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Abstract—In generalized graph signal processing (GGSP), the
signal associated with each vertex in a graph is an element
from a Hilbert space. In this paper, we study GGSP signal
reconstruction as a kernel ridge regression (KRR) problem. By
devising an appropriate kernel, we show that this problem has a
solution that can be evaluated in a distributed way. We interpret
the problem and solution using both deterministic and Bayesian
perspectives and link them to existing graph signal processing and
GGSP frameworks. We then provide an online implementation
via random Fourier features. Under the Bayesian framework,
we investigate the statistical performance under the asymptotic
sampling scheme. Finally, we validate our theory and methods
on real-world datasets.

Index Terms—Graph signal processing, generalized graph
signal processing, kernel ridge regression, signal reconstruction.

I. INTRODUCTION

IN real-world signal processing, data is often associated with
a network. Graph signal processing (GSP) techniques have

been proposed to perform filtering, sampling and reconstruction
for this class of signals by accommodating the network structure
[1], [2]. GSP models and exploits the relationship between
signals and graphs through the definitions of the graph Fourier
transform (GFT) and frequency. In practice, GSP can be utilized
to analyze brain signals [3], [4], denoise an image [5], [6], and
design recommendation systems [7].

Graph signal reconstruction aims to recover the entire graph
signal based on observations from a subset of vertices. The ma-
jor tasks in graph signal reconstruction are designing optimal
sampling and recovery strategies [8], [9]. When the graph signal
is bandlimited, [10] derived a least squares estimator. Based
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on this estimator, [11] formulates the sampling problem as an
optimization problem. Assuming wide-sense stationary (WSS)
and bandlimited signal and WSS noise, [12] studied a greedy
sampling scheme, and derived a bound for its recovery mean-
squared error (MSE). The paper [13] derived the Wiener filter
for graph signal reconstruction under the assumption of WSS,
while [14] studied the reconstruction problem for time-varying
graph signals. By requiring smoothness in the vertex domain of
the graph signals’ first-order difference over time, reconstruc-
tion is formulated as an optimization problem. This optimiza-
tion approach is generalized and accelerated in [15] through the
Sobolev smoothness term. The work [16] studied the problem
of recovering graph signals from nonlinear measurements.

Kernel-based GSP techniques have more flexibility in filter-
ing and reconstruction, since they introduce nonlinearity and
generalize existing approaches. In [17], the graph signal is
modeled as a random nonlinear function of an arbitrary input
with a specific covariance structure adapted to the graph, known
as a Gaussian process over a graph (GPG). The covariance
structure is based on a scalar-valued kernel for differentiating
the inputs and the graph structure for regularizing the smooth-
ness of the random graph signal. The papers [18], [19], [20]
formulate a learning problem with a graph signal target. Besides
the standard kernel ridge regression (KRR) fitness and regular-
ization terms, this framework imposes smoothness on the output
of the training set. The work [21] generalizes the graph-time
linear filter [22, eq. (7)] to a nonlinear predictor via KRR. This
model assumes the same nonlinear function on every vertex,
hence can be made adaptive and distributed by random Fourier
features (RFFs) [23], [24]. In the reconstruction problem, [25],
[26] design the graph kernel by viewing the graph signal as a
function on the vertex set. This approach generalizes the ban-
dlimited graph signal reconstruction method. By implementing
the multi-kernel learning (MKL) strategy, it does not require
knowledge of the signal bandwidth.

The aforementioned techniques are developed in terms of
the classical GSP framework, where each vertex signal is a
scalar. In practice, the data associated with each vertex can
have additional structure. For example, on each vertex, the
observation may be a discrete-time signal of length T . This
scenario is considered in the time-vertex framework [15], [27],
[28], [29], where the spatial-time structure is modeled by a
Cartesian product graph, and the Fourier transform and filters
are then generalized to this graph. To be specific, the Cartesian
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product graph is constructed by the underlying graph and the
cyclic graph with T vertices, the latter of which represents time
steps. The data can then be embedded in this product graph as a
standard graph signal. This framework is further extended to the
generalized graph signal processing (GGSP) framework [30],
[31], [32], where each vertex observation is an element from
a Hilbert space, which can possibly be infinite-dimensional.
An important example is the case where each vertex is as-
sociated with a continuous function on a bounded interval.
This model allows for analyzing asynchronously sampled sig-
nals on each vertex, which is not possible under the time-
vertex framework.

