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Abstract—Classical sampling is based on acquiring signal am-
plitudes at specific points in time, with the minimal sampling rate
dictated by the degrees of freedom in the signal. The samplers
in this framework are controlled by a global clock that operates
at a rate greater than or equal to the minimal sampling rate.
At high sampling rates, clocks are power-consuming and prone
to electromagnetic interference. An integrate-and-fire time encod-
ing machine (IF-TEM) is an alternative power-efficient sampling
mechanism which does not require a global clock. Here, the samples
are irregularly spaced threshold-based samples. In this paper, we
investigate the problem of sampling FRI signals using an IF-TEM.
We provide theoretical guarantees for a recently proposed recovery
method to perfectly recover an FRI input. In addition, we propose
a modified sampling approach in the presence of noise that is more
robust than existing techniques. This method is also proven to
ensure recovery in the noise-free setting. The modified approach
requires twice the number of measurements compared to the ex-
isting method, however, it results in lower error in the presence
of noise for the same number of measurements. Our results enable
designing low-cost and energy-efficient analog-to-digital converters
for FRI signals.

Index Terms—Time-encoding machine (TEM), finite-rate-of-
innovation (FRI) signals, time-based sampling, integrate and
fire TEM (IF-TEM), sub-Nyquist sampling, analog-to-digital
conversion, non-uniform sampling.

I. INTRODUCTION

SAMPLING is a process which enables discrete representa-
tion of continuous-time signals allowing for efficient pro-

cessing of analog signals using digital signal processors [1], [2].
A commonly used discrete representation is to measure uniform,
instantaneous samples of an analog signal, as in Shannon-
Nyquist sampling theory [3], and more general shift-invariant
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sampling [4], [5]. The amplitude samples are measured via a
sample and hold circuit that is controlled by a global clock that
operates at a speed greater or equal to the minimum sampling
rate. At high sampling rates, clocks are power consuming and
subject to electromagnetic interference [6].

Time encoding machines (TEM) provide an alternative dig-
ital representation of analog signals [7]–[14], which is asyn-
chronous, that is, no global clock is required unlike conven-
tional analog to digital converters. This leads to lower power
consumption and reduced electromagnetic interference [6]. In
this sampling scheme, an analog signal is represented by a set
of time instants at which the input signal or its function crosses
a certain threshold. The number of time instants per unit time
or firing rate is proportional to the local frequency content of
the input signal. For example, there are more firings in a region
where the signal amplitude varies rapidly compared to regions
with relatively slow variations.

A popular approach for time encoding is an integrate and
fire time encoding machine (IF-TEM), which is a brain-inspired
sampling paradigm. It leads to simple and energy-efficient de-
vices, such as analog-to-digital converters [9], [11], neuromor-
phic computers [15], event-based vision sensors [16], and more.
In an IF-TEM, a bias is added to the analog input to make the
signal positive. The resulting signal is then scaled and integrated,
and the integral value is compared to a threshold. Each time the
threshold is reached, time points or firing instants are recorded,
which encode the information of the analog signal [7], [17]. A
natural question is whether the analog input can be perfectly
reconstructed from the time-encodings.

In recent years time-based sampling theory has witnessed
growing interest with several authors proving the capabilities
of TEM to sample and reconstruct bandlimited signals [8], [13],
[17]–[20], [20]. Interestingly, the minimum firing rate of a TEM
for perfect recovery of a bandlimited signal is equal to the
Nyquist rate of the signal. Since the firing rate has to increase
with bandwidth, we look beyond the bandlimited structure of
the signal so that sampling can be performed at a sub-Nyquist
rate.

In the sub-Nyquist regime, finite-rate-of-innovation (FRI)
signals are widely studied [1], [21], [22]. These signals have
fewer degrees of freedom than the signal’s Nyquist rate, which
enables sub-Nyquist sampling [23]. As an example, consider
an FRI signal consisting of a sum of L amplitude-scaled and
time-delayed copies of a known pulse. Since the pulse is known,
the signal is completely specified by L amplitudes and L time-
delays, which amounts to 2L degrees of freedom. It has been
shown that 2L measurements of the signal uniquely determine
the amplitude and the time-delays. A typical FRI sampling
scheme is shown in Fig. 1 where the signal is first filtered by
a sampling kernel to remove redundancy in the signal, and then

1053-587X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on March 01,2023 at 11:06:17 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0293-7257
https://orcid.org/0000-0002-3995-9070
https://orcid.org/0000-0003-4358-5304
mailto:hilanaaman10@gmail.com
mailto:yonina.eldar@weizmann.ac.il
mailto:mulleti.satish@gmail.com
mailto:mulleti.satish@gmail.com


2268 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Fig. 1. A kernel-based FRI sampling framework: An FRI signal x(t) is first
filtered by a sampling kernel g(t) and then instantaneous uniform samples are
measured at a sub-Nyquist rate. Parameters of the FRI signal are estimated from
the sub-Nyquist samples.

Fig. 2. Sampling setup: A continuous-time signal x(t) is filtered through a
sampling kernel g(t) and then sampled by a TEM which generates time-instants
{tn}.

instantaneous samples are measured at a sub-Nyquist rate [22].
Given the advantage of TEM over conventional sampling, we are
interested in studying the applicability of TEM-based sampling
to FRI signals.

We consider the TEM-based sampling scheme for FRI signals
shown in Fig. 2, where the signal is modeled as a sum of
shifted and scaled pulses with a known pulse shape. Our goal
is to develop conditions on the sampling kernel and IF-TEM
parameters so that perfect recovery is guaranteed.

Alexandru and Dragotti [10] consider a sequential reconstruc-
tion method for certain FRI signals. They show that by using
either a compactly supported polynomial generating kernel or an
exponential generating kernel, the time delays and amplitudes of
each pulse can be perfectly recovered from four firing instants.
Thus, to reconstruct a stream of L pulses with 2L degrees of
freedom, 4L firing instants are needed. The sequential nature
of the reconstruction imposes a restriction on the minimum
separation between any two consecutive pulses, such that any
two successive pulses must be separated by the support of the
sampling kernel. In addition, the threshold of the IF-TEM must
be small enough to achieve a sufficient firing rate. To address
these issues, Hilton et al. [11] consider IF-TEM sampling
by using the derivative of a hyperbolic secant as a sampling
kernel. They showed that a stream of L Dirac impulses or
piecewise constant functions withL discontinuities are perfectly
reconstructed from 3L+ 1 firing instants without any minimum
separation conditions. However, the sampling mechanism can
not be extended to FRI signals with arbitrary known pulse
shapes.

