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Abstract—Quantization plays a critical role in digital signal
processing systems. Quantizers are typically designed to obtain
an accurate digital representation of the input signal, operating
independently of the system task, and are commonly implemented
using serial scalar analog-to-digital converters (ADCs). In this
work, we study hardware-limited task-based quantization, where
a system utilizing a serial scalar ADC is designed to provide a suit-
able representation in order to allow the recovery of a parameter
vector underlying the input signal. We propose hardware-limited
task-based quantization systems for a fixed and finite quantization
resolution, and characterize their achievable distortion. We then
apply the analysis to the practical setups of channel estimation
and eigen-spectrum recovery from quantized measurements. Our
results illustrate that properly designed hardware-limited systems
can approach the optimal performance achievable with vector
quantizers, and that by taking the underlying task into account, the
quantization error can be made negligible with a relatively small
number of bits.

Index Terms—Quantization, analog-to-digital conversion.

I. INTRODUCTION

QUANTIZATION refers to the representation of a
continuous-amplitude signal using a finite dictionary, or

equivalently, a finite number of bits [1]. Quantizers are imple-
mented in digital signal processing systems using analog-to-
digital convertors (ADCs), which typically operate in a serial
scalar manner due to hardware-limitations. In such systems, each
incoming continuous-amplitude sample is represented in digital
form using the same mechanism [2]. The quantized represen-
tation is commonly selected to accurately match the original
signal, in the sense of minimizing some distortion measure, such
that the signal can be recovered with minimal error from the
quantized measurements [3, Ch. 10], [4].

Quantization design is typically performed regardless of the
system task. However, in many signal processing applications,
the goal is not to recover the actual signal, but to capture certain
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parameters, such as an underlying model or unknown channel,
from the quantized signal [5]. We refer to systems where one
wishes to extract some information from the quantized signal,
rather than recovering the signal itself, as task-based quantiza-
tion, and to such systems operating with serial scalar ADCs as
hardware-limited task-based quantization systems.

Hardware-limited quantization with low resolution is the fo-
cus of growing interest over recent years due to the increasing
complexity and bitrate demands of modern signal processing and
communications systems. Common tasks considered with low
resolution hardware-limited quantization include multiple-input
multiple-output (MIMO) communications [6]–[12], channel es-
timation [11]–[17], subspace estimation [18], time difference of
arrival estimation [19], and direction of arrival (DOA) estimation
[20], [21]. In these works it is assumed that quantization is
carried out separately from the system task, typically using fixed
uniform low-precision quantizers, e.g., one-bit quantization of a
scalar value is implemented using the sign function [6]. These
quantized measurements are then processed in the digital domain
using different inference algorithms, such as linear estimators
[11], [14], maximum-likelihood estimation [15], and approxi-
mate message passing based algorithms [10], [16], [17]. As these
works focus only on the digital processing, they do not provide
guidelines to designing quantization systems with a small and
finite number of bits by acknowledging the task of the system.

When hardware-limitations are not present, task-based quan-
tization systems can take advantage of joint vector quantiza-
tion, which is known to be superior to serial scalar quantiza-
tion [22, Ch. 22.2]. Previous works on task-based quantization
without hardware limitations are divided according to whether
the parameter vector is modeled as a random vector, namely,
a Bayesian setup, or as a deterministic unknown parameter.
When the signal parameter is random, task-based quantization
can be viewed as an indirect lossy source coding problem1 [1,
Section V-G]. For this setup with a stationary source that is
related to the observation vector via a stationary memoryless
channel, Witsenhausen proved in [23] that the rate-distortion
function, namely, the minimal number of bits required to ob-
tain a given representation accuracy determined by the distor-
tion measure, is asymptotically equivalent to the rate-distortion
function for representing the observed signal – instead of the
signal parameter – with a surrogate distortion measure. Under
mean-squared error (MSE) distortion, Wolf and Ziv proved in
[24] that this equivalence also holds for finite signal size, and
the work [5] provided guidelines to the optimal joint quan-
tization and estimation scheme. Recently, Kostina and Verdu
characterized nonasymptotic bounds on the rate-distortion func-
tions for indirect as well as direct lossy source coding with

1Direct lossy source coding typically refers to the standard quantization setup
where the task of the system is to recover the quantized signal, while indirect
source coding refers to task-based quantization [25].
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arbitrary distortion measures [25], [26], by considering single-
shot quantization, and specialized the bounds for i.i.d. signals
with separable distortion. The indirect source coding framework
was also used to study conversion of continuous-time signals into
quantized discrete-time signals in [27], [28]. The focus in the
works [23]–[28] is on the optimal tradeoff between quantization
rate and achievable distortion. Consequently, their results cannot
be applied to quantify the achievable performance of practical
hardware-limited systems utilizing serial scalar ADCs.

For a signal parameter modeled as deterministic and un-
known, [29] studied detection from quantized observations,
i.e., recovering a scalar binary parameter, while [30] treated
detection from quantized prior probabilities. Quantization for
the recovery of a scalar parameter taking values on a discrete
finite set was studied in [31]. The design of quantizers for the
recovery of a vector parameter taking values on a continuous set
was considered in [32], which proposed an adaptive algorithm
for tuning the quantizer. In all the works above, i.e., [29]–[32],
as well as in [5], the analysis assumes vector quantizers with
high resolution, where the number of bits used for representing
the quantized signal can be made arbitrarily large. They do not
consider practical systems that utilize serial scalar quantizers
with a fixed and finite number of bits.

A. Main Contributions

In this work we study quantization systems which are
hardware-limited to utilize practical serial scalar ADCs operat-
ing with a fixed number of bits, for the task of acquiring a random
parameter vector taking values on a continuous set. Our approach
is to account for the task in design of the quantization system,
thus mitigating the effect of the structure imposed by hardware
limitations. This hardware-limited task-based framework fits a
broad range of signal processing and communications systems.
In particular, a task may be any data processing or inference
objective, and various constraints encountered in practice, such
as sampling rate limitations, delay restrictions, and imposed
structures, can be represented as hardware limitations. Conse-
quently, although our derivation here considers quantization for
the task of estimating a desired parameter vector while restricted
to using scalar ADCs, the underlying approach, i.e., to overcome
hardware limitations by properly accounting for a task in the
system design, is applicable to a much broader family of systems.

We first consider the case where the observations and the
desired vector are related such that the minimum mean-squared
error (MMSE) estimate is a linear function of the observations.
Such relationships are commonly encountered in channel es-
timation and signal recovery problems, e.g., [5], [8]–[16]. We
focus on structured systems implementing uniform quantiza-
tion with linear processing, allowing analog combining prior
to digital processing. This approach was previously studied in
the context of MIMO communications [6], [33]–[35]. For this
setup, we derive the hardware-limited task-based quantization
system which minimizes the MSE, and characterize the achiev-
able distortion. The proposed system accounts for the task by
reducing the number of quantized samples via an appropriate
linear transformation to be not larger than the size of the desired
signal. It then rotates the quantized samples to have identical
variance. Quantization is performed based on a waterfilling-type
expression, accounting for the serial operation and the limited
dynamic range of practical ADCs.

In addition, we characterize the minimal achievable distortion
of two suboptimal approaches: We first discuss systems in which

processing is carried out only in the digital domain, as is the
structure considered in the majority of the literature of tasks
performed with low resolution quantization, e.g., [13]–[16],
[18]–[20]. Then, we study systems which quantize the MMSE
estimate, an approach which is known to be optimal when using
vector quantizers [24], and was also proposed for compressed
sensing with quantized measurements [36]. Surprisingly, we
show that, unlike when vector quantizers are employed, in the
presence of serial scalar ADCs, quantizing the MMSE estimate
is generally suboptimal. We provide a necessary and sufficient
condition for this approach to coincide with the optimal design.

Next, we extend the proposed system to scenarios where the
observations and the desired vector are related via an arbitrary
stochastic model. In particular, we identify the main design
guidelines associated with the case where the MMSE estimate is
a linear function of the observations, and discuss how they may
be applied for arbitrary models. Then, we explicitly show how
these guidelines can be used to construct a hardware-limited
task-based quantization system for scenarios in which the de-
sired vector can be recovered from the empirical covariance of
the observations, as in [5], [18]–[21].

Finally, we apply our results to two practical setups: Channel
estimation from quantized measurements [11]–[16] and
eigen-spectrum estimation from quantized measurements [5].
We demonstrate that, by properly accounting for the presence of
serial scalar ADCs, practical hardware-limited systems operat-
ing with a relatively small number of bits approach the optimal
performance, achievable with vector quantizers, in practical and
relevant scenarios. Furthermore, we show that hardware-limited
quantizers designed accounting for the task of the system can
substantially outperform task-ignorant systems utilizing vector
quantizers. This gain is mainly achieved by applying task-based
linear analog processing, in addition to the digital processing.

B. Organization and Notations

The rest of this paper is organized as follows: Section II
briefly reviews some preliminaries in quantization theory, and
formulates the hardware-limited task-based quantization setup.
Section III discusses task-based quantization with vector quan-
tizers. Section IV studies hardware-limited task-based quantiza-
tion when the MMSE estimate is linear, and Section V extends
the proposed design to arbitrary setups. Section VI presents
the application of the results in a numerical study. Section VII
provides some concluding remarks. Detailed proofs of the results
are given in the appendix.

Throughout the paper, we use boldface lower-case letters for
vectors, e.g., x; the ith element of x is written as (x)i. Matrices
are denoted with boldface upper-case letters, e.g., M , and
(M)i,j is its (i, j)th element. Sets are denoted with calligraphic
letters, e.g., X , and Xn is the nth order Cartesian power of X .
Transpose, Euclidean norm, trace, stochastic expectation, sign,
and mutual information are written as (·)T , ‖·‖, Tr (·), E{·},
sign (·), and I (·; ·), respectively, andR is the set of real numbers.
We use a+ to denote max(a, 0), and In is the n× n identity
matrix. All logarithms are taken to basis 2.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries in Quantization Theory

To formulate the hardware-limited task-based quantization
problem, we first review standard quantization notations, after
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Fig. 1. Quantizer illustration.

which we discuss task-based quantization. To that aim, we recall
the definition of a quantizer:

Definition 1 (Quantizer): A quantizer Qn,k
M (·) with logM

bits, input size n, input alphabet X , output size k, and output
alphabet X̂ , consists of: 1) An encoding function gen : Xn �→
{1, 2, . . . ,M} � M which maps the input into a discrete index
i ∈ M. 2) A decoding function gdk : M �→ X̂ k which maps each
index i ∈ M into a codeword qi ∈ X̂ k.

