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Abstract
Key parameters of analog‐to‐digital converters (ADCs) are their sampling rate and dy-
namic range. Power consumption and cost of an ADC are directly proportional to the
sampling rate; hence, it is desirable to keep it as low as possible. The dynamic range of an
ADC also plays an important role, and ideally, it should be greater than the signal's;
otherwise, the signal will be clipped. To avoid clipping, modulo folding can be used
before sampling, followed by an unfolding algorithm to recover the true signal. Here, the
authors present a modulo hardware prototype that can be used before sampling to avoid
clipping. The authors’ modulo hardware operates prior to the sampling mechanism and
can fold higher frequency signals compared to existing hardware. The authors present a
detailed design of the hardware and also address key issues that arise during imple-
mentation. In terms of applications, the authors show the reconstruction of finite‐rate‐of‐
innovation signals, which are beyond the dynamic range of the ADC. The authors’ system
operates at six times below the Nyquist rate of the signal and can accommodate eight
times larger signals than the ADC's dynamic range.

K E Y W O R D S
analog‐to‐digital conversion, automatic gain control, sample and hold circuits, sampling methods, signal
reconstruction, signal sampling

1 | INTRODUCTION

Analog‐to‐digital converters (ADCs) bridge real‐world analog
signals and digital processors on which signals can be pro-
cessed efficiently. Typically, ADCs measure instantaneous
uniform samples of analog signals to represent them digitally.
A key parameter in such conversion is the sampling rate.
Power consumption and cost of an ADC increase with the
increase in the sampling rate. Hence, keeping the sampling
rate as low as possible is desirable. Theoretically, the sampling
rate has to be greater than the Nyquist rate for perfect
reconstruction of bandlimited signals. Apart from the sam-
pling rate, there are several other aspects of an ADC which
play a key role in faithful sampling and reconstruction,
especially when the sampling frameworks are implemented in
hardware.

The dynamic range of an ADC plays a crucial role in
sampling an analog signal. Generally, ADC's dynamic range
should be larger than the signal's; otherwise, the signal gets
clipped. A few approaches exist to recover the true samples
from clipped ones for bandlimited signals [1, 2]. These ap-
proaches rely on the correlation among the samples when they
are measured at a very high rate compared to the Nyquist rate.
The requirement of a high sampling rate is a drawback of these
approaches.

Several preprocessing approaches to avoid clipping exist,
such as automatic gain control (AGC) [3, 4], companding
[5, 6], and modulo folding [7–11]. Among these, modulo
folding is the most recent approach that need not be
differentiable like companding and does not suffer from
stability issues of the feedback amplifiers used in AGCs. In
the modulo framework, the signal is folded to lie within the
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ADC's dynamic range, and then the folded signal is sampled
using a conventional ADC. Theoretical guarantees for
recovering bandlimited signals from folded samples are pre-
sented in Ref. [7]. The results state that a bandlimited signal
can be uniquely recovered from its folded samples provided
that they are sampled above the Nyquist rate [7].

Several algorithms for unfolding or recovering the true
samples of a bandlimited signal from modulo or folded sam-
ples are presented in Refs [7, 8, 10]. These unfolding algo-
rithms can be compared in terms of sampling rate, amount of
unfolding they can handle, and noise robustness. The algo-
rithm proposed in Ref. [7] requires almost 17 times higher
sampling rate than the Nyquist rate. The approaches in Refs [8]
and [10, 11] operate at relatively lower sampling rates but
require knowledge of the ADC's dynamic range. In contrast,
the method proposed in Refs [10, 11] requires a lower sampling
rate, even in the presence of noise, compared to the algorithms
presented in Refs [7, 8]. Modulo sampling is also extended to
different problems and signal models such as periodic band-
limited signals [9], finite‐rate‐of‐innovation (FRI) signals [12],
sparse vector recovery [13], direction of arrival estimation [14],
computed tomography [15], and graph signals [16].

Beyond theoretical works, there also exist a few related
hardware prototypes. High‐dynamic‐range ADCs, also known
as self‐reset ADCs, are discussed in the context of imaging
[17–20]. These hardware architectures measure additional in-
formation, such as the amount of folding for each sample or
the sign of the folding together with the folded samples. The
additional information might enable simpler recovery at the
expense of complex circuitry. Importantly, additional bits are
required during the quantisation process to store or transmit
the side information.