In this paper, we explore kernel-based signal reconstruction
within the GGSP framework. Previous works like [26] have
developed signal reconstruction methods within the traditional
GSP or time-vertex frameworks. In GGSP, we consider vertex
signals as elements in a general Hilbert space. In [31], a
reconstruction method proposed for GGSP assumes that the
signal lies in a finite-dimensional subspace (e.g., finitely many
features of the signal spans the full space of interest). The work
[32] proposed a reconstruction method that relies on knowledge
of the signal’s power spectral density (PSD) (e.g., this can be
derived from a noiseless training set without missing values),
which may not be applicable in practice. In this paper, we
consider the case where the training set is small, noisy and
incomplete, thus the method in [32] cannot be applied. Specifi-
cally, we consider the case where signal on each vertex is real-
valued function. By utilizing a reasonable kernel, we are able
to reconstruct the signal with good fidelity as long as the target
signal is in the corresponding reproducing kernel Hilbert space
(RKHS), which can be infinite-dimensional. Compared to the
method in [31], our proposed method is able to utilize infinitely
many features. Thus, it is more flexible and has better signal
representation capability.

To motivate our work, consider the Intel lab temperature
dataset1 which consists of temperature records from 54 sen-
sors in a lab, collected between February and April of 2004.
The ground truth records and incomplete noisy observations
on two connected sensors labeled as vertex 1 and 2 are shown
in Fig. 1. Our goal is to reconstruct the signal at vertex 1.
In the time interval [0, 40000], there is a lack of observations
on vertex 1. As shown in Fig. 1, the isolated KRR method
fails to reconstruct this part. On the other hand, our proposed
approach, referred to as KRR-GGSP, utilizes the graph structure
to incorporate the observations from a vertex’s neighbor to
improve reconstruction. This example motivates the need for
a new KRR framework under GGSP, which is the focus of
this paper. Unlike the methods under WSS or joint wide-sense
stationary (JWSS) assumptions [13], [29], KRR-GGSP does
not require knowledge of the PSD of the signal, which can
be hard to estimate when there are only noisy and incomplete
samples in the training set. Further numerical experiments in
Section V illustrate the utility of the approach presented in
this paper.

1http://db.csail.mit.edu/labdata/labdata.html

Fig. 1. The upper and lower plots represent observations and ground truths
from two connected vertices 1 and 2, respectively. Green curves are ground
truth signals, and the cyan dots represent the observations on each vertex.
Note that reconstruction based on the single vertex 1’s observations using
KRR is much worse compared to the proposed KRR-GGSP approach.

Our main contributions are the following:
1) We construct an appropriate kernel and formulate the

signal reconstruction in GGSP as a KRR problem.
We interpret it as an extension of existing kernel-based
frameworks.

2) We present an online approach for generalized graph
signal reconstruction by utilizing RFF.

3) We compute the limit and asymptotic upper bound for
conditional MSE of reconstruction under the Bayesian
framework.

4) We present numerical case studies to illustrate the utility
of KRR-GGSP in several applications.

This paper is related to our conference paper [33], whose goal
was to learn a map from a generalized graph signal space to
itself in filtering. We made use of the tensor product operator-
valued kernel to formulate this filtering problem. In this paper,
we instead study the reconstruction problem for generalized
graph signal and our goal is to learn a function from the set
of sample points to R. Here the sample points are pairs of ver-
tices and instances of the vertex function’s domain. To achieve
this, we consider a real-valued kernel defined on the set of
sample points. We make use of the tensor product strategy to
form a kernel.

The rest of this paper is organized as follows. In Section II,
we formulate the signal reconstruction problem in GGSP.
In Section III, we derive the solution to this problem, discuss
its interpretation and compare it with existing methods. We also
provide an online version of the reconstruction problem. In Sec-
tion IV, we analyze the statistical performance of our recon-
struction approach under the asymptotic case. In Section V,
we validate our method on real-world datasets. We conclude
in Section VI.
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Notations. We use plain lower cases (e.g., x) to represent
scalars and scalar-valued functions. We use bold lower cases
(e.g., x) to represent vectors and vector-valued functions. Note
that in this paper, we consider generalized graph signals as
scalar-valued functions. Although they are vectors in linear
spaces, we use the functional view for ease of explanation. Bold
upper cases (e.g., S) are used to denote operators, including
matrices. In particular, we write the N -dimensional identity
operator or matrix as IN . We use calligraphic letters to represent
spaces (e.g., X ), except for standard spaces like R and N,
which are the Euclidean space and space of natural numbers,
respectively. For a Hilbert space H, its inner product is 〈·, ·〉H
and corresponding norm is ‖·‖H. For a set X , we use X c to
denote its complement. For two random variables (or elements)
x and y, we write x ∈ σ(y) if x is measurable with respect
to (w.r.t.) the σ-algebra generated by y. We write cov(x, y) to
denote the covariance between x and y, and var(x) to denote
the variance of x. We use δ(·, ·) to denote the Kronecker delta
function, which equals 1 if its two arguments are the same and
0 otherwise. The tensor product is denoted by ⊗ and diag(v) is
the diagonal matrix with its main diagonal given by the vector
v. The element-wise matrix multiplication is denoted by �,
(·)T denotes transpose, (·)∗ denotes conjugate transpose or the
adjoint, and (·)† denotes the pseudo-inverse. We use [m] to
represent the set {1, . . . ,m}.