Rudresh et al. [12] show that by using sampling kernels that
have a frequency-domain alias cancellation properties (see [22]
for details), FRI signals with 2L degrees of freedom can be re-
covered from 2L+ 2 IF-TEM firing instants. The reconstruction
algorithm does not require any minimum separation conditions
but assumes that certain invertibility conditions are guaranteed.
Through simulations, the authors show that the invertibility
conditions are satisfied for a large number of experiments;
however, theoretical guarantees are not provided. In addition,
their sampling results do not deal with the noisy scenario.

Our contribution is twofold. First, we derive theoretical guar-
antees for perfect reconstruction of FRI signals with arbitrary but
known pulse shapes using the method in [12]. Second, we design

a sampling kernel and IF-TEM sampler with improved noise
robustness compared to existing techniques by modifying the
approach in [12]. Specifically, since FRI signals with 2L degrees
of freedom can be perfectly reconstructed from 2L consecutive
Fourier series coefficients (FSCs) [1], [22], we choose sampling
kernels with the alias-cancellation condition to annihilate the
undesirable FSCs [22]. The filtered signal, with fewer FSCs,
is applied to an IF-TEM, and firing instants are measured.
We show that 2L+ 2 firing instants are sufficient to uniquely
determined 2L FSCs from which the original signals can be
recovered. Furthermore, we establish conditions on the IF-TEM
parameters that ensure that the minimum firing rate is achieved.
To summarize, we show that by using a sampling kernel with
frequency-domain alias-cancellation properties and an IF-TEM
sampler with a minimum firing rate of 2L+ 2 per time unit, an
FRI signal with 2L degrees of freedom is uniquely recovered.

While the above sampling approach leads to perfect recon-
struction of the signal in the absence of noise, the reconstruction
can be highly sensitive to noise as we show in simulations.
To address this issue, we propose a modified sampling and
reconstruction mechanism. In particular, we show that the zeroth
Fourier coefficient of the filtered signal results in an unstable
inverse while computing the FSCs from the time instants in the
presence of noise. To improve noise robustness we modify the
sampling kernel by removing the zero-frequency component.
For this modified method, we show that 4L+ 2 time instants
are sufficient for perfect recovery when the time-delays of the
FRI signal are off-grid, whereas 2L+ 2 firings are sufficient
when the delays are on grid.

Through simulations, we show that for the same number of
firing rates (beyond2L+ 2firings), the mean squared error in the
estimation of the on-grid time delays in the proposed approach is
2–6 dB lower compared to the one in [12]. In the case of off-grid
time delays, we consider perturbations in the time encoding. We
show that the proposed approach has more than 3–10 dB gain
in terms of error compared to the method in [12] for the same
number of measurements. In addition, we also show that the
proposed approach has better resolution ability in the presence
of noise. Specifically, when the FRI pulses are close to each
other, the proposed method is able to distinguish them.

This paper is organized as follows. In Section II-A we review
IF-TEM, followed by a problem formulation in Section II-
B. In Section III, we present our first recovery result where
the sampling kernel includes a zero-frequency component. A
noise-robust sampling and reconstruction method together with
simulations are presented in Section IV. In Section V, we discuss
recovery guarantees for non-periodic FRI signals. Concluding
remarks are presented in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

We begin by presenting some known results on IF-TEM
followed by the problem formulation.

A. Time Encoding Machine

We consider an IF-TEM whose operating principle is the same
as in [17] (except that the refractory period is assumed to be zero,
see Fig. 3). The input to the IF-TEM is a bounded signal y(t),
and the output is a series of firing or time instants. An IF-TEM
is parametrized by positive real numbers b, κ, and δ and works
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Fig. 3. Time encoding machine with spike trigger reset. The input is biased
by b, scaled by κ, and integrated. A time instant is recorded when the threshold
δ is reached, after which the value of the integrator resets.

as follows: A bias b is added to a c-bounded signal y(t) where
|y(t)| ≤ c < b <∞, and the sum is integrated and scaled by
κ. When the resulting signal reaches the threshold δ, the time
instant tn is recorded, and the integrator is reset. The process is
repeated to record subsequent time instants, i.e., if a time instant
tn was recorded, the next time instant tn+1 satisfies

1

κ

∫ tn+1

tn

(y(s) + b) ds = δ. (1)

The time encodings {tn, n ∈ Z} form a discrete representation
of the analog signal y(t) and the objective is to reconstruct y(t)
from them. Typically, reconstruction is performed by using an
alternative set of discrete representations {yn, n ∈ Z} defined
as

yn �
∫ tn+1

tn

y(s) ds = −b(tn+1 − tn) + κδ. (2)

The measurements {yn, n ∈ Z} are derived from the time en-
codings {tn, n ∈ Z} and IF-TEM parameters {b, κ, δ}.

Although reconstruction methods vary for different classes
of signals, for perfect recovery of any signal, the firing rate is
required to satisfy a lower bound that depends on the degrees of
freedom of the signal. The firing rate of an IF-TEM is bounded
both from above and below, where the bounds are a function
of the IF-TEM parameters and an upper-bound on the signal
amplitude. Using (2) and the fact that |y(t)| ≤ c, it can be shown
that for any two consecutive time instants [17], [18]:

κδ

b+ c
≤ tn+1 − tn ≤

κδ

b− c
. (3)

The inequalities in (3) imply that in any arbitrary, non-zero,
observation interval Tobs, the maximum and minimum number
of firings are

Tobs
b+ c

κδ
and Tobs

b− c

κδ
, (4)

respectively. Thus, the firing rate of an IF-TEM FR with param-
eters b, κ, and δ are upper and lower bounded as

b− c

κδ
≤ FR ≤

b+ c

κδ
. (5)

Our goal is to recover a continuous-time FRI signal x(t) of the
form of (6) below, from the time instances {tn}.

B. Problem Formulation

We consider a T -periodic FRI signal of the form

x(t) =
∑
p∈Z

L∑
�=1

a�h(t− τ� − pT ), (6)

where h(t) is a known, real-valued pulse and the amplitudes and
delays {(a�, τ�)|τ� ∈ [0, T ), a� ∈ (0, amax]}L�=1 are unknown
parameters. This signal model is ubiquitous in applications
such as radar [24]–[26], ultrasound [22], [27], and more. In
these applications, h(t) denotes a known transmit pulse which
is reflected from L targets. The reflected signal is modeled
as x(t) where a� and τ� denote the amplitude and time-delay
corresponding to the �-th target.