Krishna et al. presented a hardware prototype that encodes
the side information by using two bits [20]. The architecture is
designed to record the sign of the slope of the signal at each
sample that lies outside the ADC's dynamic range. In a con-
ventional ADC, a sample and hold (S/H) circuit is used to hold
the sampled value for a prescribed period of time, during
which quantisation is performed on the sample. A folding
circuit is used after S/H to realise the modulo sampling [20]. In
this architecture, the S/H circuit has to hold the sampled value
for folding and quantisation, resulting in a larger holding time
than a conventional ADC. A large holding time results in
slower ADCs, which may not be helpful in applications with
high‐frequency signals. The resulting hardware circuit is able to
fold signals up to 300 Hz, where the signal's amplitude should
be less than three times the ADC's dynamic range.

Modulo hardware prototypes where the modulo part
is implemented prior to the sampler are presented in Refs
[9, 21, 22]. In these works, the authors are focused on
different signal models, hardware limitations, and algorithms
rather than providing details of the hardware circuitry. It was
shown that the modulo hardware is able to fold low‐
frequency (<300 Hz) signals that are 10‐fold larger than
the ADC's dynamic range. However, it is not clear how the
hardware performs for high‐frequency signals, and many
details of the circuitry are omitted.

In practical applications, the frequency range of the signals
may vary from a few kHz to several MHz. For example, the
FRI model is widely used to represent signals in time‐of‐flight
applications such as ultrasound, sonar, and radar [23, 24].
These FRI signals have frequencies much higher than 300 Hz,
and hence current hardware prototypes cannot be used,
especially when the signal's bandwidth ranges up to a few kHz.
Hence, it is desirable to design a modulo sampler that operates
at high frequencies while folding signals faithfully.

In this paper, we present a modulo hardware prototype for
modulo sampling of signals up to 10 kHz. We show that by
using our algorithm [10], it is able to reconstruct bandlimited
and FRI signals faithfully. In the following, we present the
contributions and the features of the proposed hardware
system.

� We design our hardware components to fold signals up to
10 kHz. Existing hardware shows results for signals below
300 Hz.

� The hardware prototype is designed to perform folding
prior to the sampler, unlike the hardware in Ref. [20], which
operates in the hold part of the sampler. Thus, the suggested
system can utilise faster ADCs with shorter hold times.

� In the proposed hardware prototype, modulo folding is
realised through a feedback mechanism. At the time instants
when the input signal goes beyond the ADC's dynamic
range, a trigger signal is generated by using comparators.
The trigger then activates a direct voltage generator that
adds to the input signal to bring it within the dynamic range.
This mechanism imposes a delay between the trigger time
and the folding instance. We address this key issue of the
hardware, which is not considered in previous works. By
using the signal's smoothness and the feedback loop's time
delay, we propose a hardware solution to avoid clipping that
occurs due to the delay issue.

� The designed hardware prototype operates at a maximum
voltage of 11.75 v. The limitation is largely due to the use of
a 15 v subtractor or adder in the feedback loop, which en-
ables a fast slew rate in the transitions of �2λ. At high
frequencies, these components cannot be used at voltage
above 15 v. In addition, we used an ADC with dynamic
range [−1.25, 1.25]. Hence, the hardware can fold signals
which are eight times larger than the dynamic range of the
signal.

� For demonstration, we consider sampling and reconstruc-
tion of bandlimited and FRI signals. For FRI signals, we use
a lowpass sampling kernel prior to modulo folding. The
filter removes unwanted information in the signal and allows
sub‐Nyquist sampling. Using our algorithm presented in
Refs [10, 11], we show reconstruction of bandlimited signals
from their folded samples measured through the hardware.
The combination of the proposed hardware and low‐rate
algorithm is able to reconstruct the signals by using a low‐
dynamic range ADC. In particular, for FRI signals, we
show that the FRI parameters can be estimated with sub‐
Nyquist samples by utilising the fact that our algorithm
operates at the lowest possible rate.
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The paper is organised as follows. In the next section, we
discuss the signal model considered and the sampling and
reconstruction framework in the presence of modulo hard-
ware. In Section 3, we present the hardware system by
explaining its working principle and discussing the components
of the system. In Section 4, we show the hardware's signal
folding and reconstruction abilities.