II. PROBLEM FORMULATION

In this section, we formulate the generalized graph signal
reconstruction problem.

Consider a graph G= (V, E), where V = {1, . . . , N} is the
vertex set, and E ⊂ V × V is the edge set. We use Nd(v) to
denote the d-hop neighborhood of the vertex v and let N d(v) =
Nd(v) ∪ {v}. We assume that G is a connected undirected
graph with no self-loops. In GSP theory, a typical graph signal
is a function mapping from V to R.2 In the GGSP framework
[31], the generalized graph signal f is defined as a function from
V to a separable Hilbert space H. The generalized graph signal
space can then be identified with R

N ⊗H via the map

f 
→
N∑

n=1

en ⊗ f(n),

where {en : n= 1, . . . , N} is the standard basis of RN , i.e., en
is the n-th column vector of IN .

One important case in GGSP is where H is a function
space. Specifically, consider the domain of the functions to be
a measure space (T ,A, τ) and H= L2(T ) (i.e., the space of
square-integrable functions on T ). For example, in Intel lab data
mentioned in Section I, T = [0, 86400], representing the time
duration (in seconds) of one day. Then, a generalized graph
signal f can be identified with the map

f ′ : V × T → R

(v, t) 
→ f(v)(t).

2For simplicity, we consider only R-valued signals instead of C-valued
signals.

Thus, the space of generalized graph signals can be also identi-
fied with L2(V × T ). In this paper, we will mainly use L2(V ×
T ) to denote the space of generalized graph signals, while
references to R

N ⊗H are used in explanations and proofs.
We refer to T colloquially as the time domain. However, it is not
restricted to subsets of R and can be a general measure space.
Readers are referred to Appendix A and [31] for more details
on GGSP.

Given noisy observation samples at a subset S ⊂ V × T
of vertices and time instances, our objective is to recover
the generalized graph signal f . To avoid cluttered
notations, denote J = V × T . Suppose the sampling set
is S = {(vm, tm) :m= 1, . . . ,M} ⊂ J , and the noisy
observations are

ym = f(vm, tm) + εm, m= 1, . . . ,M, (1)

where εm are independent and identically distributed (i.i.d.)
zero-mean noise with variance σ2. In the Bayesian framework,
f in (1) is further modeled as a Gaussian process. In this
case, we will model f as a random element (cf. Appendix B).
The noise terms εm are assumed to be Gaussian and indepen-
dent of this process.

The GGSP signal reconstruction problem can be summarized
in the following form:

min
f̃∈F (J ,R)

M∑

m=1

L(f̃(vm, tm), ym) + P (f̃), (2)

where F (J ,R) is an appropriate space of functions from J
to R, L(·) is a loss function measuring the fitness of f̃ on
the observations. Typical choices include the �1 and �2 losses.
The regularization term P (f̃) imposes a smoothness constraint
on f̃ over the vertex and time domains. To design proper
F (J ,R) and P (f̃), we employ the KRR technique, which we
briefly review in Appendix C.

The existing time-vertex methods [14], [15] have already
addressed the reconstruction problem for time series on graphs.
However, these methods are based on the assumption that the
signals are evenly sampled with the same sampling rate on all
vertices. In contrast, from (2), we observe that our formulation
does not require synchronous samples from each vertex and
applies even in the case where the sampling frequencies differ
across vertices, or where the signal is not evenly sampled. In ad-
dition, compared to the time-vertex techniques, this formulation
is not sensitive to the sampling rate since it makes use of the
true time stamps. We refer the reader to the detailed discussion
in Section III-B.