In general, FRI signals can have wide bandwidth due to short
duration pulses h(t). However, by using the structure of the
signal and knowledge of the pulse h(t), FRI signals can be
sampled at sub-Nyquist rates. This is typically achieved by
passing x(t) through a designed sampling kernel g(t) and then
measuring low-rate samples of the filtered signal y(t) as shown
in Fig. 1. The kernel is designed such that the FRI parame-
ters {a�, τ�}L�=1 are computed accurately from the samples. In
particular, it has been shown that 2L samples of y(t) in an
interval of length T , that are measured either uniformly [21],
[22] or non-uniformly [28], [29], are sufficient to determine
{a�, τ�}L�=1 uniquely. The reconstruction or determination of the
parameters from the samples is achieved by applying spectral
analysis methods such as the annihilating filter [1], [21].

As discussed in the introduction, a conventional FRI sampling
scheme, such as in Fig. 1, has a sampler which is controlled by a
global clock that operates at the rate of innovation 2L

T Hz. For a
large L or a small T , the sampling rate increases, and the global
clock requires high power. In this case, an IF-TEM sampler is
well suited as it does not require a global clock.

We consider the problem of perfect recovery of the FRI
parameters {a�, τ�}L�=1 using an IF-TEM sampling scheme as
shown in Fig. 2. Specifically, we consider designing the sampling
kernel g(t) and an IF-TEM such that the FRI parameters are
uniquely determined from the time-encodings by keeping the
firing rate close to the rate of innovation.

In the next section, we follow a similar strategy to the one
in [12], and show that in the noiseless case, perfect recovery is
guaranteed using as few as 2L+ 2 firings in an interval of length
T . In Section IV-A, we suggest an alternative approach that is
more robust to noise.

III. FRI-TEM: SAMPLING AND PERFECT RECOVERY OF FRI
SIGNALS FROM IF-TEM MEASUREMENTS

In this section, we show that FRI signals can be perfectly
recovered from IF-TEM measurements. We use the fact that
the FRI signal x(t) in (6) can be perfectly reconstructed from
its 2L FSCs. We derive conditions on the IF-TEM parameters
and the sampling kernel g(t) such that 2L FSCs of the input
FRI signal can be uniquely recovered from the IF-TEM output.
Our approach is similar to the one considered in [12]. However,
in contrast to [12], we mathematically derive exact recovery
guarantees.

A. Fourier-Series Representation of FRI Signals

We begin by explicitly relating the input signal x(t) of (6) to
its FSCs (cf. (10)) following [22].

Since x(t) is a T -periodic signal, it has a Fourier series
representation

x(t) =
∑
k∈Z

x̂[k]ejkω0t, (7)
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where ω0 = 2π
T . The Fourier-series coefficients x̂[k] are given

by

x̂[k] =
1

T
ĥ(kω0)

L∑
�=1

a�e
−jkω0τ� , (8)

where, ĥ(ω) is the continuous-time Fourier transform ofh(t) and
we assume that ĥ(kω0) �= 0 for k ∈ K where K is a given set
of indices. Since x(t) is real-valued, its FSCs x̂[k] are complex
conjugate pairs, that is,

x̂∗[−k] = x̂[k]. (9)

The sequence

x̂[k]

ĥ(kω0)
=

1

T

L∑
�=1

a�e
−jkω0τ� , (10)

consists of a sum of L complex exponentials. From the theory
of high-resolution spectral estimation [30], it is well known that
2L consecutive samples of x̂[k]

ĥ(kω0)
are sufficient to determine

{a�, τ�}L�=1. For example, one can apply the well known annihi-
lating filter method [21] to compute {a�, τ�}L�=1. In practice, the
pulse h(t) has short-duration and wide bandwidth. Hence, there
always exist 2L or more non-vanishing Fourier samples ĥ(kω0)
that are computed a priori. To determine the FRI parameters, we
need to compute 2L consecutive values of x̂[k]. Our problem
is then reduced to that of uniquely determining the desired
number of FSCs from the signal measurements. Since x(t)
typically consists of a large number of FSCs, we discuss next a
sampling kernel design which removes unnecessary FSCs and
thus reduces the sampling rate.

B. Sampling Kernel

Since a minimum of 2L FSCs are sufficient for uniquely
recovering the FRI signal, the sampling kernel g(t) is designed
to remove or annihilate any additional FSCs. The filtered signal
y(t) is given by

y(t) = (x ∗ g)(t) =
∫ ∞

−∞
x(τ)g(t− τ)dτ

=
∑
k∈Z

x̂[k]

∫ ∞

−∞
g(t− τ)ejkω0τdτ

=
∑
k∈Z

x̂[k] ĝ(kωo) e
jkω0t.

(11)

To restrict the summation to a finite number of terms and
annihilate the unwanted FSCs we define the filter to satisfy the
following condition in the Fourier domain:

ĝ(kω0) =

{
1 if k ∈ K,
0 otherwise,

(12)

where K is a set of integers such that |K| ≥ 2L.
One particular choice of the sampling kernel is a sum-of-sincs

(SoS) kernel [22] generated by

ĝ(ω) =
∑
k∈K

sinc

(
ω

ω0
− k

)
, (13)

and

g(t) =

⎧⎨
⎩
∑
k∈K

ejkω0t, t ∈ (−T/2, T/2]

0, elsewhere.
(14)

The sampling kernel g(t) is designed to pass the coefficients
x̂[k], k ∈ K while suppressing all other coefficients x̂[k], k �∈
K. Note that one can also apply an ideal lowpass filter with
appropriate cutoff frequency to remove the FSCs. However, the
impulse response of an ideal lowpass filter has infinite support,
whereas the SoS kernel has compact support.

Using a SoS kernel, the filtered signal y(t) is

y(t) =
∑
k∈K

x̂[k]ĝ(kω0)e
jkω0t =

∑
k∈K

x̂[k]ejkω0t. (15)

The filtered signal y(t) is sampled by an IF-TEM which requires
its input to be real-valued and bounded. Since x̂[k] are conjugate
symmetric, to ensure that y(t) is real valued, the support set K
is chosen to be symmetric around zero, that is, K is given as

K = {−K, . . . ,K}, (16)

where K ≥ L to ensure that there are at-least 2L FSCs of x(t)
retained in y(t).

From (6) and y(t) = (x ∗ g)(t), it can be shown that

c � max
t
|y(t)| ≤ L amax ‖(h ∗ g)‖∞ (17)

≤ L amax ‖g‖∞‖h‖1, (18)

where Young’s convolution inequality is used. Since |g(t)| ≤
|K| andK is a finite set, g(t) is bounded. Hence y(t) is bounded
provided that the maximal amplitude amax <∞ and the pulse
h(t) is absolutely integrable. In the remaining of the paper, we
assume that both these conditions hold.