2 | SIGNAL MODEL AND SYSTEM
DESCRIPTION

In this section, we consider modulo sampling for signals whose
amplitudes lie beyond the bandwidth of the ADC's dynamic
range. The class of signals that can be folded by modulo
hardware can be very large; however, the recovery is limited by
existing unfolding algorithms. For example, most unfolding
algorithms are designed for bandlimited signals. Given this, we
consider bandlimited signals as input to the modulo hardware
and corresponding unfolding algorithms. We use a lowpass
sampling kernel for FRI signals to make them bandlimited and,
at the same time, reduce the sampling rate following the sub‐
Nyquist framework [24, 25].

Consider a ωc‐bandlimited signal y(t) such that its Fourier
transform Y(ω) vanishes outside the frequency interval [−ωc,
ωc]. The signal can be perfectly reconstructed from its uniform
samples measured at the Nyquist rate ωNyq = 2ωc rad/ses
provided that the ADC's dynamic range is above the signal's
dynamic range. Specifically, if the dynamic range of the ADC is
[−λ, λ] for some λ > 0 then it is assumed that |y(t)| ≤ λ for
perfect reconstruction. If |y(t)| > λ, then the signal and its
samples will be clipped, and perfect reconstruction is not
guaranteed. In the latter scenario where |y(t)| > λ, one can
either increase the dynamic range of the ADC or use pre-
possessing to avoid clipping. We consider the later solution
where the modulo operationMλð⋅Þ is applied to the signal y(t)
to restrict its dynamic range to [−λ, λ]. The output of the
modulo operator in response to input y(t) is given as follows:

yλðtÞ ¼MλðyðtÞÞ ¼ ðyðtÞ þ λÞ mod 2λ − λ: ð1Þ

The folded signal yλ(t) is then sampled to get discrete
measurements yλ(nTs). Due to modulo folding, yλ(t) is no
longer bandlimited. To recover y(t) while sampling slightly
above the Nyquist rate of the input, one first applies an
unfolding algorithm to recover y(nTs) from yλ(nTs) [10, 11, 26].
Then y(t) is reconstructed from y(nTs) by assuming that the
sampling is performed above the Nyquist rate.

A schematic of our modulo sampling and reconstruction
framework is shown in Figure 1. It consists of a modulo‐ADC
followed by unfolding and reconstruction blocks. The modulo‐
ADC is comprised of a modulo‐folding block followed by a
conventional uniform sampler. The unfolding operation is
implemented in the digital domain, and it should operate at the
lowest possible sampling rate. To this end, we use the B2R2

algorithm for unfolding [10, 11], which samples efficiently
compared to other algorithms for bandlimited signals. Low‐

rate sampling and low‐dynamic range requirements signifi-
cantly reduce the power consumption and cost of the ADC.

Our objective is to demonstrate a robust hardware proto-
type of modulo ADC as discussed next.

3 | MODULO HARDWARE PROTOTYPE

In this section, we discuss the prototype of our modulo hard-
ware. The modulo block's working principle and design will be
discussed first, followed by its hardware implementation.

3.1 | Working principle of modulo block

The principle of computing yλ(t) from y(t) is shown by the block
diagram in Figure 2. The system comprises an adder S, a direct‐
voltage generator (DVG), and two comparators, Comp‐1 and
Comp‐2. To understand the working flow, let us first assume that
for some time instant t1, we have that |y(t)| < λ for all t < t1.
Hence yλ(t) = y(t) and z(t) = 0 for all t < t1. At t = t1, let |y(t)|
cross λ. If y(t1) > λ, then Comp‐1 triggers a positive value. Else
if, y(t1) < λ, Comp‐2 triggers a negative value. The DVG is
designed such that for each positive input value, its output signal
level increases by −2λ, whereas, for a negative input value, it
decreases its output voltage by 2λ. Hence, in the current
example, DVG generates a signal z(t) = sgn(yλ(t1))2λu(t − t1)
where u(t) is the unit‐step function. In this way, by adding or
subtracting (using S) constant DC signals from y(t) whenever it
crosses the dynamic range [−λ, λ], the amplitude levels of yλ(t)
are kept within the ADC's dynamic range.