We write the output of the quantizer with input x ∈ Xn as
x̂ = gdk (g

e
n (x)) � Qn,k

M (x). Scalar quantizers operate on a
scalar input, i.e., n = 1 and X is a scalar space, while vector
quantizers have a multivariate input. The set of codewords
{qi}Mi=1 is referred to as the quantization codebook. When the
input size and output size are equal, namely, n = k, we write
Qn

M (·) � Qn,n
M (·). An illustration is given in Fig. 1.

1) Standard Quantization: In the standard quantization
problem, a Qn

M (·) quantizer is designed to minimize some
distortion measure dn : Xn × X̂n �→ R+ between its input and
its output. The performance of a quantizer is therefore charac-
terized using two measures: The quantization rate, defined as
R � 1

n logM , and the expected distortion E{dn (x, x̂)}. For a
fixed input size n and codebook size M , the optimal quantizer
is thus given by

Qn,opt
M (·) = argmin

Qn
M (·)

E {dn (x, Qn
M (x))} . (1)

Characterizing the optimal quantizer via (1) and the op-
timal tradeoff between distortion and quantization rate is in
general a very difficult task. Consequently, optimal quantizers
are typically studied assuming either high quantization rate,
i.e., R → ∞, see, e.g., [37], or asymptotically large input size,
namely, n → ∞, typically with i.i.d. inputs,2 via rate-distortion
theory [3, Ch. 10]. For example, when the quantizer input con-
sists of i.i.d. random variables (RVs) with probability measure
fx, and the distortion measure can be written as dn (x, x̂) =
1
n

∑n
i=1 d ((x)i , (x̂)i) for some d : X × X �→ R+, then the

optimal distortion in the limit n → ∞ for a given rate R is given
by the distortion-rate function:

Definition 2 (Distortion-rate function): The distortion-rate
function for input x ∈ X with respect to the distortion measure
d : X × X �→ R+ is defined as

Dx(R) = min
fx̂|x:I(x̂;x)≤R

E {d (x̂, x)} . (2)

The conditional distribution which obtains the minima in (2),
fopt
x̂|x , is referred to as the optimal distortion-rate distribution, and

the marginal distribution fx̂ =
∫
fopt
x̂|xfx is referred to hence-

forth as the optimal marginal distortion-rate distribution.
Comparing high quantization rate analysis for scalar quantiz-

ers and rate-distortion theory for vector quantizers demonstrates

2Rate-distortion theory can also be used for non i.i.d. signals, see, e.g., [38,
Ch. 5]. However, the simple classical expression, as given by the distortion-rate
function in Def. 2, requires the observed signal to have i.i.d. entries.

Fig. 2. Task-based quantization illustration.

Fig. 3. Hardware-limited task-based quantizer.

the sub-optimality of serial scalar quantization. For example, for
large R, even for i.i.d. inputs, vector quantization outperforms
serial scalar quantization, with a distortion gap of 4.35 dB for
Gaussian inputs with the MSE distortion [22, Ch. 23.2].

2) Task-Based Quantization: In task-based quantization the
design objective of the quantizer is some task other than min-
imizing the distortion between its input and output. In the
following, we focus on the generic task of acquiring a zero-mean
random vector s ∈ Rk from a measured zero-mean random
vectorx ∈ Rn, where the entries ofx and s have finite variance,
and n ≥ k > 0. This formulation accommodates a broad range
of tasks, including channel estimation, covariance estimation,
and source localization. A natural distortion measure for such
setups is the MSE, which we consider throughout the paper. An
illustration of a task-based quantization system is depicted in
Fig. 2.

B. Problem Formulation

In this work we study task-based quantization with hardware
limitations. As discussed in the introduction, practical digital
signal processing systems typically obtain a digital representa-
tion of physical analog signals using serial scalar ADCs. We
refer to task-based quantization with serial scalar ADCs as
hardware-limited task-based quantization. Since in such sys-
tems, each continuous-amplitude sample is converted into a
discrete representation using a single quantization rule, this
operation can be modeled using identical scalar quantizers.
Consequently, the system we consider is modeled using the setup
depicted in Fig. 3. The observed signal x ∈ Rn is projected into
Rp, p ≤ n, using some mapping ha(·), which represents the
pre-quantization processing carried out in the analog domain.
Since general mappings may be difficult to implement in analog,
we henceforth restrict ha(·) to be a linear function, namely, we
only allow linear analog combining, as in, e.g., [6], [33]. In this
case, ha(x) = Ax for some A ∈ Rp×n.

Each entry of ha(x) is quantized using the same scalar
quantizer with resolution M̃p � 	M1/p
, denoted Q1

M̃p
(·). The

overall number of quantization levels is thus (M̃p)
p ≤ M . We

note that M , which represents the memory requirement of the
system, is also directly related to the ADC power consumption.
However, for the same overall number of quantization levels M ,
different selections of p may result in different power consump-
tions, depending on the physical implementation of the ADC,
see, e.g., [35]. In the following we keep the value of M fixed
and finite, i.e., the memory requirement, which is independent
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of the specific implementation of the ADC, is the same for all
considered systems.

The representation of s, denoted ŝ, is obtained as the output
of some post-quantization mapping hd : Rp �→ Rk, applied to
the output of the identical scalar quantizers. The mapping hd(·)
represents the joint-processing carried out in the digital domain.
The quantized representation ŝ can be written as

ŝ = hd

(
Q1

M̃p

(
(ha (x))1

)
, . . . , Q1

M̃p

(
(ha (x))p

))
. (3)

The novelty of the model in Fig. 3, compared to previous
works on quantization for specific tasks with serial scalar ADCs,
e.g., [8]–[21], is in the introduction of the additional linear
processing carried out in the analog domain, represented by the
mapping ha(·). The concept of using analog combining prior
to digital processing was previously studied in the context of
MIMO communications in [6], [7], [33]–[35]. The motivation
for introducing ha(·) is to reduce the dimensionality of the
input to the ADC, thus facilitating a more accurate quantization
without increasing the overall number of bits, logM . As shown
in the following sections, by properly designing ha(·), this ap-
proach can substantially improve the performance of task-based
quantizers operating with serial scalar ADCs.

Our analysis of hardware-limited task-based quantization,
focusing on the MSE distortion, consists of three parts:

1) As a preliminary step, in Section III, we discuss
non hardware-limited task-based quantization systems,
namely, systems implementing task-based quantization
using optimal vector quantizers instead of serial scalar
ADCs. The purpose of this analysis is to serve as a basis
for comparing the performance of hardware-limited task-
based quantizers to vector quantizers.

2) Next, in Section IV, we focus on the case where x and
s are related such that the MMSE estimate of s from
x is a linear function of x. Such relationships arise in
various channel estimation and signal recovery setups,
e.g., [5], [8]–[16]. For this setting, we propose a hardware-
limited quantization system design, and characterize its
achievable distortion. We also characterize the minimal
achievable distortion when no pre-quantization processing
is carried out, as well as when the analog combiner is
designed to recover the MMSE estimate.

3) Then, in Section V, we use the characterization of ha(·)
and hd(·) given in Section IV for linear models, to provide
guidelines for designing ha(·) and hd(·) under arbitrary
relationships between x and s. We suggest a concrete
design for cases in which s can be estimated from the
second-order statistical moments ofx, as in [5], [18]–[21].

Our analysis shows that, unlike when vector quantizers are
applied, the optimal strategy for systems utilizing serial scalar
ADCs is not to quantize the MMSE estimate. Instead, the input to
the ADC is rotated to account for the identical quantization rule
of serial scalar ADCs, and includes a waterfilling-type expres-
sion to account for the limited dynamic range. Furthermore, our
numerical comparison presented in Section VI demonstrates that
the proposed system, which uses simple hardware, can approach
the performance of the optimal vector quantizer.

III. TASK-BASED VECTOR QUANTIZATION

As a preliminary step towards our study of hardware-limited
task-based quantizers, we consider task-based quantization
which utilizes vector quantizers without hardware limitations.

Fig. 4. Task-ignorant quantizer.

We focus on two approaches for task-based quantization: In
the first, referred to as optimal task-based quantization, the
quantizer QM

n,k(·) in Fig. 2 is designed to recover the desired
vector s. In the second strategy, described in Fig. 4 and referred
to as task-ignorant quantization, the quantizer is designed to
recover the observed vector x separately from the task, and
s is estimated from the quantized representation. The optimal
task-based quantizer obtains the minimal achievable distortion
for a given quantization rate, while the task-ignorant quantizer
represents the best system one can construct when the quantizer
is designed separately from the task. The approaches we discuss
below are based on joint vector quantization, and thus cannot be
implemented using practical serial scalar ADCs.