C. FRI TEM Sampling

The IF-TEM input is the filtered signal y(t), which is the
T -periodic signal defined in (15). The output of the IF-TEM is
a set of time instants {tn}n∈Z. Given {tn} one can determine
the measurements {yn} by using (2). The relation between the
measurements yn and the desired FSCs is given by [12]

yn =

∫ tn+1

tn

y(t) dt

=

∫ tn+1

tn

∑
k∈K\{0}

x̂[k]ejkω0tdt+

∫ tn+1

tn

x̂[0]dt

=
∑

k∈K\{0}
x̂[k]

(
ejkω0tn+1 − ejkω0tn

)
jkω0

+ x̂[0] (tn+1 − tn) .

(20)

To extract the desired FSCs from (20), we denote by y the
vector [

∫ t2
t1

y(t)dt,
∫ t3
t2

y(t)dt, . . . ,
∫ tN
tN−1

y(t)dt]	, where N is
the number of time instants in the interval T , and let

x̂ =

[
− x̂[−K]

jKω0
, . . . , x̂[0], . . . ,

x̂[K]

jKω0

]	
. (21)

With this notation, (20) can be written in the following matrix
form:

y = Ax̂, (22)
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where A be given in (19). This equation describes the relation
between the IF-TEM measurements and the FSCs. Our goal
is to determine these FSCs embedded in x̂ from which we
can perfectly recover the FRI parameters. If the matrix A has
full column rank then the Fourier coefficients vector can be
computed as

x̂ = A†y, (23)

where A† denotes the Moore-Penrose inverse.
In [12], the matrix is assumed to be uniquely left-invertible.

The authors showed via simulations that the matrix has full
column rank, however, a proof is not presented. In the following
we show that for an adequate number of firings, the matrix A is
indeed uniquely left-invertible, that is, has full column rank.

D. Recovery Guarantees

In this section, we present our main results where we show that
for the sampling kernel choice (14), we can uniquely identify
the FSCs from the IF-TEM time instants. Specifically, we show
that for a particular choice of the IF-TEM parameters, the matrix
A defined in (19) is left invertible. Our results are summarized
in the following theorems.

Theorem 1: Consider a positive integer K and a number T >
0. Let 0 ≤ t1 < t2 < · · · < tN < T for an integer N , and ω0 =
2π
T . Then the matrix A defined in (19) is left-invertible provided

that N ≥ 2K + 2.
Proof: See the Appendix. �
Theorem 1 implies that there should be a minimum of 2K + 2

IF-TEM time instants within an interval of T to enable recovery
of the FSCs, and subsequent reconstruction of the FRI signal.
To ensure this, the minimum firing rate b−c

κδ (cf. (5)) should be
chosen such that

b− c

κδ
≥ 2K + 2

T
. (24)

By combining Theorem 1, the result in (24), and the fact
that 2L FSCs are sufficient to recover the FRI parameters, we
summarize the sampling and reconstruction of FRI signals using
IF-TEM in the following theorem.

Theorem 2: Let x(t) be a T -periodic FRI signal of the fol-
lowing form

x(t) =
∑
p∈Z

L∑
�=1

a�h(t− τ� − pT ),

where τ� ∈ [0, T ), |a�| <∞, and L is known. We assume that
the amplitudes {a�}L�=1 are finite, and the pulse h(t) is known
and absolutely integrable. Consider the sampling mechanism
shown in Fig. 2. Let the sampling kernel g(t) satisfy

ĝ(kω0) =

{
1 if k ∈ K = {−K, . . . ,K},
0 otherwise,

TABLE I
IF-TEM PARAMETERS CHOICE FOR ESTIMATION

and maxt |(h ∗ g)(t)| <∞. Choose the real positive TEM pa-
rameters {b, κ, δ} such that c < b <∞, where c is defined in
(18), and

b− c

κδ
≥ 2K + 2

T
. (25)

Then, the parameters {a�, τ�}L�=1 can be perfectly recovered
from the TEM outputs if K ≥ L.

Based on Theorem 2, a reconstruction algorithm to compute
the FRI parameters from TEM firings is presented in Algo-
rithm 1.

E. IF-TEM Parameter Selection

The IF-TEM parameters are selected such that there is a
minimum of N ≥ 2L+ 2 time instants {tn}Nn=1 within a time
interval T . Thus, the minimum firing rate that enables accurate
reconstruction is 2L+2

T . The maximum firing rate is bounded
by b+c

κδ . While the threshold δ, which is a parameter of the
comparator, is easier to control, the integrator constant κ is
a parameter of the integrator, and it is usually fixed. Thus,
assuming a fixed value of b and κ, choosing small δ results in
a large firing rate above the minimum desirable value of 2L+2

T .
In practice, both b and δ are generated through a DC voltage
source, and therefore large values of bias and threshold require
high power. Hence, to minimize the power requirements, it is
desirable for b and δ to be as small as possible.

F. Simulations

We next numerically validate Theorem 2. In Fig. 4, we con-
sider h(t) as a Dirac impulse with time period T = 1 seconds.
We consider the simulations for L = 3, 5, and 10. The time
delays and amplitudes are selected uniformly at random over
(0, 1). The input signal x(t) is filtered using an SoS sampling
kernel with K = {−K, . . . ,K}, where K = L. The filtered
output y(t) is sampled using an IF-TEM which has a threshold
δ = 0.07 and κ = 1. The bias of the IF-TEM is set as b = 0.9,
1.3, and 2.5 for L = 3, 5, and 10 respectively. The parameters
are chosen to satisfy the inequality in (25), and resulted in 13,
18, and 36 samples per period for L = 3, 5, and 10. As per
Theorem 2, 8, 12, and 22 samples per period are sufficient. The
reconstruction was found to be stable even for a larger number
of impulses. We summarize the choice of IF-TEM parameters
and the resulting firing rate in Table I. In Fig. 5, using the

A =

⎡
⎢⎢⎢⎢⎣

e−jKω0t2 − e−jKω0t1 · · · t2 − t1 · · · ejKω0t2 − ejKω0t1

e−jKω0t3 − e−jKω0t2 · · · t3 − t2 · · · ejKω0t3 − ejKω0t2

...
...

...

e−jKω0tN − e−jKω0tN−1 · · · tN − tN−1 · · · ejKω0tN − ejKω0tN−1

⎤
⎥⎥⎥⎥⎦ . (19)
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Fig. 4. Sampling and reconstruction of a stream of Dirac impulses using TEM by applying the SoS kernel. Both τ� and a� are chosen uniformly at random
over (0, 1). (a)–(c): the input signal and its reconstruction for L = 3, L = 5, and L = 10 respectively. (d)–(f): the filtered signal y(t) and the time instants tn for
L = 3, L = 5, and L = 10 respectively.