While the parts such as comparators Comp‐1 and Comp‐2
and adder S can be realised by using off‐the‐shelf compo-
nents, DVG is a more involved system due to its feedback
nature and requires careful design. Specifically, the feedback
loop should follow changes in the input signal in the desired
frequency and amplitude ranges. A detailed architecture of

F I GURE 1 A schematic of modulo‐sampling and reconstruction of
bandlimited signals.

F I GURE 2 Folding principle.
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DVG is shown in Figure 3. Its task is to generate a constant
voltage signal whose amplitude is a constant multiple of 2λ.
Importantly, its output voltage z(t) should increase (or
decrease) by 2λ v for every negative (or positive trigger) at its
input. To realise this task in the hardware, we use an up/
down counter, a digital‐to‐analog converter (DAC), a multi-
plexer (MUX), and a multiplier M.

In the hardware design, we set λ = 1.25 v. We start with the
DAC, which can generate piecewise constant voltage output s
(t) in response to its digital input. Let the resolution, or step
size of the DAC, be α v. Then, when the input bits of DAC go
from one state to the next, the DAC output increases by α v.
On the other hand, when the bits change from the present
state to the previous state, output voltage s(t) reduces by α v.
Hence, the ADC works in a fashion expected by DVG with the
following exceptions: (1) Input to the DAC is bits and one
needs to map positive/negative trigger from comparators to
these bits; (2) Output of the DAC takes only positive values
and are multiple of α. A scaling is required to make them
multiple of �2λ. To address the first issue, we employ a UP/

DOWN counter whose inputs are the trigger voltages from the
capacitors Comp‐1 and Comp‐2, and the output is bits. For
every positive trigger at the input counter, output bits change
to the next state, whereas for a negative trigger, they go back to
the previous state. By connecting these bits to the input of the
DAC, the output of the DAC is controlled by triggers.

To address the scaling issue, we use a MUX and a voltage
multiplier M. The MUX and the multiplier are designed,
together with a set of amplifiers, such that s(t) is scaled to z(t).
A sign bit at the output of the counter, which is a function of
the trigger's sign, is used as input to the MUX, which in turn
controls the sign of the multiplier's output or z(t)'s sign.

To explain the sequences of events in DVG, let us consider
our previous scenario where |y(t)| < λ for some t < t1 and at
t1, |y(t)| crosses λ. For t < t1, we have y(t) = yλ(t), s(t) = 0, z
(t) = 0, and all the output bits of the counter are set to be zero.
If y(t1) > λ, Comp‐1 triggers a positive voltage, and the
counter's output bits state changes. Specifically, the least sig-
nificant bit changes to one, and in response, the DAC's output
voltage changes to α v. Meanwhile, after the positive trigger,
the MUX outputs a voltage −2λ/α which is multiplied to s(t)
and outputs z(t) as −2λu(t − t1) as desired.

Next, we discuss the hardware board that realises the
folding operation discussed in this section.

3.2 | Modulo hardware board

Our modulo hardware board is presented in Figure 4, along
with the roles of the major building components. Table 1
contains a detailed listing of the hardware's components. The
board is designed for λ = 1.25 v. While selecting components
for the MUX, multiplier, and amplifiers involved, we observe
that these components operate in their linear regions if theF I GURE 3 Discrete voltage generator.

F I GURE 4 Modulo hardware board.
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operating voltages are <12 v. This implies that |z(t)| ≤ 12 v
which limits the maximum value of input signal to |y
(t)| < 9λ = 11.75 v. This is because if y(t) crosses 9λ then z(t)
should be −10λ = 12.5 v to ensure that yλ = y(t) + z(t) ∈ [−λ,
λ]. Hence, the current design of the hardware can fold and
sample signals eight times larger than ADC's dynamic range.
This implies that the DVG output should take values from the
set {0, �2λ, �4λ, �6λ, �8λ}. This requires the DAC to have
five uniform voltage levels at its output (it produces only
positive voltages), and a 3‐bit DAC and hence a 3‐bit counter
are used as shown in Figure 3. Instead of using an off‐the‐shelf
DAC, we build a customised DAC for the hardware. By noting
that the DAC's output is a linear combination of its three input
bits, we used adders LT1364 to realise the DAC. In Table 2, we
list the values of bits and the counter (denoted as counter
values). The three bits (a, b, and c) of the counter are used as
input to the DAC, which converts the bits to an analog DC
voltage. Here the resolution of the DAC is α = 1 v.