III. KRR RECONSTRUCTION IN GGSP

In this section, we derive the KRR reconstruction solution
for GGSP. We interpret this method under both deterministic
and Bayesian models and connect our technique with existing
kernel-based frameworks in GSP and graph signal reconstruc-
tion approaches. We also propose an online approach based on
RFF that results in a distributed implementation.
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To reconstruct a generalized graph signal f ∈ L2(J ), we use
a kernel k : J × J → R that is the multiplication of two kernels
kG : V × V → R and kT : T × T → R:

k : J × J → R

((u, s), (v, t)) 
→ kG(u, v)kT (s, t). (3)

The RKHS associated with the kernel (3) is Hk =HkG
⊗HkT

[34, Theorem 13]. In this paper, we construct kG based on a
graph shift operator (GSO) AG of the graph G. A GSO is a N ×
N matrix representing the structure of the graph G such that its
(u, v)-th entry is nonzero only if (u, v) ∈ E or u= v. Typical
choices of GSO are graph adjacency and Laplacian matrices.
In particular, we focus on the case where the matrix KG :=
(kG(i, j)) ∈ R

N×N takes the following form (cf. [26, (14)]):

KG =Φ diag(r(λ1), . . . , r(λN ))Φᵀ, (4)

where {λi} are the eigenvalues of the GSO AG, r(·)
is a non-negative function such that r(λ1)≥ · · · ≥ r(λN ),3

and Φ is the matrix formed by the eigenvectors of AG.
When T is a subset of Euclidean space, we can usu-
ally choose kT as the radial basis function (RBF) kernel,
e.g., kT (s, t) = exp(−‖s− t‖22/βscale) (Gaussian kernel) or
kT (s, t) = exp(−‖s− t‖1/βscale) (Laplacian kernel), where
βscale is a tunable parameter.

Following the standard KRR formulation (36), we specify the
reconstruction problem (2) as follows:

f̂ = argmin
f̃∈Hk

M∑

m=1

|f̃(vm, tm)− ym|2 + μ‖f̃‖2Hk
. (5)

Let K(S,S) = (k((vm, tm), (vm′ , tm′)))Mm,m′=1 ∈ R
M×M

and y(S) = (y1, . . . , yM )T . Using the representer theorem, the
optimal solution to (5) is

f̂ =
M∑

m=1

cmk(·, (vm, tm)),

(c1, . . . , cM )T = (K(S,S) + μIM )−1y(S). (6)

Henceforth, we refer to the problem (5) and its solution (6) as
KRR-GGSP. In this paper, we assume that all eigenvalues of
AG are distinct. By construction (4), KG is a polynomial of
AG for some degree L <N , i.e., it suffices to consider r(·) as a
polynomial whose degree is smaller than N , thus kG(u, v) = 0
as long as u /∈NL(v). Therefore, the evaluation of f̂(v, t) only
requires information from NL(v):

f̂(v, t) =

M∑

m=1

cmk((v, t), (vm, tm))

=
M∑

m=1

cmkG(v, vm)kT (t, tm)

=
∑

vmNL(v)

cmkG(v, vm)kT (t, tm). (7)

3Recall that {λi} are indexed in increasing order of graph frequencies.
Also note that [26, (14)] uses r†(Λ) instead of r(Λ) in the definition (4).

Note that when T is a singleton (i.e., the vertex signal
space is one-dimensional), the KRR-GGSP framework degen-
erates to the GSP recovery problem [26]. In addition, when
KG = IN , it degenerates to separately solving KRR problems
on each vertex using the kernel kT . To see this, suppose
on each vertex v we have Mv samples. We relabel S and
{ym} such that S =

⋃
v∈V{(v, t

(v)
i ) : i= 1, . . . ,Mv}, {ym}=⋃

v∈V{y
(v)
i : i= 1, . . . ,Mv}. We also relabel the coefficients as

c
(v)
i , so that (6) can be rewritten as

f̂(u, t) =
N∑

v=1

δ(u, v)

Mu∑

i=1

c
(v)
i kT (t, t

(v)
i )

for each u ∈ V and t ∈ T , where δ(u, v) = 1
when u= v and δ(u, v) = 0 otherwise. Note that
f̂(u, t) =

∑Mu

i=1 c
(u)
i kT (t, t

(u)
i ) and

‖f̂‖2Hk
=

N∑

u=1

Mu∑

i,j=1

c
(u)
i kT (t

(u)
i , t

(u)
j )c

(u)
j =

N∑

u=1

‖f̂(u, ·)‖2HkT
.