Fig. 5. Sampling and reconstruction of stream of pulses using TEM by
applying the SoS kernel. (a): the input signal and its reconstruction for L = 3.
(b): the filtered signal y(t) and the time instants tn for L = 3.

same filter, we depict the estimation of a stream of pulses with
L = 3, {a�} = {0.5,−0.45, 0.4}, and {τ�} = {0.2, 0.33, 0.8}.
The IF-TEM b, δ, κ which satisfy the inequality in (25), are
0.9,0.07,1 respectively. The resulting firing rate is as few as 13
samples/s.

IV. NOISE ROBUSTNESS

The results in [12] and the previous section assume that there
is no measurement noise. However, in practice, the signals are
contaminated by noise. In the presence of noise, the IF-TEM
outputs or time instants are perturbed. While using Algorithm 1,
this results in a perturbation in the matrix A as well as the
measurements y in (22). In this case, when computing the FSCs
using (22), the stability ofA, which is measured by the condition
number of the matrix, impacts the results. Next, we show that

Algorithm 1: Reconstruction of a T -Periodic FRI Signal
Using Theorem 2.

Input: N ≥ 2K + 2 spike times {tn}Nn=1 in a period T .
1: Let n← 1
2: while n ≤ N − 1 do
3: Compute yn = −b(tn+1 − tn) + κδ
4: n := n+ 1.
5: end while
6: Compute Fourier coefficients vector x̂ = A† y in (23).
7: Estimate {(a�, τ�)}L�=1 using a spectral analysis

method.
Output: {(a�, τ�)}L�=1.

by excluding zero from K, perfect recovery is possible, and in
the noisy scenario, the resulting method is more robust.

As we show below, when excluding the zero vector, we end
up with a recovery problem similar to (23) but with the matrix
B defined in (29) replacing A. This matrix has better condition
number than A. To gain intuition as to why this is the case,
we consider the intersection of a function f(t) and a straight
line r(t) as shown in Fig. 6. The function f(t) is a K-th
order trigonometric polynomial whose coefficients are FSCs
of the FRI signal and the slope of r(t) is equal to x̄[0] = x̂[0]
(see the Appendix for more details). As we discuss in detail
in the Appendix, the closer the values of f(t) to r(t) at the
time encoding instants, the poorer the condition number of the
corresponding matrices.

As shown in the Appendix, the matrices A and B have full
column rank provided that the straight line r(t) �= f(t) at all time
encoding instants {tn}Nn=1, and this condition holds for N >
2K + 1. Note that x̄[0] �= 0 when we consider matrix A and
x̄[0] = 0 in the context of matrix B. Furthermore, we can show
that the smaller the values of {|r(t)− f(t)|}Ntn=1 the poorer the
condition number. For N > 2K + 1 and x̄[0] �= 0, it is possible
that there exists a set of time encodings {tn}Nn=1 such that the
straight line r(t) is close to the trigonometric polynomial f(t)
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Fig. 6. Examplesf(t) and r(t)when the matrixAhas large condition number.

Fig. 7. Average condition number of matrices A and B as a function of L.

at {tn}Nn=1. In such a case, from (44), we can determine a set
of Fourier coefficients such that Ax̂ ≈ 0N , where 0N is a zero
vector of length N . Hence for that particular set of {tn}Nn=1, A
becomes ill-conditioned. However, when x̄[0] = 0, we observe
that it is less likely that r(t) with zero-slope becomes close to
f(t) at the time-encoding instants. Several illustrative examples
depicting this intuition are shown in Fig. 6 where K = 2 and
N = 7. In Fig. 6(a), the condition number of matrices A and
B are 30 and 3, respectively. The condition number of A is ten
times higher than that of B. This is because the straight line
corresponding to A (shown in red) is closer to the trigonometric
polynomial at the time-encodings than that of B (in magenta).
In the example shown in Fig. 6(b), the condition number of
A is 3000 as |r(t)− f(t)| is small for t ∈ {tn}Nn=1, whereas

|r(t)− f(t)| is relatively large for x̄[0] = 0 and consequently
B has lower condition number.

Next, we present a perfect recovery guarantee for FRI signals
by using IF-TEM without the zero frequency in the SoS kernel.

A. Exclusion of Zero

In this section, we show that by excluding the zero frequency
in K we achieve perfect reconstruction for FRI signals of the
form of (6). In this case, the resulting matrix has a much more
stable structure compared to A of (19).

Suppose we remove k = 0 following (20), we have

yn =

∫ tn+1

tn

y(t) dt

=

∫ tn+1

tn

∑
k∈K\{0}

x̂[k]ejkω0tdt

=
∑

k∈K\{0}
x̂[k]

(
ejkω0tn+1 − ejkω0tn

)
jkω0

. (26)

To extract the FSCs from (26), we denote by y0 the vec-
tor [

∫ t2
t1

y(t)dt,
∫ t3
t2

y(t)dt, . . . ,
∫ tN
tN−1

y(t)dt]	, where N is the
number of time instants in the interval T . The measurements y0

and the FSCs

x̂0 =

[
− x̂[−K]

jKω0
, . . . ,− x̂[−1]

jω0
,
x̂[1]

jω0
, . . . ,

x̂[K]

jKω0

]	
(27)

are now related as

y0 = Bx̂0, (28)

where B is given as in (29). Next, we show that the matrix B
has full column rank and is uniquely left invertible (29) shown
at the bottom of next page.

Theorem 3: Consider a positive integer K and a number T >
0. Let 0 ≤ t1 < t2 < · · · < tN < T for an integer N , and ω0 =
2π
T . Then the matrix B defined in (29) is left-invertible provided

that N > 2K + 1.
Proof: The proof follows the same line as that of Theo-

rem 1 with the constraint x̂[0] = 0 as detailed in Case-1 in the
Appendix. �

Since the left-inverse of B exists, the Fourier coefficients
vector is computed as

x̂0 = B†y0. (30)

Although, the FSCs are computed uniquely, they are not con-
secutive unlike the FSCs computed in Theorem 2. Since high res-
olution spectral estimation techniques such as the annihilating
filter requires 2L consecutive FSCs, to uniquely determine the
FRI parameters, we needK ≥ 2L. This results in twice the firing
rate compared to that in Theorem 2. An alternative approach to
reduce the firing rate is to assume that the time-delays are on a
grid. In this case, determination of time-delays and amplitudes
of the FRI signal from FSCs is cast as a compressive sensing
problem [24, Section V-B]. This problem is efficiently solved
from 2L FSCs, that are not necessarily consecutive, by using
sparse recovery approaches such as orthogonal matching pursuit
(OMP) [1, Ch. 11]. Hence, by assuming that the time-delays of
the FRI signal are on a grid, we require K ≥ L.
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Algorithm 2: Reconstruction of a T -Periodic FRI Signal.