We further analyse the working of the modulo hardware by
considering a sinusoidal signal y(t) = A sin(2πf0t) where A is
amplitude, and f0 is the frequency (in Hz). In this experiment,
we set λ = 1.25. First, we analyse the folding ability of the
hardware for different amplitude levels. Figure 5a,b depicts
screenshots of an oscilloscope capturing input y(t) (in yellow),
folded output yλ(t) (in green), and the DVG output z(t) (in
blue), for two signals with f0 = 1 kHz, A = 4λ and f0 = 2 kHz,
A = 8λ, respectively. We observed that the signals are folded
back to lie within the dynamic range of the ADC as expected
without clipping.

Next, we discuss the frequency response of the modulo
ADC. As in any analog system, the modulo folder's response
also depends on the input signal's frequency or bandwidth. In
particular, beyond a particular frequency range, components of
the hardware and the overall feedback loop may not respond
quickly to fast changes in the input signal, as demonstrated in

Figure 6. We observed that for 1 and 10 kHz, the hardware
folds the signal accurately. However, for f0 = 20 kHz, folding
instants are not symmetric for positive and negative folds.

In the next section, we discuss several challenges of the
modulo hardware and our proposed solutions.

3.3 | Artefacts during folding

Errors or other artifacts that arise during folding operations in
hardware result from various reasons. One of the major issues
that arise in a modulo ADC is the time delay in the feedback
loop (see Figure 2). To elaborate, consider a scenario where y
(t) < λ for t < t1 and it crosses λ at time t1. To fold the output
voltage to the dynamic range of the ADC, z(t) = 2λu(t − t1)
needs to be subtracted from y(t). However, there is a finite
delay between the trigger time t1 to generating z(t). If the time
delay is Td, then z(t) = 2λu(t − t1 − Td) is subtracted, which
causes distortion. To illustrate this effect, in Figure 7, we
considered a sinusoidal signal (in blue) and its folded versions
with and without delay. We observe that in the absence of any
time delay (Td = 0) the signal folds perfectly (shown in red) to
stay within the dynamic range. However, for a non‐zero value
of Td, foldings do not take place at the folding instants, and the

TABLE 1 List of hardware components.

Component Model number Make

Comparator LM339 Texas instruments

UP/DOWN counter TEENSY4.1 PJRC

Analog MUX ADG1608 Analog devices

Analog multiplier AD835 Analog devices

Adder LT1364 Analog devices

TABLE 2 Up/down counter operation.

c b a sgn
Counter
values

s
(t) z(t)

0 0 0 0 (1) 0 (0) 0 0

0 0 1 0 (1) 1 (−1) 1 2λ (−2λ)

0 1 0 0 (1) 2 (−2) 2 4λ (−4λ)

0 1 1 0 (1) 3 (−3) 3 6λ (−6λ)

1 0 0 0 (1) 4 (−3) 4 8λ (−8λ)

F I GURE 5 Screenshots of an oscilloscope capturing input signals
(yellow), its folded outputs (green), and the direct‐voltage generator signals
(blue): (a) 1 kHz sinusoid with maximum amplitude 4λ and (b) 2 kHz
sinusoid with maximum amplitude 8λ.
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output of the modulo operator (shown in black) still remains
outside the dynamic range [−λ, λ], which results in a clipped
modulo operator output. The proposed hardware solution
addresses this issue and avoids the undesired clipping as shown
in Figures 5 and 6.