Then problem (5) becomes

f̂ = argmin
f̃∈Hk

N∑

u=1

Mu∑

i=1

|f̃(u, t(u)i )− y
(u)
i |2 + μ

N∑

u=1

‖f̃(u, ·)‖2HkT
,

(8)

and each f̂(u, ·) can be solved separately using the samples on
the vertex u.

In the rest of this paper, we make the following assumption.
Assumption 1: For the measure space (T ,A, τ), T is a

compact metric space, A is the Borel σ-algebra, and τ is a
strictly positive finite Borel measure. The kernel kT is a con-
tinuous symmetric positive definite kernel and KG is a positive
definite matrix.

A. Deterministic Interpretation

In this subsection, we consider the case where f in (1) is
deterministic. Under Assumption 1, by Mercer’s theorem [35],
there exists an orthonormal sequence {ξi : i≥ 1} in L2(T )
such that:

∫

T
kT (s, t)ξi(s) dτ(s) = γiξi(t),
∫

T
ξi(s)ξj(s) dτ(s) = δ(i, j),

kT (s, t) =
∞∑

i=1

γiξi(s)ξi(t),

where the sum converges absolutely and uniformly on T and γi,
i≥ 1, are non-negative eigenvalues. Let φn(u) be the (n, u)-th
element of Φ. Since kG is given by (4), it can be decomposed
in the same way:

kG(u, v) =

N∑

n=1

r(λn)φn(u)φn(v).
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By definition of k in (3), we then have

k((u, s), (v, t)) =

N∑

n=1

∞∑

i=1

r(λn)γi · φn(u)ξi(s) · φn(v)ξi(t).

Note that {φn(·)ξi(·) : n= 1, . . . , N, i≥ 1} is a orthonormal
sequence in L2(J ). Following the same argument as [36], Hk

is a subset of L2(J ) where the functions f̃ satisfy the follow-
ing condition:

f̃(v, t) =
N∑

n=1

∞∑

i=1

cn,i · φn(v)ξi(t)

s. t. ‖f̃‖2Hk
=

N∑

n=1

∞∑

i=1

c2n,i
r(λn)γi

<∞. (9)

By the definition of joint Fourier transform (JFT) (cf. (28)),
it can be shown that cn,i = Fn,i(f̃) where Fn,i represents the
(n, i)-th JFT coefficient. Therefore, penalizing on ‖f̃‖Hk

is
the same as penalizing on the energy of Fn,i(f̃) with weights

1
r(λn)γi

. Note that r(·) is non-increasing so that the Fourier
coefficients associated with larger graph frequencies are more
heavily penalized.

It is worth noting that if we construct kT and kG such that

kT (s, t) =
B′∑

i=1

γiξi(s)ξi(t) (10)

for some B′ <∞, and r(λn) = 0 for all n > B′′ in
(4), then problem (5) is equivalent to the bandlimited
signal reconstruction in [31, Section VI.A] with an
additional ridge penalty. To see this, we first note that
Hk = span{φn(·)ξi(·) : n= 1, . . . , B′′, i= 1, . . . , B′}, i.e.,
the signal space used for reconstruction is a bandlimited space.
We substitute (10) into (9) to obtain the optimization problem

f̂(v, t)=argmin
f̃∈Hk

M∑

m=1

|f̃(vm, tm)−ym|2+μ

B′′∑

n=1

B′∑

i=1

c2n,i
r(λn)γi

,

(11)

which coincides with the bandlimited signal reconstruction
problem formulated in [31] but with an additional penalty term.
This indicates that if kT is not a combination of finite functions,
then dim(Hk) =∞. This implies that the algorithm is able to
capture more features than that of bandlimited signals. An ex-
ample is the Gaussian kernel [37, Section 4.3.1].

Finally, we discuss the universality (see Appendix C for def-
inition) of the kernel k in the following theorem. The definition
of universality requires defining a topology on J . In this paper,
we equip V with the discrete topology and J = V × T the
product topology.

Theorem 1: If kT is a universal kernel on T , then k is
universal on J .