1) Optimal Task-Based Quantizer: For the MSE distortion, the
optimal quantizer is constructed by first obtaining the MMSE
estimate of s from x, s̃=E {s|x}, and then quantizing the
estimate [24]. This leads to a minimal distortion given by

min
Qn,k

M (·)
E

{∥
∥
∥s−Qn,k

M (x)
∥
∥
∥
2
}

= E
{
‖s− s̃‖2

}
+ min

Qk
M (·)

E
{∥
∥s̃−Qk

M (s̃)
∥
∥2
}
. (4)

It follows from (4) that the minimal distortion is the sum of
the minimal estimation error of s from x, and the minimal
distortion in quantizing the MMSE estimate s̃. The latter can be
obtained explicitly under a high quantization rate assumption,
i.e., 1

k logM → ∞, using fine quantization analysis, as was done
in [5], or alternatively, when s̃ has i.i.d. entries and k tends to
infinity, using rate-distortion theory. For finite k, n and M , the
minimal distortion in quantizing the MMSE estimate may be
bounded as stated in the following proposition:

Proposition 1: For any random vector c̃ ∈ Rk with probabil-
ity measure fc̃ independent of s̃, the minimal MSE in quantizing
the MMSE estimate s̃ using a Qk

M quantizer satisfies

Ds̃(logM) ≤ min
Qk

M (·)
E
{∥
∥s̃−Qk

M (s̃)
∥
∥2
}

≤ E

⎧
⎨

⎩

∞∫

0

[
Pr
(
‖c̃−s̃‖2 > t

∣
∣
∣ s̃
)]M

dt

⎫
⎬

⎭
. (5)

Proof: See Appendix A.
The bounds in (5) are used in the sequel for comparing the

performance of hardware-limited task-based quantization to the
optimal performance achievable using vector quantizers. These
bounds are required since evaluating the minimal distortion of
a vector quantizer, i.e., the middle term in (5), is a challenging
task for finite signal size and quantization resolution. The upper
bound in (5) is the exact performance of random coding, which is
known to provide a relatively tight bound for fixed blocklengths
[26], and to asymptotically achieve the distortion-rate curve [22,
Ch. 23.2]. A reasonable assignment for fc̃ in (5) is the optimal
marginal distortion-rate distribution; with this distribution the
distortion of quantizers with i.i.d. random codewords coincides
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with the distortion-rate function for sources generating asymp-
totically large number of i.i.d. realizations of s̃ [22, Ch. 24.2].
Alternative upper bounds, which may be tighter and simpler to
compute compared to the one used in (5) yet are not analytically
expressible, can be obtained by numerically evaluating the dis-
tortion of iterative and data-driven vector quantizer designs, such
as the extension of Lloyd’s algorithm to multivariate inputs [39].
In general, the distortion-rate function and the optimal marginal
distribution can be obtained using iterative algorithms, e.g., the
Blahut-Arimoto algorithm [3, Ch. 10.8] and its extensions to
continuous-valued RVs [40].

2) Task-Ignorant Quantizer: When the quantizer operates
independently of the task, the desired vector smust be estimated
directly from the quantized observations. For the optimal quan-
tizer and estimator for this setup, Qn

M (·) minimizes the MSE
between its output and x, and s is estimated from the output of
the quantizer using the MMSE estimator. From the orthogonality
principle, the resulting MSE in estimating s is

E
{∥
∥s− E

{
s
∣
∣Qn

M (x)
}∥
∥2
}

= E
{
‖s− s̃‖2

}
+ E
{∥
∥s̃−E
{
s
∣
∣Qn

M (x)
}∥
∥2
}

(a)
= E
{
‖s−s̃‖2

}
+ E
{∥
∥s̃−E
{
s̃
∣
∣Qn

M (x)
}∥
∥2
}
, (6)

where (a) follows since s �→ x �→ Qn
M (x) form a Markov

chain, thus, by [41, Prop. 4],E
{
s
∣
∣Qn

M (x)
}
= E
{
s̃
∣
∣Qn

M (x)
}

.
The relation in (6) shows that the distortion of the task-ignorant
quantizer is given by the sum of the estimation error of the
MMSE estimate s̃ and the estimation error of the MMSE estimate
of s̃ from the quantizer output Qn

M (x). The main difference
between (6) and the optimal estimation error in (4) is that in (6)
the quantizer is fixed, while in (4) it can be set to minimize the
estimation error.

In order to compute (6), the distribution of s̃ given Qn
M (x)

is required, which may be difficult to characterize. One scenario
in which this requirement can be relaxed is when s̃ is a linear
function of x, i.e., s̃ = Γx for some Γ ∈ Rk×n. To formulate
the resulting distortion, let Σx and ΣQn

M (x) be the covariance
matrices ofx and ofQn

M (x), respectively. The MSE in this case
is stated in the following proposition.

Proposition 2: When s̃ = Γx, x is zero-mean, and Qn
M (x)

is the optimal quantizer of x, then

E
{∥
∥s̃−E
{
s̃
∣
∣Qn

M (x)
}∥
∥2
}
= Tr
(
ΓTΓ
(
Σx−ΣQn

M (x)

))
. (7)

Proof: When s̃ is the linear MMSE estimator, the sec-
ond summand in (6) can be written as E{‖Γ(x−E{x|
Qn

M(x)})‖2}. Therefore,

E
{∥
∥s̃−E
{
s̃
∣
∣Qn

M (x)
}∥
∥2
}

(a)
= E
{
‖Γ (x−Qn

M (x))‖2
}

= Tr
(
ΓTΓE

{
(x−Qn

M (x)) (x−Qn
M (x))T

})

(b)
= Tr
(
ΓTΓ
(
Σx−ΣQn

M (x)

))
, (8)

where (a) follows since Qn
M (x) is the optimal quantizer of x in

the MSE sense, hence Qn
M (x) = E

{
x
∣
∣Qn

M (x)
}

; and (b) is a
result of the fact that the optimal quantizer is uncorrelated with
the quantization error [1, Sec. III]. �

Proposition 2 suggests that, when s̃ is a linear function of
x, the distortion can be evaluated using only the covariance
matrix of the task-ignorant quantizer Qn

M (x). Nonetheless, the
covariance of the quantizer which minimizes the distortion with
respect to x is typically difficult to compute for finite M . Since
I(x;Qn

M (x))≤ logM [22, Thm. 23.2], a possible approach to
approximate the distortion is to evaluate Proposition 2 with the
covariance matrix of the output distribution which obtains the
distortion-rate function Dx (logM), instead of ΣQn

M (x). This
replacement provides a reliable characterization of the perfor-
mance of random codes distributed via the optimal marginal
distortion-rate distribution for large M . In the numerical study
in Section VI we illustrate that (7) approaches the performance
of the optimal quantizer designed to recover x.

IV. HARDWARE-LIMITED TASK-BASED QUANTIZATION

SYSTEMS DESIGN

A. Model Assumptions

We now study the design of hardware-limited task-based
quantization systems illustrated in Fig. 3. As stated in the prob-
lem formulation, we consider the case where n, k and logM are
fixed and finite, namely, we do not assume high quantization rate
or arbitrarily large inputs. In such cases, explicitly characterizing
the optimal quantization system and the minimal achievable dis-
tortion is a very difficult task, just as characterizing the minimal
achievable distortion in lossy source coding with fixed block-
lengths is difficult [25], [26]. Consequently, in the following
section we focus on scenarios in which the stochastic relation-
ship between the vector of interest s and the observation vector
x are such that the MMSE estimate of s from x, s̃ = E{s|x},
is a linear function of x. Additionally, we restrict the digital
mapping hd(·) to be linear, namely, hd(u) = Bu, B ∈ Rk×p.
Since the MMSE estimate is linear here, this constraint is not
expected to have a notable effect on the overall performance,
especially when the error due to quantization is small.

By focusing on these setups, we are able to explicitly derive
the achievable distortion and to characterize the system which
achieves minimal distortion. This derivation reveals some non-
trivial insights. For example, we show that the optimal approach
when using vector quantizers, namely, to quantize the MMSE es-
timate, is no longer optimal in the presence of serial scalar ADCs.
Furthermore, as detailed in Section V, this analysis provides
general guidelines for designing hardware-limited task-based
quantization systems, which can be used for any relationship
between s and x.

To design a system which operates with simple scalar uniform
quantizers, we carry out our analysis assuming dithered quanti-
zation [42]. Using dithered quantizers results in some favorable
properties of the quantized signal, elaborated on in the sequel,
which facilitate the analysis. These properties are also approx-
imately satisfied without dithering for many input distributions
[43]. Therefore, by considering dithered quantization, we are
able to rigorously derive the optimal system, where in practice
the resulting system can approach the optimal performance using
standard uniform quantizers without dithering.

More specifically, we assume the identical scalar quantizers
Q1

M̃p
(·) implement non-subtractive uniform dithered quantiza-

tion [42]. Unlike subtractive dithered quantization, considered
in, e.g., [46], non-subtractive quantizers do not require the real-
ization of the dithered signal to be subtracted from the quantizer
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Fig. 5. Dithered uniform quantization illustration.

output in the digital domain, resulting in a practical structure
[42]. An illustration is depicted in Fig. 5.

To formulate the input-output relationship of the serial ADC,
let γ denote the dynamic range of the quantizer, and define
Δp � 2γ

M̃p
as the quantization spacing. The uniform quantizer

is designed to operate within the dynamic range, namely, the
amplitude of the input is not larger than γ with sufficiently large
probability. To guarantee this, we fix γ to be some multiple η
of the maximal standard deviation of the input. By Chebyshev’s
inequality [3, Pg. 64], for η ≥ 3 the amplitude of the input is
smaller than the dynamic range with probability over 89% for
any input distribution. We assume that η <

√
3M̃p, such that

the variable κp � η2(1− η2

3M̃2
p

)−1 is strictly positive. Note that

η = 3 satisfies this requirement for any M̃p ≥ 2, i.e., the
ADC is implemented using scalar quantizers with at least
one bit. The output of the serial scalar ADC with in-
put sequence y1, y2, . . . , yp can be written as Q1

M̃p
(yi) =

qp (yi + zi), where z1, z2, . . . , zp are i.i.d. RVs uniformly dis-
tributed over [−Δp

2 ,
Δp

2 ], mutually independent of the input, rep-
resenting the dither signal. The function qp(·), which implements
uniform quantization, is given by

qp(y) =

⎧
⎪⎨

⎪⎩

−γ +Δp

(
l + 1

2

) y − l ·Δp + γ ∈ [0,Δp]

l ∈ {0, 1, . . . , M̃p − 1}
sign(y)

(
γ − Δp

2

)
|y| > γ.

Note that when M̃p = 2, the resulting quantizer is a standard
one-bit sign quantizer of the form qp(y) = c · sign(y), where
the constant c > 0 is determined by the dynamic range γ.

