filter feature selection algorithm that
selects features with the objective of preserving the data man-
ifold structure through a graph representation [40], 2) Fisher
Score [41]: which is a supervised filter feature selection algo-
rithm that selects features such that the features of samples
within the same modulation type are similar while the features
of samples belonging to other modulation types are as distinct
as possible [40], 3) Efficient and Robust Feature Selection
(RFS) [42]: which is a computationally efficient embedded
feature selection method that exploits the noise robustness
- through rotational invariance - property of the joint �2,1-
norm loss function [40], [43], by applying the �2,1-norm
minimization on both the loss function and its associated reg-
ularization function, and 4) Feature Quality Index (FQI) [44]:
which is a wrapper feature selection algorithm that utilizes the
output sensitivity of the considered model to changes in the
input to rank features. FQI can be considered as a simplified
version of our Subsampler Net that relies on the Mean Squared
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Fig. 11. Accuracy vs SNR comparisons of the proposed Ensemble Wrapper
Data-Driven Subsampler with (a) Conventional Subsampling Techniques and
(b) Feature Selection Techniques for the ResNet classifier at 1

8 subsampling
rate.

Error (MSE) loss instead of the model’s loss and uses only the
initial sample ranking that we use to select the first sample. For
each of the techniques examined, except FQI where we have
sample scores, we add the two scores obtained for the two fea-
tures belonging to a sample to obtain a sample score before
proceeding to rank the samples. We note how the proposed
method delivers significantly better performance than all con-
sidered methods, and that this holds for all other considered
subsampling rates not shown in the figure. Particularly, our
method delivers better performance than FQI, which demon-
strates the need for re-ranking samples after each iteration
in the Subsampler Net described in Section III-B. Also, we
note that this re-ranking does not require model retraining,
unlike most other wrapper feature selection algorithms, which
makes our method computationally feasible in a wide range
of settings.

E. Ablation Study

We observe from Figure 12 how the relative performance of
the three considered Subsampler Nets changes with different
sampling rates and SNR values. This is the main motiva-
tion behind the Holistic Subsampler that benefits from the
performance diversity among the three architectures. However,
even the Holistic Subsampler, suffers from significant drops
in classification accuracy for a wide range of SNR values at
sampling rates well below the Nyquist rate. We believe that
this phenomenon takes place due to ranker overfitting while
selecting the sample indices via sample removal simulations

Fig. 12. Accuracy vs SNR for ResNet classifier with (a) PCNN Subsampler
Net, (b) CLDNN Subsampler Net, (c) ResNet Subsampler Net, and (d) Holistic
Subsampler, (e) Holistic Subsampler with ε-Greedy Search using only PCNN
and ResNet.

that do not take into account potential statistical discrepancies
between training and testing data. This motivated our ε-Greedy
step of the proposed approach. In particular, the slope of
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the classification accuracy curve for the Holistic Subsampler
becomes negative towards −12, 4, and 8 dB with a 1

16 sub-
sampling rate and towards −12, 2, and 10 dB with a 1

32
subsampling rate. To obtain the results shown in Figure 8, our
ensemble wrapper data-driven subsampling algorithm, illus-
trated in Algorithm 3, applied ε-Greedy Search with ε = 1

64 =
2
d for the 4 and 8 dB SNR values with 1

16 subsampling rate,
as well as at 10 dB SNR with 1

32 subsampling rate. For the
−12 dB SNR value with both 1

16 and 1
32 subsampling rates, an

ε = 1
32 had to be used because having ε = 1

64 was insufficient,
and the same held for 2 dB SNR with 1

32 rate. It is important
to note that our ε-Greedy step has a time complexity of the
Order O((εd)k ), if the number of explored combinations has
the same order as the number of the constructed tree leaves.
Fortunately, this step is typically needed only at very low sub-
sampling rates, where the value of k is small, and with small
values of ε.