Proof: Consider an arbitrary compact set ZJ ⊂ V × T ,
and define Zv such that {v} × Zv = ZJ ∩ ({v} × T ). By using
the finite-cover definition of a compact set, we note that Zv is
compact in T . Consider an arbitrary h ∈ C(ZJ), where C(ZJ)
is the space of continuous functions on ZJ equipped with the
supremum norm. Let hv := h |{v}×Zv

. Due to the universality

of kT , for any ε > 0, there exists h′
v ∈ span{kT (·, t) : t ∈ Zv}

such that ‖h′
v − hv(v, ·)‖C(Zv) < ε. Let h′ :=

∑N
v=1 δ(v, ·)h′

v .
Then, we have ‖h′ − h‖C(ZJ ) < ε. On the other hand, since
KG is positive definite, KG is invertible. Therefore, there ex-
ists {av,n} such that δ(v, ·) =

∑N
n=1 av,nkG(n, ·), i.e., δ(v, ·) ∈

span{kG(n, ·) : n= 1, . . . , N}. Let K(ZJ ) be the closure of
span{k(·, (u, s)) : (u, s) ∈ V × T } in C(ZJ ). By combining
the above results, we conclude that h′ ∈ K(ZJ ) and the uni-
versality of k follows by K(ZJ ) = C(ZJ).

The universality discussed in Theorem 1 is different from
that in [33, Theorem 2], which established universality for the
following operator-valued kernels:

K : X × X →L(Y)

(x1,x2) 
→ ks(x1,x2)T

where X ⊂ L2(J ) and Y ⊂ L2(J ), ks : X × X → R is a real-
valued RBF kernel, L(Y) is the space of linear operators on Y ,
and T ∈ L(Y).

We note that Theorem 1 cannot be derived from [33, Theo-
rem 2] and vice versa. First, the kernel domain in this paper is
in J × J instead of L2(J )× L2(J ). For simplicity, consider
the case where T is a singleton, so that V × T can be identified
with V . If we use the kernel in [33, Theorem 2] and let X = V ,
then it is required that V is a real (or complex) separable Hilbert
space. However, as long as 1< |V|<∞, this is impossible.
Second, the output of the kernel in this paper is in R instead
of an operator space, hence none of these two formulations
encompasses the other.

B. Bayesian Interpretation

We now turn to the Bayesian interpretation where f ∼
GP(0, k) and εm

i.i.d.∼ N (0, σ2) in (1). Let (Ω,F ,P) be
the underlying probability space, where F stands for the
σ-algebra of the space. We regard J = V × T as a mea-
sure space whose measure is the product measure of count-
ing measure on V and the measure τ on T . We denote this
product measure as ζ. To be specific, f is a stochastic pro-
cess {f((v, t), ω) : (v, t) ∈ J , ω ∈ Ω}. We make the follow-
ing assumptions:

Assumption 2:
i) f((v, t), ω) is jointly measurable w.r.t. the product mea-

sure ζ × P.
ii) f(·, ω) ∈ L2(J ) for all ω ∈ Ω.
Under Assumption 2, f is a Gaussian random element

(cf. Theorem B.1). Henceforth, we abbreviate f((v, t), ω) as
f(v, t) for simplicity and consistent notations. First, we note
that under the time-vertex framework, the Gaussian process
(GP) prior GP(0, k) is a JWSS graph random process (GRP).
A stochastic process f on V × T is said to be JWSS if its
covariance operator commutes with the shift operator S :=
AG ⊗AH on L2(J ) [32, Definition 2], where AH is the shift
operator on L2(T ). Consider the case where T = {1, . . . , T},
and KT := (kT (i, j)) ∈ R

T×T is a symmetric positive-definite
circulant matrix. Then the covariance operator of GP(0, k) is
Cf =KG ⊗KT . Let AH be the shift operator

AH(g)(t) = g((t+ 1)modT ),

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on May 12,2024 at 02:44:58 UTC from IEEE Xplore.  Restrictions apply. 



JIAN et al.: KERNEL BASED RECONSTRUCTION FOR GENERALIZED GRAPH SIGNAL PROCESSING 2313

which models the case where the vertex observation is a
discrete-time signal with T time steps. Since KT is a cir-
culant matrix, it commutes with AH. On the other hand, by
the construction of the kernel kG in (4), we know that KG

commutes with AG. Therefore, Cf commutes with the shift
operator S=AG ⊗AH, hence GP(0, k) is a JWSS prior.

Example 1: The GP prior generalizes the GPG framework
[17], which defined a GPG as a vector-valued GP whose co-
variance matrix takes the form

cov(s, t) = kT (s, t)B(a),

B(a) = (IN + aL)−2 := (B(a)ij),

where a > 0 is a parameter and L is the graph Laplacian matrix.
We see that this covariance structure corresponds to a GP prior
in L2(J ) with kG(i, j) =B(a)ij . The GPG also assumes that
each observation is (t,x), where x is a complete graph signal,
while in (5) we allow the observed graph signals to be incom-
plete. Therefore, this generalization allows us to reconstruct
the generalized graph signal when the observations come from
different subsets of vertices at different instances.