Dithered quantizers significantly facilitate the analysis, due
to the following favorable properties: When the input is inside
the dynamic range of the quantizer, the output can be writ-
ten as the sum of the input and an additive zero-mean white
quantization noise signal, which is uncorrelated with the input.
This model allows us to accurately characterize the quantization
system which minimizes the MSE in Theorem 1. The favorable
properties of dithered quantization are also satisfied in uniform
quantization without dithering for inputs with bandlimited char-
acteristic function, and are approximately satisfied for various
families of input distributions, including the Gaussian distribu-
tion [43]. Furthermore, for those input distributions under which
the favorable additive uncorrelated quantization noise model
holds without dithering, the energy of the quantization noise is
smaller without dithering than it is with dithering. Consequently,
while in the following analysis we assume dithered quantization,
exploiting the fact that the resulting quantization noise is white
and uncorrelated with the input, the proposed system can also be
applied without dithering. Under input distributions for which

the uncorrelated quantization noise model approximately holds,
we expect lower distortion values to be achievable compared to
the dithered case. This behavior is demonstrated in the simula-
tions study in Section VI, where we show that applying the pro-
posed system without dithering yields improved performance,
due to the reduced energy of the quantization noise.

Since the dithered quantization operation can be modeled
as adding uncorrelated noise, designing hardware-limited task-
based quantization systems bears some similarity to linear
transceiver design in MIMO communications. However, there
are several fundamental differences between the two models. In
hardware-limited quantization the additive quantization noise
depends on the number of scalar quantizers due to the constraint
on the overall number of bits, while in MIMO communications
the channel noise does not depend on how many antennas are
used. Furthermore, this additive noise is uncorrelated with the
input but not independent, as commonly assumed in MIMO
communications, and this model holds only when the quantized
input is within the dynamic range. These differences between
MIMO communications and hardware-limited task-based quan-
tization result in a different system design.

B. Hardware-Limited Task-Based Quantizer Design

We now characterize the hardware-limited task-based quan-
tizer which minimizes the MSE under the system model detailed
in the previous subsection. Recall that here, the linear operators
ha(·) and hd(·), denoting the analog combining and digital pro-
cessing in Fig. 3, respectively, are represented using the matrices
A and B, respectively. Our characterization yields the analog
combining matrix and digital processing matrix, denotedAo and
Bo, respectively, and the corresponding dynamic range γ. Since
for any quantized representation ŝ, it follows from the orthogo-
nality principle that the MSE, E{‖s− ŝ‖2}, equals the sum of
the estimation error of the MMSE estimate, E{‖s− s̃‖2}, and
the distortion with respect to the MMSE estimate,E{‖s̃− ŝ‖2},
in the following we characterize the performance of the proposed
systems via the distortion with respect to s̃.

Let Γ be the MSE optimal transformation of x, namely,
s̃ = Γx, and let Σx be the covariance matrix of x, assumed to
be non-singular. Before we study the overall hardware-limited
task-based quantization system, we first derive the digital pro-
cessing matrix which minimizes the MSE for a given analog
combining matrix A and the resulting MSE, as stated in the
following lemma:

Lemma 1: For any analog combining matrix A and dynamic
range γ such that Pr

(∣
∣ (Ax)l + zl

∣
∣ > γ
)
= 0, namely, the

quantizers operate within their dynamic range with probability
one, the digital processing matrix which minimizes the MSE is
given by

Bo (A) = ΓΣxA
T

(

AΣxA
T +

2γ2

3M̃2
p

Ip

)−1

,

and the minimal achievable MSE is

MSE (A) = min
B

E
{
‖s̃− ŝ‖2

}

=Tr

(

ΓΣxΓ
T −ΓΣxA

T

(

AΣxA
T +

2γ2

3M̃2
p

Ip

)−1

AΣxΓ
T

)

.

Proof: See Appendix B.
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The digital processing matrix in Lemma 1 is the linear MMSE
estimator of s from the vector Ax+ e, where e represents the
quantization noise, which is white and uncorrelated with Ax.
This stochastic representation is a result of the usage of dithered
quantizers with the amplitude of the input to the quantizers being
within the dynamic range. The resulting requirement, namely,
to set the dynamic range γ such that Pr

(∣
∣ (Ax)l + zl

∣
∣ > γ
)
=

0, is quite restrictive, as it holds only when the entires of x
have a finite support. This model can be satisfied along with
the requirement for the MMSE estimator to be linear in some
setups, for example, when s = Γx+w wherew is a zero-mean
random vector independent of x. However, in many scenarios
of interest the entires of x have an infinite support. In this case,
there is always some probability that the input amplitude will
exceed the dynamic range, resulting in some level of correlation
between Ax and e.

Nonetheless, in the following we use the model on which
Lemma 1 is based, namely, that the output of the dithered
quantizer can be written as its input corrupted by additive
uncorrelated white noise, to design hardware-limited task-based
quantizers also when the entires of x have infinite support.
Specifically, when the dynamic range is set such that the proba-
bility of overloading the quantizer is sufficiently small, namely,
Pr
(∣
∣ (Ax)l + zl

∣
∣ > γ
) ≈ 0 for each l, then modeling Ax and

e as uncorrelated becomes a reliable approximation. Therefore,
in order to use Lemma 1 to design hardware-limited task-
based quantizers, we explicitly require the uniform quantizers
to operate within their dynamic range with high probability, as
explained in Subsection IV-A, and set the value of γ accordingly.
In Section VI we numerically demonstrate that this model leads
to hardware-limited task-based quantizers which are capable of
approaching the performance achievable using vector quantizers
for inputs with infinite support.

We now use Lemma 1 to obtain the analog combining matrix
Ao which minimizes MSE and the resulting system. Define
the matrix Γ̃ � ΓΣ1/2

x , and let {λΓ̃,i} be its singular values

arranged in a descending order. Note that for i > rank(Γ̃),
λΓ̃,i = 0.

The hardware-limited task-based quantization system based
on the structure detailed in Subsection II-B which minimizes the
MSE under the model assumptions of Subsection IV-A is given
in the following theorem:

Theorem 1: For the hardware-limited quantization system
based on the model detailed in Subsection IV-A, the analog
combining matrix Ao is given by Ao = UAΛAV T

AΣ−1/2
x ,

where
� V A ∈ Rn×n is the right singular vectors matrix of Γ̃.
� ΛA ∈ Rp×n is a diagonal matrix with diagonal entries

(ΛA)2i,i =
2κp

3M̃2
p · p
(
ζ · λΓ̃,i − 1

)+
, (9a)

where ζ is set such that 2κp

3M̃2
p ·p
∑p

i=1

(
ζ · λΓ̃,i − 1

)+
= 1.

� UA ∈ Rp×p is a unitary matrix which guarantees that
UAΛAΛT

AUT
A has identical diagonal entries, namely,

UAΛAΛT
AUT

A is weakly majorized by all possible ro-
tations of ΛAΛT

A [47, Cor. 2.1]. The matrix UA can be
obtained3 via [47, Alg. 2.2].

3The existence of the unitary matrix UA is guaranteed by [47, Cor. 2.1].
However, this matrix is not unique as, e.g., both UA and −UA result in a
rotation of ΛAΛT

A having identical diagonal entries.

The dynamic range of the ADC is given by

γ2 =
κp

p
=

η2

p

(
1− η2

3M̃2
p

)−1

, (9b)

and the digital processing matrix is equal to

Bo (Ao) = Γ̃V AΛT
A

(

ΛAΛT
A +

2γ2

3M̃2
p

Ip

)−1

UT
A. (9c)

The resulting minimal achievable distortion is

E
{
‖s̃−ŝ‖2

}
=

⎧
⎪⎪⎨

⎪⎪⎩

∑k
i=1

λ
2

Γ̃,i

(ζ·λΓ̃,i−1)
+
+1

, p≥k

∑p
i=1

λ
2

Γ̃,i

(ζ·λΓ̃,i−1)
+
+1

+
∑k

i=p+1 λ
2
Γ̃,i

, p<k.

(9d)
Proof: See Appendix C.
We note that, unlike task-based vector quantizers, for

hardware-limited systems detailed in Subsection II-B, recover-
ing the MMSE estimate s̃ in the analog domain is sub-optimal.
Since the quantization is carried out using a serial scalar ADC,
the proposed analog combining rotates the input to the ADC such
that each entry has identical variance, accounting for the fact that
the same quantization rule is applied to each entry. Furthermore,
the analog combiner includes a waterfilling-type expression over
its singular values, which accounts for the finite dynamic range
of the ADC. In particular, the waterfilling allows the resulting
system to balance the estimation and quantization errors. To see
this, we note from Appendix C that the matrix ΛA determines
the dynamic range γ. Consequently, by potentially nulling the
diagonal entries corresponding to the less dominant singular
values {λΓ̃,i}, the quantization system reduces the dynamic
range. This yields more precise quantization and reduces the
quantization error, at the cost of a small estimation error.

The quantization system in Theorem 1 minimizes the MSE
under the model detailed in Subsection IV-A. This model is
restricted to uniform quantization mappings, as these quantizers
faithfully represent typical serial ADCs. The performance can
be further improved by allowing for non-uniform quantizers, as
shown in [44], which used data-driven machine learning meth-
ods to optimize the overall system. The model-based analysis of
task-based quantization with non-uniform quantizers is left for
future investigation.

Theorem 1 also provides guidelines to selecting the dimen-
sions of the output of the analog combiner, as stated in the
following corollary:

Corollary 1: In order to minimize the MSE, p must not be
larger than the rank of the covariance matrix of s̃.

Proof: See Appendix D.
Corollary 1 indicates that analog combining should project

the observed vector such that the signal which undergoes the
serial scalar quantization has reduced dimensionality, not larger
than the rank of the covariance of s̃. This follows since, by
reducing the dimensionality of the inputs to the ADC while
keeping the overall number of quantization levels M fixed, the
quantization error induced by the scalar quantization is reduced.
The exact optimal value of p is determined by the values of
the non-zero singular values {λΓ̃,i}. In particular, the MSE
expression in Theorem 1 implies that decreasing p below the
number of non-zero singular values results in a tradeoff between
improving quantization precision and increasing the estimation
error. In the numerical analysis in Section VI we demonstrate
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that using the proposed hardware-limited task-based system, the
quantization error is made negligible for relatively smallM , and
the performance approaches that of the MMSE estimator.