Input: N ≥ 2K + 2 spike times {tn}Nn=1 in a period T .
1: Let n← 1
2: while n ≤ N − 1 do
3: Compute yn = −b(tn+1 − tn) + κδ
4: n := n+ 1.
5: end while
6: Compute Fourier coefficients vector x̂0 = B† y0 in (30).
7: Estimate {(a�, τ�)}L�=1 from x̂0 by using CS methods for

K ≥ L.
Output: {(a�, τ�)}L�=1.

The minimum firing rate for the IF-TEM is

b− c

κδ
≥ 2K + 2

T
, (31)

where K ≥ 2L for off-grid time-delays and K ≥ L for time-
delays on-grid. By combining Theorem 3 with the result in (31),
we summarize the sampling and reconstruction of FRI signals
using IF-TEM in the following theorem.

Theorem 4: Let x(t) be a T -periodic FRI signal of the fol-
lowing form

x(t) =
∑
p∈Z

L∑
�=1

a�h(t− τ� − pT ),

where the number of FRI signalsL is known, and h(t) is a signal
with known pulse shape. Consider the sampling mechanism
shown in Fig. 2. Let the sampling kernel g(t) satisfy

ĝ(kω0) =

{
1 if k ∈ K = {−K, . . . ,−1, 1, . . . ,K},
0 otherwise,

and maxt |(h ∗ g)(t)| <∞. Choose the real positive TEM pa-
rameters {b, κ, δ} such that c < b <∞, where c is defined in
(18), and

b− c

κδ
≥ 2K + 2

T
. (32)

Then, the parameters {a�, τ�}L�=1 can be perfectly recovered
from the TEM outputs if

1) K ≥ 2L when {τ�}L�=1 are off-grid
2) K ≥ L when {τ�}L�=1 are on-grid.
Since the time delays and amplitudes of the FRI signals are

estimated uniquely, without any constant offset, from any set
of 2L or more consecutive FSCs, excluding the zero frequency
does not result in any offset in the reconstruction. An algorithm
to perfectly recover the FRI parameters from IF-TEM samples
is summarized in Algorithm 2.

B. Numerical Results for On-Grid Time-Delays

In many practical systems, the time instants can only be
recorded with finite precision, i.e., in practical circumstances,
the recorded times are effective time instances {t′n}which differ
from the real-time instances {tn}, and perfect reconstruction
may no longer be possible [10], [31].

We compare the robustness of the Algorithms 1 and 2 in
the presence of perturbation to the measured time instants. We
demonstrate that Algorithm 2 provides better recovery than
Algorithm 1.

In the above Algorithms, the first step is to estimate the
Fourier samples from the TEM measurements by taking pseudo
inverses of A (cf. (22)) and B (cf. (28)), respectively. Both the
matrices are functions of the measured time instants and the
sampling kernel. In Fig. 7, we compare the condition numbers
of the matrices with perturbed firing instants as a function of
the number of FRI signals L. To that aim, 5000 random sets of
monotonic sequences {tn ∈ [0, T )}Nn=1 were used. As shown in
Fig. 7, the condition number of the matrix B ∈ C

(4L+2)×(2L) is
substantially smaller than the condition number of the matrix
A ∈ C

(4L+2)×(2L+1).
Next, we illustrate the reconstruction of a T -periodic FRI

signal from non-uniform noisy samples (time instants) using
the two reconstruction algorithms of Theorems 2 and 4. We
created a periodic FRI signal x(t) of the form of (6). The signal
x(t) with period T = 1 consists of L = 3 pulses with h(t) =
β(3)(20t), where β(3)(t) is a third-order cubic B-spline, with
{a�}3�=1={0.5,−0.45, 0.4}, and{τ�}3�=1 = {0.2, 0.4, 0.8}. The
TEM parameters are b = 1.2, κ = 1, and δ changes from 0.04
to 0.09 resulting in 13 to 24 time samples. The parameters
are chosen to satisfy condition (32). We consider a sum-of-
sincs kernel withK = {−K, . . . , 0, . . . ,K} for Theorem 2, and
K = {−K, . . . ,−1, 1, . . . ,K} for Theorem 4. For both kernels,
the time instances {tn} were perturbed by a zero-mean white
Gaussian noise with variance 0.001. For both the methods we
set K = 2L and applied OMP to recover the time-delays and
amplitudes [1].

The reconstruction accuracy of the two algorithms is
compared in terms of relative mean square error (MSE),
given by

MSE =
||x(t)− x̄(t)||L2[0,T ]

||x(t)||L2[0,T ]
, (33)

where x̄(t) is the reconstructed signal. In Fig. 8, we show
the MSE of the two algorithms as a function of the number
of noisy time instances. The MSE of Algorithm 2 is 2–6 dB
lower compared to that of Algorithm 1 for different firing
rates.

Next, we compare the two frameworks when the input FRI
signal has noise. To simulate a continuous-time noise effect on
the input to IF-TEM, we add perturbation to the FSCs at the
output of the SoS filter. In the noisy case, the output of the SoS

B =

⎡
⎢⎢⎢⎢⎣

e−jKω0t2 − e−jKω0t1 · · · e−jω0t2 − e−jω0t1 ejω0t2 − ejω0t1 · · · ejKω0t2 − ejKω0t1

e−jKω0t3 − e−jKω0t2 · · · e−jω0t3 − e−jω0t2 ejω0t3 − ejω0t2 · · · ejKω0t3 − ejKω0t2

...
...

...
...

e−jKω0tN − e−jKω0tN−1 · · · e−jω0tN − e−jω0tN−1 ejω0tN − ejω0tN−1 · · · ejKω0tN − ejKω0tN−1

⎤
⎥⎥⎥⎥⎦ (29)
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Fig. 8. Performance comparison of Algorithm 1 and Algorithm 2 in the
presence of continuous-time white Gaussian noise with zero mean and variance
0.001.