Our solution uses the fact that with a finite time delay, the
amount of overshoot of a smooth signal can be bounded. To
elaborate, assume that the signal that undergoes the modulo
operation is Lipschitz continuous. Specifically, a signal y(t) is
Lipschitz continuous if there exists a positive real number Ly
such that for any T > 0 we have the following equation:

jyðtÞ − yðt þ TÞj ≤ LyT : ð2Þ

With the Lipschitz smoothness condition, we note that the
amplitude of y(t) cannot change more than LyTd between any
folding instant and time of its effect to take place. Hence, if we
choose the dynamic range of the ADC to be [−(λ + Δλ),
(λ + Δλ)] where Δλ = LyTd then the signal will not clip. We
show this extended dynamic region in the example in Figure 7.
Alternatively, instead of increasing the ADC's dynamic range,
one can keep it to be [−λ, λ] and reduce the threshold values
for comparators. In this case, Comp‐1 will trigger when the
input crosses λ − Δλ, and Comp‐2 will trigger when the input
goes beyond −λ + Δλ. In this way, the time delay issue is
addressed by the modulo circuit without altering ADC's dy-
namic range. In our hardware, we choose the former solution.
Specifically, we used an oscilloscope to measure and display
samples. The dynamic range of the oscilloscope's ADC was
sufficiently higher than [−λ, λ] to sample signals of interest
without clipping signals due to the delay in the feedback loop.

In order to apply the solution, the signal must be Lipschitz
continuous. In our design, the modulo operation input signal is
always a bandlimited signal satisfying the Lipschitz smoothness
condition [27]. For a bandlimited signal y(t), its Lipschitz
constant Ly is directly proportional to its bandwidth ωc [27].
Hence, for a given value Δλ and Td (both depend on the
modulo circuit), Ly = Δλ/Td is fixed and this restricts the
maximum frequency of the input signal that can be faithfully
folded. In the current design, we choose to implement the
counter management using a TEENSY microcontroller,
resulting in a 1 μs time delay. Then for a sinusoidal signal y
(t) = A sin(2πf0t), the Lipschitz constant is given as
Ly = 2πAf0. For A = 8λ, Δλ = 0.5λ, and Td = 1 μs, we note
that the maximum operating frequency is 10 kHz which is in
line with the experimental results discussed in Figure 6.

Specifications of the proposed hardware prototype are
summarised in Table 3.

4 | RESULTS

In this section, we demonstrate the modulo hardware's signal
reconstruction capability. We focus on the folding and recon-
struction of bandlimited and FRI signals. In the hardware, the

F I GURE 6 Analysis of the frequency response of the modulo
hardware. (a–c) are real‐time captures of an oscilloscope capturing the 1, 10,
and 20 kHz, respectively, the sinusoidal input signal (yellow), its folded
output (green), and the direct‐voltage generator signal (blue).

F I GURE 7 Effect of the time delay of the feedback loop on the
modulo operation.
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folded measurements are generally contaminated by different
noises, including quantisation noise. Since the performance of
an unfolding algorithm depends on the noise levels, we first
consider simulated results to assess the performance of the
B2R2 algorithm used for unfolding. Then we demonstrate the
results from the hardware.

4.1 | Simulated results

In this section, we compare our B2R2 algorithm with the
higher‐order differences (HOD) approach [7, 28] and Cheby-
shev polynomial filter‐based method [8]. Although a com-
parison of these methods is analysed in Ref. [10], the settings
are different here. Importantly, quantisation noise is not
considered in our previous work.

We consider noisy measurements as follows:

~yλðnTsÞ ¼ yλðnTsÞ þ vðnTsÞ; ð3Þ

where v(nTs) is the noise term. In the simulations, λ is set to be
1.25 as in the hardware. We normalise the bandlimited signals
to have a maximum amplitude of 10. The SNR is calculated as

SNR¼ 20log
�
kyλðnTsÞk

kvðnTsÞk

�
. Reconstruction accuracies of different

methods are compared in terms of the normalised mean‐

squared errors (MSEs) as
P
jyðnTsÞ−ŷðnTsÞj2P
jyðnTsÞj

2 , where ŷðnTsÞ is an

estimate of y(nTs). For different noise settings and over‐
sampling factors (OFs), we considered 100 independent
noise realisations and calculated the average MSE for them. We
first treat quantisation noise and then present results for un-
bounded noise.

In the first simulation, the unfolding algorithms are applied
to quantised folded samples. The MSE in the estimation of
bandlimited signals for a different number of bits and OFs is
shown in Figure 8. We observe that for a given OF, B2R2 al-
gorithm results in the lowest MSE for <5 bits. For more than
five bits, all the algorithms, except HOD with OF = 3,
perform equally well. The results show that low‐resolution
quantisers can be used with the B2R2 algorithm for unfold-
ing, which saves both power and memory requirements.