Finally, we show that when the quantization resolution is
sufficiently large, the proposed system produces the MMSE
estimate s̃. To that aim, we assume that the covariance matrix
of s̃ is non-singular, thus we set p = k. When the quantization
resolution is such that M̃k is sufficiently large, the quantization
noise introduced by the ADC becomes negligible, and the output
of the system can be written as

ŝ ≈ BoAox

≈ Γ̃V AΛT
A

(
ΛAΛT

A

)−1
ΛAV T

AΣ−1/2
x x. (10)

Furthermore, for large M̃k, the parameter ζ becomes ζ ≈
3M̃2

k · k/(2κk

∑k
i=1 λΓ̃,i). Thus, the diagonal entries in (9a)

become (ΛA)2i,i ≈ λΓ̃,i/(
∑k

i=1 λΓ̃,i). By writing the singular

value decomposition (SVD) Γ̃ = U Γ̃ΛΓ̃V
T
Γ̃

in (10), and recall-
ing that V Γ̃ = V A, we have

ŝ ≈ U Γ̃ΛΓ̃Λ
T
A

(
ΛAΛT

A

)−1
ΛAV T

Γ̃
Σ−1/2

x x

(a)
= U Γ̃ΛΓ̃V

T
Γ̃
Σ−1/2

x x
(a)
= Γx = s̃,

where (a) follows since for this setting of ΛA, ΛΓ̃Λ
T
A(ΛA

ΛT
A)−1ΛA = ΛΓ̃, and (b) follows since Γ̃ = ΓΣ1/2

x . Conse-
quently, for sufficiently large quantization resolution, ŝ ap-
proaches the MMSE estimate s̃.

C. Suboptimal Quantization Systems

In the previous subsection we characterized the hardware-
limited task-based quantization system which minimizes the
MSE under the model assumptions of Subsection IV-A. In the
following we study two suboptimal systems of interest: a system
which does not carry out any processing in the analog do-
main, and a system which mimics the optimal vector task-based
quantizer by quantizing the MMSE estimate. Our results in the
following are based on the characterization of the achievable
MSE for a fixed analog combining matrix A in Lemma 1.

We begin with the suboptimal case where processing is carried
out only in the digital domain. Here, p = n, and the analog
combiner is given by A = In. This structure accommodates the
majority of systems studied in the literature in the context of tasks
performed with low precision ADCs, e.g., [13]–[16], [18]–[20].
The digital processing matrix which minimizes the MSE for this
case and the resulting MSE are stated in the following corollary:

Corollary 2: When the analog combiner isA = In, the min-
imal achievable MSE is given by

E
{
‖s̃−ŝ‖2

}
=Tr

(

Γ̃
T
Γ̃

(

In+
3M̃2

n

2κnσ2
x,max

Σx

)−1)

, (11a)

and the corresponding digital matrix is

Bo (In) = ΓΣx

(

Σx +
2κnσ

2
x,max

3M̃2
n

In

)−1

, (11b)

where σ2
x,max � maxi=1,...,n((Σx)i,i).

Proof: The corollary follows directly from Lemma 1. In
particular, (11b) is obtained from the digital processing matrix
in Lemma 1 by setting A = In, and (11a) is obtained from the
resulting MSE via the matrix inversion lemma. �

The resulting suboptimal system bears some similarity to the
task-ignorant system discussed in Section III in the sense that
quantization is carried out independently of the task. However,
the system discussed in Section III performs joint vector quanti-
zation, while (11a) is achievable with a serial ADC. As a result,
the system considered here can operate only when logM ≥ n,
otherwise the scalar quantizers are assigned zero bits, while the
task-ignorant system of Section III can operate with any positive
value of logM .

Next, we consider a system in which the analog combining
is designed to recover the MMSE estimate s̃. Here, p = k, and
A = Γ. As noted in the discussion following Theorem 1, this
approach is suboptimal when working with serial scalar ADCs,
unlike the case with vector quantizers discussed in Section III.
The digital processing matrix which minimizes the MSE for this
setup and the resulting MSE are stated in the following corollary:

Corollary 3: When the analog combiner is A = Γ, the min-
imal achievable MSE is given by

E
{
‖s̃−ŝ‖2

}
=Tr

(

Γ̃
T
Γ̃

(

In+
3M̃2

k

2κkσ2
s̃,max

Γ̃
T
Γ̃

)−1)

, (12a)

and the corresponding digital matrix is

Bo (Γ) = Γ̃Γ̃
T
(

Γ̃Γ̃
T
+

2κkσ
2
s̃,max

3M̃2
k

Ik

)−1

, (12b)

where σ2
s̃,max � maxi=1,...,k

(
E{(s̃)2i }

)
.

Proof: The corollary follows directly from Lemma 1 using
the same arguments as in the proof of Corollary 2. �

The approach of quantizing the MMSE estimate is in general
suboptimal. When the entries of s̃ are not linearly dependent,
namely, the covariance matrix of s̃ is non-singular [49, Ch. 8.1],
designing the analog combiner to recover the MMSE estimate
minimizes the MSE if and only if the conditions stated in the
following corollary is satisfied:

Corollary 4: When the covariance matrix of s̃ is non-
singular, quantizing the MMSE estimate minimizes the MSE
if and only if the covariance matrix of s̃ is 1

kIk.
Proof: See Appendix E.
Corollary 4 indicates that, except for very specific statistical

relationships between x and s, quantizing the entries of the
MMSE estimate vector is purely suboptimal. In the numerical
study presented in Section VI we numerically evaluate the
achievable MSE of the considered systems, and illustrate that
both the system proposed in Theorem 1 and the suboptimal
system discussed in Corollary 4 are able to approach the per-
formance of the optimal vector quantizer for large number of
quantization levels M , and that the system of Theorem 1 outper-
forms the suboptimal system in Corollary 4 for all considered
values of M . Additionally, we illustrate that for large k and
relatively small M , a notable gap in MSE is observed between
the hardware-limited task-based quantizer of Theorem 1 and the
suboptimal system of Corollary 4.
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V. GUIDELINES FOR HARDWARE-LIMITED TASK-BASED

QUANTIZATION FOR ARBITRARY MODELS

A. Design Guidelines

In the previous section we characterized the distortion of
hardware-limited task-based quantizers when the digital map-
ping hd(·) is a linear function. To that aim, we designed the
analog combining ha(·) and the digital mapping hd(·) such
that, if the quantization error induced by the serial scalar ADC
is negligible, then the resulting output approaches the MMSE
estimate. In scenarios where the MMSE estimate s̃ is linear,
one can design linear ha(·) and hd(·) such that the resulting
quantized representation approaches s̃ as M increases for any
value of p ∈ [k, n], which denotes the dimensions of the output
of the analog linear mapping. In particular, it was noted that
when p decreases to the rank of the covariance matrix of s̃,
the performance of the quantization system improves. This
improvement follows as more bits can be assigned to the ADC,
thus reducing the error induced by scalar quantization without
modifying the overall number of bits used by the system, logM .

The principles used for designing the linear analog and digital
mappings ha(·) hd(·) for the relationship between s and x
considered in Section IV also suggest guidelines for designing
hardware-limited task-based quantization systems for arbitrary
joint distributions of s and x with finite-variance entries. In
particular, we propose to set ha(·) and hd(·) according to the
following guidelines:

1) The mappings ha(·), hd(·) are such that when M̃p is large
enough, hd(ha(x)) approaches the MMSE estimate s̃.

2) The size of the output of the analog linear mapping, p, is
as small as possible.

The first guideline implies that when the quantization error in-
duced by the ADC is sufficiently small, the output of the system
approaches the MMSE estimate, thus reducing the estimation
error. The second guideline guarantees that more bits are as-
signed to the serial scalar ADC, thus decreasing the quantization
error. Generally speaking, these guidelines provide the ability to
balance quantization and estimation errors.

We note that in some scenarios, it may not be possible to
obtain or approximate the MMSE estimate, s̃, from a linear
function of x of reduced dimensions. For example, when s is
estimated from the second-order statistical moments of x, as
in eigen-spectrum estimation [5], subspace learning [18], DOA
estimation [20], [21], and source localization [19]. In such cases,
s̃ generally cannot be obtained from a linear function of x of
reduced dimensions. Nonetheless, the proposed guidelines can
still be applied to design the quantization system. As an illus-
trative example, in the following subsection we explicitly show
how these guidelines can be used for recovering the empirical
covariance of an input signal.

B. Example: Recovery From Empirical Covariance

We next demonstrate how the guidelines for designing
hardware-limited task-based quantization systems discussed in
Subsection V-A can be applied for recovering the empirical
covariance of the input. Unlike the results presented in Section
IV, here we will not be able to explicitly characterize the result-
ing distortion. However, in the numerical study carried out in
Section VI we empirically illustrate the benefits of the proposed
design, and show that it outperforms processing the observations

only in the digital domain, which is the more popular approach
in the literature.

In particular, consider the case where the observed vector x
consists of nx zero-mean i.i.d. mx × 1 vectors {xi}nx

i=1, i.e.,

x =
[
xT
1 ,x

T
2 , . . . ,x

T
nx

]T
and n = nx ·mx. The desired vector

s (or its MMSE estimate s̃) can be recovered from the empirical
covariance of {xi}nx

i=1, namely, from

Rx � 1

nx

nx∑

i=1

xix
T
i .

For example, when s is the eigenspectrum of x, the MMSE
estimate s̃ is obtained from Rx via [5, Eq. (22)]. At first glance,
the proposed guidelines cannot be used here, as, in general, for
p < n there exists no linear transformation ha : Rn �→ Rp such
that Rx can be recovered from ha(x). However, an approxima-
tion of Rx can be obtained via the following steps:
� Divide the set {xi}nx

i=1 into ns distinct sets, each consist-
ing of ms =

nx

ns
vectors, namely, the lth set is given by

{xi}l·ms

i=(l−1)ms+1, l ∈ {1, 2, . . . , ns}.
� Fix the analog combining such that the input to the serial

scalar ADC consists of ns vectors {zl}ns

l=1, where zl =∑l·ms

i=(l−1)ms+1 xi. This is achieved by setting ha(x) =

Ax, where the entries of A ∈ Rns·mx×nx·mx are given by

(A)(p1−1)mx+q1,(p2−1)mx+q1

= δq1,q2
∑ms

l=1
δ(p1−1)ms+l,p2

,

for p1 ∈ {1, 2, . . . , ns}, p2 ∈ {1, 2, . . . , nx}, q1, q2 ∈
{1, 2, . . . ,ms}.