We also show in Fig. 12 (e) the results obtained by our
complete ensemble wrapper subsampling strategy when using
only the PCNN and ResNet ranker models. This ablation study
was performed to investigate the utility of having the CLDNN
architecture in the ensemble, especially as the pure LSTM
ranker had detrimental impact. The results show drops in accu-
racy at certain SNR values, even with using ε-Greedy Search
with the same ε values as detailed above, which justifies the
inclusion of the CLDNN ranker model.

VI. DISCUSSION

A. Exploiting Transfer Learning

The Holistic Subsampler achieves better results than any
individual Subsampler Net, even though the final classifier
relies on a single ResNet architecture. Furthermore, even
though each of these architectures is trained to classify the
data when all the samples are present at the input, when used
as Subsampler Nets, one or more of these samples are set
to 0. Hence, we use the trained deep neural network classi-
fiers in two ways other than their intended application that
they are trained on: 1- They are used to select samples for
another classifier, 2- They are used with only a subset of
samples present. This is only possible because of the trans-
ferability property of these deep neural network architectures.
In general, we believe that exploiting transferability has great
potential for various wireless communication tasks that rely on
processing received signal samples. In future work, we plan
to investigate the compatibility of different combinations of
deep neural network architectures in light of that transferability
property. For example, we know from this work that an LSTM
Subsampler Net is not compatible with a ResNet classifier, but
a combination of a PCNN, CLDNN, and ResNet Subsampler
Nets are. This future study can further shed light on architec-
tural properties and hyperparameter settings that enable these
compatibility relationships. Further, we plan to study trans-
ferability across different SNR values. More specifically, our
goal would be to identify combinations of SNR values that are
ideal for training Subsampler Nets for each test SNR range.

The ability to use the ranker model in presence of only a
subset of samples, without requiring re-training, significantly

Fig. 13. (Upper) PCA visualization of the training dataset for the AM-
DSB (blue) and WBFM (orange) classes before and after Ensemble Wrapper
Subsampling with a subsampling rate of 1/2 at 18 dB SNR. (Lower) t-SNE
visualization for QAM16 (blue) and QAM64 (orange) at same rate and SNR.

reduces the computational cost of the sample selection proce-
dure. Otherwise, we would need a differently trained model
for every simulation of sample set removal. Although diffi-
cult to assess due to excessive computational time, for the
few experiments we ran to investigate the performance when
re-training for every sample combination instead of exploit-
ing transferability, we observed only negligible performance
improvements that would not justify the computational cost in
practice. For example, the training time increased by approx-
imately ten-fold for subsampling rates of 1

2 and 1
4 while the

average accuracy improvement across the considered SNR
range was consistently less than 0.25%.

B. Subsampling Leads to Higher Accuracy

In Section V-B, we saw that all the deep learning archi-
tectures suffered from the same drawback of the AM-
DSB/WBFM and QAM16/QAM64 misclassification when no
subsampling is used. To further analyze why the proposed
subsampling method leads to higher classification accuracies
with fewer samples, we use Principal Component Anaysis
(PCA) [45] and t-Distributed Stochastic Neighbor Embedding
(t-SNE) [46] to visualize how subsampling allows us to reduce
overfitting, particularly for the aforementioned class pairs. We
first subsample the training dataset at 18 dB SNR with a
rate of 1/2. After subsampling, we have 64 samples, corre-
sponding to 128 features. Finally, we implement PCA and
t-SNE to obtain a 3-Dimensional projection of the train-
ing dataset for better visualization. We chose to implement
both PCA and t-SNE because PCA clarifies the distinction
between AM-DSB and WBFM while t-SNE clarifies the dis-
tinction between QAM16 and QAM64 after subsampling, as
shown in Figure 13.3 Observing the figure, we believe that
the higher accuracy values stem from the subsampling strategy
enabling simpler decision boundaries to distinguish, with high

3The t-SNE plots were generated with a perplexity value of 20, a learning
rate of 10, and were run for 250 iterations.
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Fig. 14. Input layer weight magnitudes for toy example after training for
(a) 10, (b) 100, and (c) 1000 epochs.

fidelity, between the considered class pairs, which improves
generalization performance and reduces overfitting.