We next consider the posterior. The observations
{(vm, tm, ym)} are denoted as Dtrain. According to
Appendix C, the maximum a posteriori (MAP) estimator
is given by (6) with μ= σ2. Since f is a GP, (6)
is also the posterior expectation given Dtrain, i.e.,
f̂(v, t) = E[f(v, t) :Dtrain]. The posterior variance can
be calculated by

var(f(v, t) | Dtrain)

= k((v, t), (v, t))− kᵀ(K(S,S) + σ2IM )−1k, (12)

where k := (k((v, t), (v1, t1)), . . . , k((v, t), (vm, tm)))T . This
observation indicates that the time-vertex signal reconstruction
approach is a special case of the KRR-GGSP approach.

Example 2: In the time-vertex signal reconstruction problem,
the observed signal Xo ∈ R

N×T is an incomplete and noisy ob-
servation of the original signal Xr ∈ R

N×T . The mask matrix
is ΠS ∈ {0, 1}N×T . The paper [15] formulated the graph sig-
nal reconstruction via Sobolev smoothness (GTRSS) problem
as follows:

X̂r = argmin
X∈RN×T

‖ΠS �X−Xo‖2F

+ μTV tr((XDh)T (L+ αI)βXDh)

= argmin
X∈RN×T

‖ΠS �X−Xo‖2F

+ μTV vec(X)T (DhD
ᵀ
h)⊗ (L+ αI)β vec(X), (13)

where Dh is the first order difference operator

Dh =

⎛

⎜⎜⎜⎜⎜⎜⎝

−1
1 −1

1
. . .
. . . −1

1

⎞

⎟⎟⎟⎟⎟⎟⎠
∈ R

T×(T−1).

For ease of further analysis, we slightly modify (13) to be

X̂r = argmin
X∈RN×T

‖ΠS �X−Xo‖2F

+ μTV vec(X)T (DhD
ᵀ
h + δoI)⊗ (L+ αI)β vec(X),

(14)

where δo > 0. We also assume that diag(vec(ΠS)) +
(DhD

ᵀ
h)⊗ (L+ αI)β is full-rank. It can be shown that the

solution to (14) can approximate that of (13) arbitrarily well
as long as δo is small enough.

We consider problem (14) under a Bayesian setting. Let
the prior of vec(Xr) be a Gaussian random vector with
zero mean and covariance ((Dᵀ

hDh + δoI)⊗ (L+ αI)β)−1.
In other words, if we let kT (s, t) = (DhD

ᵀ
h + δoI)

−1
s,t , and

KG = (L+ αI)−β , then Xr = (Xr(v, t)) is a GP with co-
variance cov(Xr(u, s), Xr(v, t)) = kT (s, t)kG(u, v). Suppose
the noise is i.i.d. with variance μTV, then the objective func-
tion in (14) is the log-likelihood of the posterior p(Xr |Xo)
(up to a constant):

− log(p(Xr |Xo)) =−(log(p(Xr,Xo))− log(p(Xo)))

=−(log(p(Xo |Xr)) + log(p(Xr))− log(p(Xo)))

=
1

μTV
‖ΠS �Xr −Xo‖2F

+ vec(Xr )T (DhD
ᵀ
h + δoI)⊗ (L+ αI)β vec(Xr)

+ const,

where const is a constant independent of Xr. Therefore, the
solution to this problem is the MAP of Xr given Xo. According
to the Bayesian interpretation in Appendix C, this MAP estima-
tor X̂r = (X̂r(v, t)) is the solution (6) of KRR-GGSP where
kT (s, t) = (DhD

ᵀ
h + δoI)

−1
s,t , s, t ∈ {1, 2, . . . , T},KG = (L+

αI)−β , and μ= μTV.
From Example 2, we see that the GTRSS problem can be

understood as using a specific kernel in the time domain. In the
following, we show that since this kernel depends on the num-
ber of discrete time steps, it is sensitive to the sampling rate.