� In the digital domain, we approximate Rx from the quan-
tized vectors z̄l �

[
Q1

M̃p
((zl)1) , . . . , Q

1
M̃p

((zl)1)
]T

via

R̂x � 1

nx

ns∑

l=1

z̄lz̄
T
l .

The rationale behind these steps is that, as discussed in the previ-
ous subsection, it allows to balance quantization and estimation
errors. To see this, we note that when the quantization error
is negligible, and the number of sets ns is sufficiently large,
R̂x approaches the true covariance matrix by the law of large
numbers. Furthermore, by decreasing the number of sets ns,
fewer scalar quantizers are needed, thus the quantization error
induced by the serial scalar ADCs is reduced. As ns increases
to nx, R̂x approaches the true covariance of z̄l (up to a constant
factor). The proposed guidelines thus provide the ability to trade
quantization and estimation errors, which is expected to be most
beneficial for small values of M , i.e., low quantization rates,
where the quantization error becomes dominant. We expect to
have an optimal value of ns in the range [1, nx] for each value
of M . This behavior, as well as the benefits of the proposed
approach for finite values of M , are illustrated in the empirical
study in Subsection VI-B. In particular, in Subsection VI-B it
is illustrated that for the problem of eigenspectrum recovery, a
quantization system designed according to the above guidelines
outperforms a system which performs no analog combining prior
to quantization, and that the performance gap depends on the
overall quantization levels M and on the number of sets ns.
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VI. APPLICATIONS AND NUMERICAL STUDY

In this section we study the application of the hardware-
limited task-based quantization systems proposed in Sec-
tions IV–V, in two scenarios involving parameter acquisition
from quantized measurements: First, in Subsection VI-A, we
study the achievable MSE in estimating a scalar channel with fi-
nite intersymbol interference (ISI) from a fixed number of quan-
tized measurements, as in, e.g., [13]–[15], using the hardware-
limited task-based quantizer proposed in Section IV. Then, in
Subsection VI-B, we consider the problem of estimating the
eigen-spectrum from a set of i.i.d. measurements, see, e.g., [5],
and evaluate the achievable distortion of the quantization system
design detailed in Section V.

A. ISI Channel Estimation

We first consider the estimation of a scalar ISI channel from
quantized observations, as in [13]–[15]. In this scenario, the
parameter vector s represents the coefficients of a multipath
channel with k taps. The channel is estimated from a set of
n = 120 noisy observations x, given by [13, Eq. (1)]

(x)i =

k∑

l=1

(s)l ai−l+1 + wi, i ∈ {1, 2, . . . , n}, (13)

where ai is a deterministic known training sequence, and
{wi}ni=1 are samples from an i.i.d. zero-mean unit variance
Gaussian noise process independent of s. In particular, the chan-
nel s is modeled as a zero-mean Gaussian vector with covariance
matrix Σs, given by (Σs)i,j = e−|i−j|, i, j ∈ {1, 2, . . . , k} �
K, and the training sequence is given by ai = cos( 2πin ) for i > 0
and ai = 0 otherwise. Note that s and x are jointly Gaussian,
and thus the MMSE estimator s̃ is a linear function of x.

In the following we evaluate the achievable distortion of
the resulting hardware-limited task-based quantization for this
setup, and compare the achievable distortion to that of the
optimal task-based quantizer and of the task-ignorant quantizer
discussed in Section III. To that aim, we consider two channels:
one with k = 2 taps and one with k = 8 taps, and let the
overall number of quantization bits be logM ∈ [2 · k, 10 · k].
As logM is strictly smaller than n, any quantization system
which is based on applying serial scalar quantization to the
observation x without any processing in the analog domain,
such as the system discussed in Corollary 2, as well as the quan-
tization systems considered in [13], [14], cannot be implemented
here.

In the numerical study we evaluate the following quantities:
� The MMSE E

{∥
∥s− s̃
∥
∥2
}

, which is the optimal distortion
of a system with no quantization.

� For hardware-limited task-based quantization, we com-
pute the achievable distortion of the system derived in
Theorem 1. Since the covariance matrix of s̃ is non-
singular for the considered setup, we set p = k follow-
ing Corollary 1. Additionally, we compute the MSE of
a system which recovers the MMSE estimate s̃ in the
analog domain, based on Corollary 3. Furthermore, since
dithering increases the energy of the quantization noise,
we also compute the achievable MSE of the proposed
systems when the ADCs implement uniform quantization
without dithering. The MSE of all these systems is com-
puted by empirical averaging over 10 000 Monte Carlo

Fig. 6. Distortion comparison, channel estimation, k = 2.

simulations. In order to avoid cluttering, we do not depict
the theoretical performance of the systems in Theorem 1
and Corollary 3 with dithering, computed via (9d) and
(12a), respectively. However, we note that the empirical
performance depicted here coincides with the theoretical
MSE.

� For the optimal task-based system, we evaluate the bounds
in Proposition 1, where the lower bound is computed using
the reverse waterfilling algorithm for multivariate Gaussian
sources [3, Ch. 10.3], and the upper bound is computed via
(5), by setting fc̃ to be the optimal marginal distortion-rate
distribution, which is a zero-mean Gaussian distribution
whose covariance is obtained as in [3, Ch. 10.3].

� For the task-ignorant system, we numerically evaluate
the distortion in (6) by letting Qn

M be the quantizer in
which the codewords are generated i.i.d. from the optimal
marginal distortion-rate probability measure with respect
to x, averaging the performance over 20000 Monte Carlo
simulations. As this computation becomes prohibitive for
large values of M , we evaluate (6) only for logM ≤ 16.
We also compute the approximate achievable distortion
of Proposition 2, where the quantized output distribution
is set to the optimal marginal distortion-rate distribution
for quantizing x, as proposed in the discussion following
Proposition 2. This quantity is computed for all considered
values ofM , and is shown to provide a good approximation
of (6) for large values of M .

Figs. 6–7 depict the distortions for k = 2 and for k = 8, re-
spectively. Observing Figs. 6–7, we note that hardware-limited
task-based quantizers substantially outperform task-ignorant
vector quantization, and approach the optimal performance as
M increases. In particular, when each scalar quantizer uses at
least five bits, i.e., logM ≥ 5k, the quantization error becomes
negligible and the overall distortion is effectively the minimum
achievable estimation error, i.e., the MMSE.

Furthermore, we note that the gap between the system of
Theorem 1 and the system which quantizes the MMSE estimate
of Corollary 3 is small for k = 2, and becomes notable for
k = 8 at small values of M . However, it is emphasized that,
as expected, the system of Theorem 1 outperforms the approach
of quantizing the MMSE estimate, which is known to be optimal
when using vector quantizers, for all considered values of M .
It is also noted that the proposed hardware-limited task-based
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Fig. 7. Distortion comparison, channel estimation, k = 8.

quantizers, designed assuming dithered uniform quantizers, ob-
tain improved performance without dithering. This follows since
the favorable properties of dithered quantization discussed in
Subsection IV-A, which are accounted for in the design of
the systems in Section IV, are approximately satisfied also for
non-dithered standard quantization, as noted in [43], without
the excess distortion induced by dithering. This illustrates that
our proposed design can be applied also without dithering, and
that the resulting performance is improved compared to systems
implementing dithered quantization.

Regarding the achievable distortion of the non hardware-
limited system discussed in Section III, we note that the gap
between the lower and the upper bounds on the optimal achiev-
able distortion in Proposition 1, which is represented by the
shaded region in the figure, narrows down from an MSE gap of
0.16 at log2 M = 4 to 0.0158 at log2 M ≥ 10 for k = 2, and
from 0.095 at log2 M = 16 to 0.06 at log2 M ≥ 36 for k = 8.
Since the systems proposed in Section IV can be obtained as a
special case of the task-based vector quantizer depicted in Fig. 2,
combining Theorem 1 and Proposition 1 provides relatively
tight bounds on the optimal distortion for finite quantization
resolution. We also note that the empirical distortion of the
task-ignorant system is higher than the upper bound on the
optimal distortion for all values of M , and from Fig. 6 we note
that the approximated distortion of the task-ignorant system,
computed via Proposition 2, provides an excellent match with
the empirical distortion for log2 M > 10, without the need to
empirically average over multiple codes.

B. Eigen-Spectrum Estimation

We next consider the problem of estimating the eigen-
spectrum of a multivariate Gaussian source from quantized
measurements, as in [5]. Here, the desired vector s represents
the eigenvalues of a k × k covariance matrix, Σx � UΛUH ,
where U is a deterministic known unitary matrix, and Λ is
a diagonal matrix with diagonal entries (Λ)i,i = (s)i, i ∈ K.
Following [5], the entries of s are mutually independent, and
each entry (s)i obeys an inverse gamma distribution with shape
parameterαi > 2 and scale parameterβi > 0, i ∈ K. The vector
x consists of nx random vectors {xi}nx

i=1, which, given s, are
i.i.d. zero-mean Gaussian with covariance Σx.

Note that for the considered scenario, x and s are un-
correlated, as, by the law of total expectation, E{xsT } =
E{E{x|s}sT } = 0. Hence, the linear MMSE estimator of s
from x is the expected value E{s}, and it thus makes little
sense to design the quantization system to approach the linear
MMSE estimator, which is main design principle of the systems
proposed in Section IV. On the other hand, the (non-linear)
MMSE estimator for this scenario is given by [5, Thm. 4]

s̃i=
1

αi− 1
2nx−1

(

βi+
1

2

(

UH

( nx∑

l=1

xlx
T
l

)

U

)

i,i

)

,

i ∈ K. Consequently, the eigen-spectrum s can be estimated
from the empirical covariance of {xi}nx

i=1, and we thus apply
the quantizer design proposed in Section V. To implement
the hardware-limited task-based quantizer, we divide the nx

realizations {xi}nx
i=1 into ns distinct sets of size ms =

nx

ns
.