C. Designing the Ranker Models

The performance of a Subsampler Net heavily depends on
the performance of the model used to rank the features. For
some learning tasks, however, even the state-of-the-art models
do not have high classification accuracy values. In such cases,
we believe that better feature selection results can be obtained
with a Subsampler Net by training the ranker model for more
epochs beyond what is suggested by the Early Stopping algo-
rithm (see, e.g., [29, Ch. 8]). This is as we found this strategy
to be useful in multiple settings and further observed that it can
significantly increase the discrepancy in weight magnitudes
across the different features. For example, we considered a toy
example constructed in TensorFlow Playground with a single-
hidden-layer network that distinguishes between two classes
based on two features, and the second is more salient as it
enables forming a decision boundary that allows for better
classification. Each of these features have three weights in the
input layer and as expected, the weights connected to Feature
2 quickly manifest, after several epochs, into weights of higher
average magnitude than those belonging to Feature 1 as shown
in Fig. 14. As the number of training epochs increases - even
from 100 to 1000 which is way more than needed for this
small network - the difference in the average magnitudes of
the weights increases. This implies that the ranker will be
able to better rank the saliency of features because the accu-
racy difference will increase when suppressing each of these
features.

D. Sensitivity to SNR Estimate

The selected set of sample indices is different for each SNR
value, and hence, we expect a real time system employing this
method to have an accurate estimate of the SNR value, in order
to know the right set of sample indices. We made this choice,
as we found it to deliver a significantly superior performance to
the extreme alternative, where the same set of sample indices
is selected for all SNR values. In Fig. 15 (a), we investigate
the impact of errors in such an estimate, by comparing the dif-
ferent sets of selected sample indices for pairs of SNR values.
Note that, as expected, the overlap is larger between close by
SNR values (lower right and upper left corners). However, the
size of the overlap is approximately half the set size for adja-
cent SNR values, which indicates performance vulnerability
for small SNR estimate errors. We observed similar phenom-
ena for other subsampling rates as well. In future work, we
plan to benefit from analyzing these sets of sample indices,
to better understand the roles of different ranker models at

Fig. 15. In (a), we show the number of overlapping sample indices among the
32 sample sets selected for different SNR values at the subsampling rate of 1

4 .
In (b), we show the performance of the proposed method with SNR-agnostic
subsampling.

different SNR values. In Fig. 15 (b), we show the performance
of the proposed method when imposing the constraint that the
same sample indices are selected for all SNR values. Note the
lower performance across the whole considered SNR range,
in comparison to the SNR-aware subsampling considered in
this work (see Fig. 8 (b)).

VII. CONCLUDING REMARKS

In this work, we considered the problem of recognizing
one out of ten modulation types with a constraint on the
sampling rate in an erroneous wireless environment that is dif-
ficult to model. We first identified three deep neural network
architectures that are well fit for the task and deliver state-
of-the-art classification accuracy, namely a PCNN, CLDNN
and ResNet. We then presented a wrapper data-driven sub-
sampling approach that employs all three architectures - as
an ensemble - for selecting a set of samples that maximizes
the classification accuracy via recursive simulations aided by
ε-Greedy deterministic explorations. Our experimental results,
using the RadioML2016.10b dataset of [23], indicate that
using the proposed method with a ResNet classifier leads to
very high classification accuracy values, that to the best of
our knowledge, have not been reached before even at sam-
pling rates well above the Nyquist rate. Further, even in the
sub-Nyquist regime, we achieve almost perfect classification
(accuracy above 99%) at high SNR. We also noted the drastic
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reduction in the classifier’s training time as a result of sub-
sampling. We plan to further investigate in future work the
potential of employing deep learning for subsampling in wire-
less communication systems, as we believe that the insights
distilled from this work carry practical significance beyond the
considered modulation classification task.
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