Fig. 9. A comparison of Algorithm 1 and Algorithm 2 with noisy input signal:
For SNR> −20 dB, Algorithm 2 has lower error compared to Algorithm 1.

filter is given by

y′(t) =
∑
k∈K

(x̂[k] + ξ[k]) ejkω0t, (34)

where {ξ[k]}k∈K are independent and identically distributed
circular complex Gaussian random variables with zero mean
and variance σx̂. In this simulation, we define SNR as

10 log10

(∑
k∈K |x̂[k]|2
|K|σ2

x̂

)
. (35)

We compare Algorithm 1 and 2 in terms of MSE in the estimation
of time delays as:

MSE = 10 log

(
L∑

�=1

(τ� − τ̂�)
2

)
. (36)

For both the approaches, we used same number of firing rates
and measurements. The time delays are estimated by OMP
algorithm. The MSEs in the time delay estimation are shown
in Fig. 9 for different SNRs and for K = L, 2L. We observe
that for SNR> −20 dB, Algorithm 2 has lower error compared
to Algorithm 1.

C. Numerical Results for Off-Grid Time-Delays

The following experiments consider off-grid time-delays with
h(t) as a third-order cubic B-spline. We consider L = 3 pulses
where time-delays and amplitudes are generated uniformly at
random over intervals (0, T ] and [1, 5], respectively. For IF-
TEM, we set κ = 1 and b = 2.5c where c is computed as in (18).
The threshold δ is chosen to satisfy (24). To compare the methods
with zero and without-zero frequency, we consider sampling SoS
kernels withK = {−K, . . . ,K} and {−K, . . . ,−1, 1, . . . ,K},
respectively. We use an annihilating filter with Cadzow de-
noising to estimate the time-delays in the presence of noise.
Since Cadzow denoising requires more than 2L consecutive
samples of FSCs, we consider K ≥ 2L+ 1 while excluding the
zero. Based on the fact that Algorithm 2 estimates {x̂[k]}−1k=−K
and {x̂[k]}Kk=1, we apply Cadzow denoising on each of these
sequences independently and then apply block annihilation [32]
to determine the time-delays jointly. In addition, we also show
results for estimation of signal parameters via rotational invari-
ance technique (ESPRIT) [33] for with zero approach.

In this simulation, we compare the two approaches in terms
of MSEs (cf. (36)) when the time encodings are perturbed. The
perturbed time encodings are given as t′n = tn + εn where tn is
the actual time encoding and εn is a random variable uniformly
distributed over [−σ/2, σ/2]. The MSEs in the estimation of
time-delays for different numbers of FSCs and perturbation lev-
els are shown in Fig. 10. We used 500 independent noise and FRI
signal realizations to compute each MSE value. In Fig. 10(a),
(b), and (c) we show MSEs for with zero, without zero, and ES-
PRIT approaches. In Fig. 10(d), we show one-dimensional MSE
plots for K = 2L+ 1 and 5L for further clarity. In the present
experimental settings, the time encodings have values between
[0, T ] where T = 1 sec. In this case, adding a perturbation with
σ ≥ 0.04 has severe effect on the recovery with MSE in the
range of−5 dB for all the approaches. We observe that the zero
approach and ESPRIT have similar MSEs. While comparing
these two approaches with the proposed without zero approach,
we note a gain of 3− 10 dB for σ < 0.04. Since perturbation
in the time encoding is also equivalent to quantization noise, a
lower MSE indicates that the proposed without zero approach
can operate at lower bits compared to with zero method.

D. Resolution and Firing Rate Analysis

The accuracy of time-delay estimations of any FRI recov-
ery approach is strongly dependent on the minimum distance
between two consecutive FRI pulses in the presence of noise.
To analyze the resolution abilities of the two approaches, we
consider an FRI signal with two pulses of equal amplitudes.
By treating the difference between the time delays, τ2 − τ1,
we computed MSEs (as in (36)) in their estimation when the
time encodings are perturbed with σ = 0.008 (low noise) and
σ = 0.014 (high noise). The results are shown in Fig. 11. For
both the noise levels without zero approach has a lower MSE
compared to the with zero approach. The gain in the MSE is more
prominent (up to 5 dB) for the high noise level. The results shows
that without zero approach has better resolution compared to the
with zero approach.

Unlike conventional sampling, the number of measurements
per unit time in the IF-TEM is not fixed. For a class of c-bounded
FRI signals, we choose parameters {κ, b, δ} to achieve a desired
minimum firing rate. However, the firing rate may vary from
signal to signal in the class considered. Importantly, the bias
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Fig. 10. A comparison of with zero (Algorithm 1) and without zero (Al-
gorithm 2) approaches for off-grid time delays with perturbation in the time
encodings: Without zero method has lower error compared to with zero approach.

b plays a crucial role in designing the rate as it should always
be kept above c. In this experiment, we analyze the effect of b
on the firing rate for a fixed c. To this end, we set c = 1 and
vary b. For each b, we generate 100 FRI signals with randomly
chosen amplitudes and time-delays such that the signals are
bounded by c. We compute the average firing rates for both with
zero (denoted as FR-A) and without zero (denoted as FR-B)
approaches as shown in Fig. 12. We also plotted the maximum
firing (maxFR) and minimum firing (minFR) rates, b+c

κδ and b−c
κδ

together with the rate of innovation (RoI) 2L. Here we chose
L = 5 and kept it fixed for all b. For each b, κ is set to be 1 and δ
is selected to satisfy (24). For both methods, we have identical
mean firing rates.

We observe that for small values of b, the firing rates are
large, and they reduce as b increases. For large values of b, the
gap between maxFR and min FR reduces, and IF-TEM operates
at a rate closer to RoI. However, a large b amounts to high
power consumption. Hence, there is a trade-off between power
consumption and the optimum firing rate.

V. RECONSTRUCTION OF NONPERIODIC FRI SIGNALS

Consider a nonperiodic FRI signal of the form

x̃(t) =
L∑

�=1

a�h(t− τ�), (37)

Fig. 11. Comparison of resolutions of the without zero (Algorithm 1) and
without zero (Algorithm 2): Without zero approach has lower error compared
to the with zero method.