The quantization system of Section V is then used to produce
a quantized estimation of 1

nx

∑nx

i=1 xix
T
i , denoted R̂x, using

p = k · nx identical scalar quantizers. The eigen-spectrum is
then estimated via

ˆ̃si =
1

αi − 1
2nx − 1

(

βi +
1

2

(
UHR̂xU

)

i,i

)

, (14)

i ∈ K. Note that when ns = nx, no analog combining is per-
formed, and the quantization system results the standard ap-
proach of estimating from uniformly quantized measurements.

In the numerical study we consider two setups:
� In the first setup, we fix k = 2, and set the inverse

gamma distribution parameters to {αi}ki=1 = {5.5, 6.5}
and {βi}ki=1 = {8.4, 11.6}, thus, each entry of s has ap-
proximately unit variance [45]. The observed vector x
consists ofnx = 20 realizations, thusn = nx · k = 40, and
the unitary matrix U is set to the k × k discrete Fourier
transform (DFT) matrix.

� In the second setup, we fix k = 4, and set the inverse
gamma distribution parameters to {αi}ki=1 = {4, 5, 6, 7}
and {βi}ki=1 = {4.2, 6.9, 10, 13.4}, which again results
each entry of s having approximately unit variance. The
observed vector x consists of nx = 60 realizations, thus
n = 240, and U is set to the identity matrix.

For both setups we numerically evaluate the achievable distor-
tion of the quantization system proposed in Section V, where the
scalar quantization is carried out using standard (non-dithered)
uniform mapping. These distortions are compared to the achiev-
able distortion of the optimal task-based system in Proposition 1,
which is computed with fc̃ set to the probability measure
of s. The actual minimal achievable distortion is thus upper
bounded by this achievable rate, and lower bounded by the
MMSE (dashed black curve in Figs. 8–9). The distortions are
also compared to the distortion of the optimal linear estimator,
which, in this case, is the mean value E{s} (dashed blue curve
in Figs. 8–9), and is thus independent of the observed signal
and the quantization system. The distortions are computed for
quantization rate R ∈ [0.1, 3], resulting in logM ∈ [4, 120] for
the first setup and logM ∈ [24, 720] for the second setup. Note
that unlike the numerical study presented in Subsection VI-A,
here we do not evaluate the performance of the task-ignorant
vector quantizer, since the MMSE estimator is not linear, thus
the approximation in Proposition 2 does not hold, and explicitly
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Fig. 8. Distortion comparison, eigen-spectrum estimation, k = 2.

Fig. 9. Distortion comparison, eigen-spectrum estimation, k = 4.

computing the distortion in (6) by Monte-Carlo simulations is
not feasible for large values of M .

In Fig. 8 we depict the achievable distortion of the proposed
hardware-limited task-based quantization systems for the first
scenario, where we used ns ∈ {2, 4, 5, 10, 20}, while Fig. 9 de-
picts the corresponding distortions for the second scenario with
ns ∈ {12, 15, 20, 30, 60}. Observing Figs. 8–9, we first note that
the performance of the optimal task-based quantizer can still be
approached within a small gap by the proposed hardware-limited
task-based quantization by properly selecting the number of
sets ns. In this context, we note that the best selection of ns

depends on the overall number of bits logM . When logM
is small, the distortion is dominated by the quantization error
induced by the scalar quantizers, and thus using less partitions,
which allows to assign more bits to the scalar quantizers, is
beneficial. However, as logM increases, the error in estimating
the empirical covariance induced by averaging over each set
becomes dominant, and thus using more sets of smaller size
achieves better performance. In particular, for the first setup, it
is observed in Fig. 8 that using ns = 10 results in the smallest
distortion for most considered values of logM , and in fact,
achieves an MSE which is less than 0.6 from the MMSE for
logM = 40, i.e., for quantization rate as small as R = 1

3 . For
the second setup, it is observed in Fig. 8 that using ns = 20
is the best selection for logM ∈ [160, 480), i.e., R ∈ [ 23 , 2),

while ns = 30 achieves the best performance for logM ≥ 480,
namely R ≥ 2.

The approach of estimating from uniformly quantized mea-
surements without any analog combining, namely, ns = nx,
achieves poor performance for logM ≤ 60 when k = 2, and
for all considered values of logM when k = 4. In fact, for the
scenario in Fig. 9, the approach of estimating from uniformly
quantized measurements is outperformed by the data ignorant
mean estimate for most considered values of logM . The results
presented in this section thus demonstrate the gain of the pro-
posed hardware-limited task-based quantization system design
for systems operating with finite and relatively small number
of bits logM , in scenarios where the MMSE estimate is not a
linear function of the observations.

VII. CONCLUSION

In this work we studied hardware-limited task-based quan-
tization systems, operating with practical serial scalar ADCs,
for finite-size signals with finite-resolution quantization. We
characterized the hardware-limited task-based quantizer which
minimizes the MSE when the MMSE estimate of the desired sig-
nal is a linear function of the observed signal, and demonstrated
that the analysis leads to design principles applicable to a much
wider range of settings. We showed that, unlike when vector
quantizers are used, quantizing the MMSE estimate is generally
not optimal. Finally, we applied our results to the relevant prob-
lems of channel estimation in ISI channels and eigen-spectrum
estimation. For these scenarios, we showed that the performance
of the optimal task-based vector quantizer can be approached
with a practical system operating with a serial scalar ADC. Fur-
thermore, we demonstrated that by properly accounting for the
task in the design of the quantizer, hardware-limited systems can
substantially outperform task-ignorant vector quantizers. The
proposed hardware-limited task-based framework and the gains
observed in this work for the task of signal recovery give rise to a
multitude of future research directions by considering different
tasks and hardware-limitations, including communications with
low-resolution ADCs and hardware-limited task-based quanti-
zation for classification.

APPENDIX

A. Proof of Proposition 1

The lower bound in (5) follows from Shannon’s converse [48],
which states that for any quantizerQk

M , I
(
s̃;Qk

M (s̃)
) ≤ logM ,

and thus

min
Qk

M (·)
E
{∥
∥s̃−Qk

M (s̃)
∥
∥2
}

≥ min
Qk

M (·):I(s;Qk
M (x))≤logM

E
{∥
∥s̃−Qk

M (s̃)
∥
∥2
}

(a)

≥ Ds̃(logM), (A.1)

where (a) follows from Def. 2. The upper bound in (5) is
obtained by considering the quantizer in which the codewords
{qi}Mi=1 are generated i.i.d. from the probability measure fc̃,
and the quantizer output is set to

Qk
M (y) = argmin

{qi}
‖y − qi‖2, ∀y ∈ Rk.
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The MSE of this quantizer is given by

E
{∥
∥Qk

M (s̃)−s̃
∥
∥2
}
= E
{
min
i

(
‖qi−s̃‖2

)}

= E
{
E
{
min
i

(
‖qi−s̃‖2

) ∣
∣
∣s̃
}}

(a)
= E

⎧
⎨

⎩

∞∫

0

Pr
{
min
i

(
‖qi−s̃‖2 > t

) ∣
∣
∣s̃
}
dt

⎫
⎬

⎭

(b)
= E

⎧
⎨

⎩

∞∫

0

[
Pr
(
‖c̃−s̃‖2 > t

∣
∣
∣ s̃
)]M

dt

⎫
⎬

⎭
, (A.2)

where (a) follows from [49, Ch. 5.3] as ‖qi−s̃‖2 is non-negative
for any realization of s̃, and (b) follows from the code construc-
tion. Eqns. (A.1)–(A.2) prove (5). �

B. Proof of Lemma 1

To prove the lemma, we first show that the output of the ADC
can be written as the sum of its input and uncorrelated noise,
and then we derive the optimal digital processing matrix.

Note that when Pr
(∣
∣(Ax)l + zl

∣
∣ > γ
)
= 0, it follows from

[42, Thm. 2] that, since the dither signal zl is uniformly dis-
tributed over (−Δp/2,Δp/2], then the output of the scalar ADC
can be written as Ax+ e, where the quantization noise e has

uncorrelated zero-mean entries with variance
Δ2

p

6 . Furthermore,
by [42, Thm. 2] e satisfies E{e|Ax} = E{e} = 0, and thus

E{xeT } = E{xE{eT |x}}
(a)
= E{xE{eT |Ax}} = 0,

i.e., e is uncorrelated with x. Here, (a) follows since the quan-
tization noise e depends on the observed vector x only via the
input to the serial scalar quantizer Ax, and thus the conditional
distribution of e given some realization x = x′ is equal to the
conditional distribution ofegivenAx = Ax′. Thus, the optimal
digital processing matrix, which results in ŝ being the linear
MMSE estimator of s̃ from Ax+ e, is

Bo (A) = E{s̃ (Ax+ e)T }
(
E{(Ax+ e) (Ax+ e)T }

)−1

= E{Γx (Ax)T }
(
E{(Ax) (Ax)T }+ E{eeT }

)−1

(a)
= ΓΣxA

T

(

AΣxA
T +

Δ2
p

6
Ip

)−1

, (B.1)

where (a) is a result of [42, Thm. 2]. The MSE of the linear
MMSE estimate is thus given by

MSE (A) = Tr
(
ΓΣxΓ

T
)

− Tr

(

ΓΣxA
T

(

AΣxA
T +

Δ2
p

6
Ip

)−1

AΣxΓ
T

)

. (B.2)

Plugging the quantization spacing Δp = 2γ

M̃p
into (B.1)–(B.2)

proves the lemma. �

C. Proof of Theorem 1

To prove the theorem, we first derive the optimal unitary
rotation for a given A. Then, we characterize the optimal analog
combining and the resulting MSE. We use the fact that for a fixed
matrix A, the resulting MSE is given in Lemma 1.