Next, for unbounded noise, we assume that the noise
samples v(nTs) are independent and identically distributed
Gaussian random variables with zero means. The variance of v
(nTs) is set to achieve the desired SNR. We compare the

methods for different values of SNR and OFs with λ = 1.25.
Figure 9 shows the MSE of the different algorithms for
OF = 3 and 6. We note that our algorithm results in the lowest
error for a given OF and SNR.

Given the advantages of the B2R2 algorithm over the other
approaches, we present the hardware results in the next section
by using this method.

4.2 | Hardware results for bandlimited
signals

In this section, we first present results for bandlimited signals.
For generating bandlimited or lowpass signals, we used an
Arduino microcontroller (see Figure 10), which converts the
digital signal to analog signal via a DAC. The digital signals
were generated using MATLAB software. Two examples of
1 kHz bandlimited signals are presented in Figure 11a,b. The
modulo hardware folds the signals to stay within the dynamic

TABLE 3 Specifications of the modulo analog‐to‐digital converter.

Parameter Value

Input signal �10 v

Input bandwidth 10 kHz

Folding threshold (λ) 1.25 v

Modulo‐input dynamic range �10 v

Modulo‐output dynamic range �1.25 v

F I GURE 8 Comparison of HOD, CPF, and B2R2 algorithms after the
quantisation process in terms of MSE when recovering a bandlimited signal
from modulo samples with λ = 1.25 and OF = 3,6. For a given number of
bits, B2R2 has the lowest MSE. CPF, Chebyshev polynomial filter; HOD,
higher‐order differences; MSE, mean‐squared error; OF, over‐sampling
factor.

F I GURE 9 Comparison of HOD, CPF and B2R2 algorithms (with
unbounded noise) in terms of MSE when recovering a bandlimited signal
from modulo samples with λ = 1.25 and OF = 3,6. For a given SNR and
OF, B2R2 has the lowest MSE. CPF, Chebyshev polynomial filter; HOD,
higher‐order differences; MSE, mean‐squared error; OF, over‐sampling
factor.

MULLETI ET AL. - 187

 17518598, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cds2.12156 by W

eizm
ann Institute O

f Science, W
iley O

nline L
ibrary on [22/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



range, as shown in Figure 11. The signals are sampled with an
oversampling factor of five (OF = 5), and the B2R2 algorithm
is applied for unfolding. The unfolded or reconstructed signals
are shown in Figure 12. We observe that the reconstruction is
close to the true signals except for an amplitude scaling factor,
which is the result of scaling within the hardware.

4.3 | Hardware results for FRI signals

Before presenting the results for FRI signals, we briefly discuss
the FRI signal model and its sampling and reconstruction

mechanism. Consider an FRI signal consisting of a stream of L
pulses:

f ðtÞ ¼
XL

ℓ¼1
aℓhðt − tℓÞ; ð4Þ

where the pulse h(t) a real‐valued known pulse. We assume that
faℓg

L
ℓ¼1 are real‐valued and ftℓgLℓ¼1 ⊂ ð0;T0� ⊂ R for a

known T0.
The FRI signal model in Equation (4) is encountered in

several scientific applications such as radar imaging [29–31],
ultrasound imaging [24, 32, 33], light detection and ranging
[34], time‐domain optical coherence tomography [35], and
other time‐of‐flight imaging systems. In these applications, h
(t) is the transmitted pulse and faℓhðt − tℓÞg

L
ℓ¼1 constitute

the reflections from L point targets. The amplitudes faℓg
L
ℓ¼1

depend on the sizes of the targets and the delays ftℓgLℓ¼1 are
proportional to the distances of the targets from the trans-
mitter. Here T0 denotes the maximum time delay of the
targets. The signal f(t) is specified by faℓ; tℓgLℓ¼1 and can be

F I GURE 1 0 Bandlimited signal generator.

F I GURE 1 1 Screenshots of the oscilloscope capturing the two
bandlimited input signals (yellow) and their folded output signals (green).
(a) Example‐1 of bandlimited signal and (b) Example‐2 of bandlimited signal.