Fig. 12. Comparison of firing rates: FR-A and FR-B denotes mean firing rates
of with zero and without zero approaches, respectively. Maximum and minimum
rates are denoted by maxFR and minFR, respectively. As b increases, firing rates
reach closer to RoI.

where h(t) is a known pulse and the amplitudes and delays
{(a�, τ�)|τ� ∈ [0, T ), a� ∈ R}L�=1 are unknown parameters. We
assume that the pulse h(t) has finite support R, namely

h(t) = 0, ∀|t| ≥ R

2
. (38)

Given that our main interest is in pulses with a very wide or
even infinite spectrum, i.e very short pulses, traditional sampling
techniques will prove to be ineffective in our case [22]. We
design a sampling kernel g̃(t) such that

ỹ(t) = x̃(t) ∗ g̃(t) = y(t), ∀t ∈ [0, T ), (39)

where y(t) defined in (11). Specifically, g̃(t) is compactly sup-
ported and defined by

g̃(t) =

S∑
s=−S

g(t+ sT ), (40)

where S is determined by R and T (More details are available
in [22]). Since both time instants and the time delays of the
FRI signals are within the interval [0, T ), i.e., tn ∈ [0, T ) and
τ� ∈ [0, T ), � = 1, . . . , L, the time instants taken in the nonpe-
riodic case using IF-TEM are the same as in the periodic case.
Therefore, the recovery guarantees developed for the periodic
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V =

⎛
⎜⎜⎜⎜⎝

e−jKω0t1 · · · e−jω0t1 t1 ejω0t1 · · · ejKω0t1

e−jKω0t2 · · · e−jω0t2 t2 ejω0t2 · · · ejKω0t2

...
. . .

...
...

...
. . .

...

e−jKω0tN · · · e−jω0tN tN ejω0tN · · · ejKω0tN

⎞
⎟⎟⎟⎟⎠ ∈ C

N×2K+1 (43)

⎛
⎜⎜⎜⎜⎝

e−jKω0t1 · · · e−jω0t1 1 ejω0t1 · · · ejKω0t1

e−jKω0t2 · · · e−jω0t2 1 ejω0t2 · · · ejKω0t2

...
. . .

...
...

...
. . .

...

e−jKω0tN · · · e−jω0tN 1 ejω0tN · · · ejKω0tN

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
W

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̄[−K]
...

x̄[−1]
−c
x̄[1]

...

x̄[K]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
x̄

= −x̄[0]

⎛
⎜⎜⎜⎜⎝

t1

t2
...

tN

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
t

(44)

case in Theorems 4 and 2 are applicable to the non-periodic case
as well.

VI. CONCLUSION

In this paper, we consider sampling and reconstruction frame-
works for periodic FRI signals by using IF-TEMs. We first
provide theoretical guarantees for the approach provided in [12].
We then propose a robust recovery approach by modifying the
sampling kernel. We show that in the presence of perturbations of
time encodings, the modified approach outperforms the method
in [12] for the same number of measurements. Compared to
conventional amplitude-based sampling for FRI signals the pro-
posed TEM-based method is less power consuming and hence,
more cost effective.

APPENDIX

In this Appendix we prove Theorems 1 and 3. We consider
a unified approach to prove both the theorems by using the fact
that the proof of Theorem 3 is a special case of that of Theorem 1
with x̂[0] = 0.

Proof: The matrix A in (22) is decomposed as

A = DV, (41)

where

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0

0 −1 1 · · · 0

0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠ ∈ R

(N−1)×N (42)

and V is given as in (43). To determine x̂ uniquely from y =
DVx̂, the matrixA should not have a non-zero null space vector.

The matrix D is a difference operator which has null space
vector c1N where c ∈ C\{0}. Hence, if there exist a non-zero
vectorx as in (21) whose components satisfy (9), such thatVx =
c1N for some arbitrary c, then there does not exist a unique
solution. We show that for N ≥ 2K + 2 ≥ 2L+ 1, uniqueness

is guaranteed. Specifically, we would like to show that there does
not exist an x satisfying (9), a set {tn}Nn=1, and c �= 0 such that
Vx = c1N for N > 2K + 1 (43) and (44) are shown at top of
this page.

For simplicity of discussion, we define x̄[k] = x̂[k]
jkω0

for k �= 0

and x̄[0] = x̂[0]. The modulus and angle of the complex-valued
coefficient x[k] is denoted by |x[k]| and∠x[k], respectively. The
equation Vx = c1N is re-written as in (44) or alternatively as

f(t) = r(t), for t = t1, . . . , tN , (45)

where

f(t) = c− 2

K∑
k=1

|x̄[k]| cos(kω0t+ ∠x̄[k]) (46)

is a K-th order trigonometric polynomial and r(t) = x̄[0]t is a
straight line with slope x̄[0]. If there exist a c and {x̄[k]}Kk=0

such that f(t) and r(t) intersect each other N -times within an
interval [0, T ), that is, there exists a set TN = {tn ∈ [0, T ), n =
1, . . . , N} satisfying f(t) = r(t) then uniqueness is not guar-
anteed.

Let us consider two mutually exclusive cases: (1) x̄[0] =
x̂[0] = 0 and (2) x̄[0] = x̂[0] �= 0.

Case-1: For x̄[0] = 0, the slope of the straight line r(t) is zero
and hence, (45) is equivalent to determining zeros of f(t) in the
interval [0, T ). Since f(t) is a trigonometric polynomial of order
K with ω0 = 2π

T , it will have a maximum of 2K zeros within
the interval [0, T ) [34, p. 150]. Hence, for N > 2K, there does
not exist a c �= 0 and a feasible {x̄[k]}Kk=0 such that (45) holds
true.

Case-2: Consider the case when x̄[0] �= 0. We intend to deter-
mine the maximum number of intersections of a trigonometric
polynomial of order K with a straight line. To this end, let t1 be
the first intersection point. Further, let us assume that the slope
of f(t) at t = t1 is positive (or negative), that is, f ′(t1) > 0
(or f ′(t1) < 0) where f ′(t) denotes derivative of f(t). This
implies that there may exist a minimum (or maximum) of f(t)
for t ∈ [0, t1) and a maximum (or minimum) for t ∈ (t1, T ). An
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Fig. 13. An illustration of intersection of a trigonometric polynomial f(t) and
a straight line r(t).

illustrative example is shown in Fig. 13. Since r(t) is a monotone
function, to have a second intersection t2, it is necessary that
f ′(t) changes its sign. In essence, if there exist a t2 ∈ TN , then
there should be a maximum (or minimum) of f(t) in the interval
(t1, t2). Applying this argument to the remaining intersection
points in TN we infer that for N intersection points there should
be atleast N − 1 extrema. Alternatively, a function with N − 1
extrema can intersect a monotone function at a maximum of N
points. As f ′(t) too is a K-th order trigonometric polynomial, it
has a maximum of 2K zeros [34, p. 150]. This implies that f(t)
can have a maximum of 2K extrema. Hence, f(t) can intersect
r(t) at a maximum of 2K + 1 points within interval [0, T ). This
implies that for N > 2K + 1, the equation f(t) = r(t) can not
have any solution and hence, matrix A does not have a non-zero
null-vector and uniqueness is guaranteed. �
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