Recall that the dynamic threshold is set to a multiple η of the
maximal standard deviation of the quantizer input. Therefore,

γ2 = η2 max
l=1,...,p

E
{
((Ax)l + zl)

2
}

(a)
= η2 max

l=1,...,p
E
{
(Ax)2l

}
+ η2

γ2

3M̃2
p

, (C.1)

where (a) follows since zl is independent of x and its variance

equals
Δ2

p

12 = γ2

3M̃2
p

. From (C.1),

γ2 = η2

(

1− η2

3M̃2
p

)−1

max
l=1,...,p

E
{
(Ax)2l

}

= κp max
l=1,...,p

E
{
(Ax)2l

}
. (C.2)

Substituting (C.2) to the expression for MSE(A) in Lemma 1
yields

MSE (A)=Tr

(

ΓΣxΓ
T − ΓΣxA

T

(

AΣxA
T +

2κp

3M̃2
p

max
l=1,...,p

× E
{
(Ax)2l

}
Ip

)−1

AΣxΓ
T

)

. (C.3)

Using (C.3), we can find for each analog combining matrix A
an optimal unitary rotation, which minimizes the MSE, as stated
in the following lemma:

Lemma C.1: For every matrix A ∈ Rp×n there exists a uni-
tary matrix UA ∈ Rp×p such that

MSE (A) ≥ MSE (UAA)

= Tr

(

ΓΣxΓ
T − ΓΣxA

T

(

AΣxA
T

+
2κp

3M̃2
p · pTr

(
AΣxA

T
)
Ip

)−1

AΣxΓ
T

)

. (C.4)

Proof: Note that for any unitary matrix UA, it follows from
(C.3) that

MSE (UAA) = Tr
(
ΓΣxΓ

T
)

− Tr

(

ΓΣxA
T

(

AΣxA
T +

2κp

3M̃2
p

max
l=1,...,p

× E
{
(UAAx)2l

}
Ip

)−1

AΣxΓ
T

)

. (C.5)

For each pair of positive semi-definite symmetric matrices
M1,M2, the scalar functionh(α) = Tr(M1(M2 + αI)−1) is
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monotonically decreasing for α > 0. Thus, by (C.5), the unitary
UA which minimizes the MSE is given by

UA = argmin
U

max
l=1,...,p

E
{
(UAx)2l

}

= argmin
U

max
l=1,...,p

(
UAΣxA

TUT
)
l,l
. (C.6)

From majorization theory [47, Cor. 2.4] it follows that
minU maxl=1,...,p(UAΣxA

TUT )l,l =
1
pTr(AΣxA

T ). Fur-
thermore, a unitary matrix which solves (C.6) can be obtained
using the iterative algorithm in [47, Alg. 2.2]. Plugging this into
(C.5) proves the lemma. �

Finally, we characterize the matrix A which minimizes
(C.4). To that aim, define Ã � AΣ1/2

x , and recall the notation
Γ̃ = ΓΣ1/2

x . It follows from (C.4) that Ã must be set to

Ã
o
= argmax

Ã

Tr

⎛

⎝Γ̃Ã
T

(

ÃÃ
T
+

2κp

3M̃2
p · p

× Tr
(
ÃÃ

T
)
Ip

)−1

ÃΓ̃
T

⎞

⎠ . (C.7)

Note that the right hand side of (C.7) is invariant to replacing Ã
withα ·UÃ for anyα > 0 and for any unitaryU . Consequently,

we can fix Tr(ÃÃ
T
) = 1, and write Ã = ΛV T , where Λ ∈

Rp×n is a diagonal matrix whose diagonal entries are arranged
in a descending order, and V ∈ Rn×n is unitary. Under this
setting, solving (C.7) reduces to solving

argmax
Λ,V

Tr

(

Γ̃
T
Γ̃V ΛT

(

ΛΛT +
2κp

3M̃2
p · pIp

)−1

ΛV T

)

,

subject to Tr
(
ΛΛT
)
= 1. (C.8)

We use ΛA,V A to denote the optimizing matrices of (C.8).
Let Λ̃ � ΛT (ΛΛT +

2κp

3M̃2
p ·p

Ip)
−1Λ. Clearly, Λ̃ is a diagonal

matrix with diagonal entries (Λ̃)l,l =
(Λ)2l,l

(Λ)2l,l+
2κp

3M̃2
p ·p

, for all l ∈

{1, 2, . . . , p}, thus, the diagonal entires of Λ̃ are arranged in
descending order. By [50, Thm. II.1], the optimal unitary matrix
V A is the right singular vectors matrix of Γ̃. The fact that the
diagonal entries of Λ̃ are arranged in descending order results
in the optimal V A being the right singular vectors matrix of Γ̃
instead of a permutation of this matrix [50, Thm. II.1].

With this setting, (C.8) becomes

argmax
Λ

min(k,p)∑

i=1

λ2
Γ̃,i

· (Λ)2i,i

(Λ)2i,i +
2κp

3M̃2
p ·p

subject to
p∑

i=1

(Λ)2i,i = 1. (C.9)

To solve (C.9), we write αi � (Λ)2i,i. With this setting, (C.9)
is concave with respect to {αi}pi=1. Thus, the KKT conditions
are necessary and sufficient for optimality [51, Ch. 5.5.3]. The

resulting {αi}pi=1 satisfy αi = 0 for i > k and for i ≤ k,

αi =

(√
2κp

3M̃2
p · p · β λΓ̃,i −

2κp

3M̃2
p · p

)+

=
2κp

3M̃2
p · p

⎛

⎝

√
3M̃2

p · p
2κp · β λΓ̃,i − 1

⎞

⎠

+

, (C.10)

where β is set such that
∑p

i=1 αi = 1.

By defining ζ � (
3M̃2

p ·p
2κp·β )1/2, it follows that the diagonal

entries of the optimal diagonal matrix ΛA satisfy

(ΛA)2i,i =

⎧
⎨

⎩

2κp

3M̃2
p ·p

(
ζ · λΓ̃,i − 1

)+
, i ≤ min(k, p)

0 i > min(k, p),

where ζ > 0 is set such that 2κp

3M̃2
p ·p
∑p

i=1(ζ · λΓ̃,i − 1)+ = 1.

The optimal analog combining is thus given by Ao =
UAΛAV T

AΣ−1/2
x . Note that under this setting, the dynamic

range in (C.2) is given by γ2 =
κp

p Tr(ΛAΛT
A) =

κp

p , proving
(9b). The resulting optimal MSE can be written as

MSE (Ao) = MSE
(
Ã

o)

= Tr
(
ΓΣxΓ

T
)−

k∑

i=1

λ2
Γ̃,i

· (ΛA)2i,i

(ΛA)2i,i +
2κp

3M̃2
p ·p

=

k∑

i=1

λ2
Γ̃,i

−
∑min(k,p)

i=1
λ2
Γ̃,i

(
ζ · λΓ̃,i − 1

)+

(
ζ · λΓ̃,i − 1

)+
+ 1

. (C.11)

Since λ2
Γ̃,i

·
(

1− (ζ·λΓ̃,i−1)
+

(ζ·λΓ̃,i−1)
+
+1

)

=
λ

2

Γ̃,i

(ζ·λΓ̃,i−1)
+
+1

, it follows

that (C.11) results in

MSE (Ao) =

⎧
⎪⎪⎨

⎪⎪⎩

∑k
i=1

λ
2

Γ̃,i

(ζ·λΓ̃,i−1)
+
+1

, p ≥ k

∑p
i=1

λ
2

Γ̃,i

(ζ·λΓ̃,i−1)
+
+1

+
k∑

i=p+1

λ2
Γ̃,i

, p < k.

Combining this with the design of Ao proves the theorem. �

D. Proof of Corollary 1

We note that the MSE in Theorem 1 decreases as ζ increases.
Therefore, p must be set such that ζ is maximized. Let r denote
the number of non-zero singular values {λΓ̃,i}. From the def-

inition of Γ̃ it follows that r is also the rank of the covariance
matrix of s̃. When p ≥ r, ζ is set such that

2κp

3M̃2
p · p

r∑

i=1

(
ζ · λΓ̃,i − 1

)+
= 1. (D.1)

Since M̃p grows exponentially with 1/p, it follows that as p

decreases, the value of 2κp

3M̃2
p ·p

, also decreases, and thus ζ is

maximized for p ≥ r when p = r, proving the corollary. �
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E. Proof of Corollary 4

Since the optimal Ao for any p, including p = k, is given in
Theorem 1, in the following we find a necessary and sufficient
condition for which Ao = Γ, or equivalently, UAΛAV T

A = Γ̃.
Note that V A already equals the right-singular matrix of Γ̃, and

thus A = Γ is optimal if and only if UAΛAΛT
AUA = Γ̃Γ̃

T
.

This condition is satisfied only if

(ΛA)2i,i = λ2
Γ̃,i

, ∀i ∈ K. (E.1)

Since Γ̃Γ̃
T

is the covariance matrix of the MMSE estimate s̃,
the fact that the covariance matrix is non-singular implies that
λΓ̃,i �= 0 for all i ∈ K. Combining this with (9a) results in

λ2
Γ̃,i

=
2κk

3M̃2
k · k
(
ζ · λΓ̃,i−1

)+
=

2κk

3M̃2
k · k
(
ζ · λΓ̃,i−1

)
.

(E.2)

Consequently, ζ · λΓ̃,i − 1 > 0 for all i ∈ K, and thus,

from the condition 2κp

3M̃2
p ·p
∑p

i=1(ζ · λΓ̃,i − 1)+ = 1, we have

that ζ = k(
3M̃2

k

2κk
+ 1)(
∑k

i=1 λΓ̃,i)
−1. Plugging this into (E.2)

results in

λ2
Γ̃,i

= λΓ̃,i

(
k∑

i=1

λΓ̃,i

)−1

∀i ∈ K. (E.3)

Note that (E.3) is satisfied if and only if λΓ̃,i =
1√
k

. As a result,
ΛA in (E.1) has identical diagonal entries, UA can be any per-
mutation matrix, and both the condition on UA in Theorem 1 as
well as the condition UAΛAΛT

AUA = Γ̃Γ̃
T

are satisfied here.
Consequently, the condition λΓ̃,i =

1√
k

is not only necessary for
A = Γ to be optimal, but it is also sufficient. Noting that in this
case, the covariance matrix of s̃ is 1

kIk, concludes the proof of
the corollary. �
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