F I GURE 1 2 Hardware results for bandlimited signals. The B2R2

algorithm is used to unfold yλ(t) (measured at the output of hardware), and
the unfolded signal ŷðtÞ is plotted with bandlimited signal y(t).
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reconstructed from its sub‐Nyquist measurements acquired
using an appropriate sampling kernel [23–25, 36]. Given their
widespread application, here we consider sampling and
reconstruction of FRI signals by using our hardware
prototype.

FRI signals can be perfectly reconstructed by applying
high‐resolution spectral estimation methods, such as the
annihilating filter or Prony's method and its variants [37–43] to
the Fourier measurements:

Sðkω0Þ ¼
Fðkω0Þ

Hðkω0Þ
¼
XL

ℓ¼1
aℓe−jkω0tℓ ; k ∈ f−K;…;Kg; ð5Þ

where we assume that H(kω0) ≠ 0. Here K ≥ L and ω0 ¼
2π
T0

[44]. The Fourier measurements fSðkω0Þg
K
k¼−K can be deter-

mined from the samples (f � g)(nTs) where g(t) is an ideal
lowpass filter with bandwidth [−Kω0, Kω0] and Ts ¼

2π
ð2K þ 1Þω0

.
In practice, the duration of the pulse h(t) is very short, and
hence f(t) has a wide bandwidth. This results in a large sampling
rate (or Nyquist rate) if f(t) is sampled directly. However, the
filtered signal y(t) = (f � g)(t) is bandlimited to [−Kω0, Kω0],
which is much smaller than that of h(t) and the sampling rate is
much lower than the Nyquist rate.

As in the bandlimited signal model, a modulo operation
can be applied to the filtered signal y(t) to avoid clipping. Then
yλ(t) is sampled. Then to determine the Fourier samples

F I GURE 1 3 Reconstruction of an FRI signal (L = 2) via the modulo
hardware.

F I GURE 1 4 Reconstruction of an FRI signal (L = 3) via the modulo
hardware.

MULLETI ET AL. - 189

 17518598, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cds2.12156 by W

eizm
ann Institute O

f Science, W
iley O

nline L
ibrary on [22/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



fSðkω0Þg
K
k¼−K , unfolding is first applied. Since the filtered

signal is bandlimited, we use the proposed hardware for
modulo folding and can apply the B2R2 algorithm from
unfolding.

In our setup, to generate the FRI signals, we consider h(t)
to be a short pulse of bandwidth 30 kHz (Nyquist
rate = 60 kHz). We consider three examples with L = 2, 3, and
5. The amplitudes and time delays are generated randomly. The
maximum time delay is T0 = 0.1 s. Once generated, the FRI
signal is lowpass filtered with a cutoff frequency of 1 kHz.
MATLAB is used to generate the samples of filtered FRI

signals and then an Arduino microcontroller is used to
generate the analog counterpart of them. The signal is then
folded using the hardware, and the folded signals are sampled.
The sampling rate is 10 kHz which is five times higher than the
sampling rate of the lowpass signal. Still, the rate is six times
lower than the Nyquist rate, and hence the system operates at a
sub‐Nyquist rate.

We first applied the B2R2 algorithm to unfold the signal
and then used ESPRIT [43] to estimate the time delays and
amplitudes of the FRI signals. In Figures 13–15, we show
sampling and reconstruction of FRI signals with L = 2, 3, 5,
respectively. The FRI signals followed by a lowpass filter are
presented in Figures 13a, 14a, and 15a. The reconstruction of
the lowpass signals displayed in Figures 13b, 14b, and 15b,
where y(t) described the LPF output, yλ(t) is the folded signal
(output of the modulo hardware), and the unfolded signals are
given by ŷðtÞ. Figures 13c, 14c, and 15c show location and
amplitude of the true signal f(t) and estimated FRI signal f̂ ðtÞ.
The maximum error in the estimation of time delay is −15 dB
which shows that the system can be used in applications like
radar and ultrasound imaging.

5 | CONCLUSIONS

We presented a hardware prototype for the modulo folding
system and showed that for different bandlimited and FRI
signals, the hardware is able to fold the signal faithfully. In
particular, we were able to sample signals with 8 times the
dynamic range of the ADC roughly. We also addressed the time
delay issue of the modulo system and presented a hardware
solution. The overall system operates five times below the
Nyquist rate, which enables one to use low‐rate, low‐dynamic
range, power‐efficient ADCs.
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