Consider the case where V is a singleton and T = [a, b] is a
closed interval, so that the signal f : V × T → R can be identi-
fied with a signal f : [a, b]→ R. Without loss of generality, let
[a, b] = [0, 1]. Suppose f is evenly sampled with interval length
Δ. We denote the kernel from Example 2 as kGTRSS(s, t; Δ) =
(DhD

ᵀ
h + δoI)

−1
s
Δ , t

Δ

, where s, t ∈ {0,Δ, 2Δ, . . . , 1}. This leads

to the problem that the prior distribution assigned to the signal
relies on the sampling frequency. According to the Bayesian
interpretation (cf. Appendix C), by using this kernel, we have
assumed a prior distribution on f . We now examine the cross-
correlation of the prior between f(0) and f(1), i.e.,

corr(f(0), f(1);Δ) :=
cov(f(0), f(1))√
var(f(0)) var(f(1))

=
kGTRSS(0, 1;Δ)√

kGTRSS(0, 0;Δ)kGTRSS(1, 1;Δ)
.

By calculating this quantity with different values of Δ, we
find that it is highly related to the sampling frequency (see
Fig. 2). Specifically, when the sampling frequency is large
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Fig. 2. The prior correlation coefficients corr(f(0), f(1);Δ) as a function
of 1

Δ
+ 1 (i.e., number of time steps) with δo = 10−5.

enough, the prior correlation between f(0) and f(1) tends
to zero. Instead, if we use other kernels k̃T which does not
depend on Δ (e.g., the RBF kernel), then the prior cross-
correlation k̃T (a,b)√

k̃T (a,a)k̃T (b,b)
does not depend on Δ. This ac-

counts for the failure of GTRSS on datasets with high sampling
frequency, while KRR-GGSP with RBF kernel works well (see
Section V-B). This is essentially because the scale parameter in
GTRSS kernel relies on the sampling frequency, while that in
RBF kernel does not. Therefore the RBF kernel has one more
degree of freedom than GTRSS kernel. Hence by using more
flexible kernels, we can expect better reconstruction results.

C. Online and Distributed Implementation

We now consider the online learning problem where the
data stream {(vm, tm, ym)} arrives sequentially. Upon each
arrival of (vm, tm), the learner provides a distributed prediction
of f(vm, tm), i.e., the update and evaluation steps are imple-
mented by each vertex exchanging information with its neigh-
bors within a certain number of hops. After that, ym is observed
and the error is measured by comparing the prediction with ym.
The estimator of f(vm, tm) cannot depend on ym, and the error
is used to update the learner for the next prediction. Problem
(5) can be adapted to this setting via RFFs [24] when kT is a
RBF kernel. Denote the columns of K

1
2

G by [p1, . . . ,pN ], and
write pv = (p1,v, . . . , pN,v )T . For the kernel k, the RFF can be
constructed as

η(v, t) = pv ⊗ z(t),

where z(t) ∈ R
F is the RFF of the kernel kT , i.e.,

E[z(s)T z(t)] = kT (s, t). By the construction of η(v, t), we
have E[η(u, s)T η(v, t)] = k((u, s), (v, t)). The reconstructed
signal is then f̂RFF(v, t) = cᵀη(v, t). Problem (5) is therefore
converted to the linear regression problem [23, (7)]:

min
c∈RNF

q(c) =

M∑

m=1

(cᵀη(vm, tm)− ym)2 + μ‖c‖22. (15)

Alternatively, if we define qm(c) := (cᵀη(vm, tm)− ym)2 +
μ
M ‖c‖22, then (15) turns out to be

min
c∈RNF

q(c) =
M∑

m=1

qm(c). (16)

The evaluation of f̂RFF(v, t) = cᵀη(v, t) can be distributed.
To illustrate this, write c= (cᵀ1, . . . , c

ᵀ
N )T where cn ∈ R

F , n=

1, . . . , N . Since kG takes the form (4), K
1
2

G can be repre-
sented as a polynomial of AG of degree L0, so that pu,v =
0 for all u /∈NL0

(v). Then for any input (v, t), η(v, t) =
(p1,vz(t)T , . . . , pN,vz(t)T )T , f̂RFF is evaluated by

f̂RFF(v, t) =
∑

u∈NL0
(v)

cᵀupu,vz(t),

which only requires information from NL0
(v).

Problem (15) can be solved in an online and distributed
way by stochastic gradient descent (SGD). To be specific, sup-
pose the datastream is {(vm, tm, ym) :m= 1, 2, . . .}. At the
m-th step, we approximate ∇q with the instantaneous sample
(vm, tm, ym):

∇qm = 2(cᵀη(vm, tm)− ym)η(vm, tm) + 2
μ

M
c.

Note that ym − cᵀη(vm, tm) = ym − f̂RFF(vm, tm) := êm is
the approximation error at the current sample point (vm, tm).
We can update c at the m-th iteration via

c(m) = c(m−1) − θ∇qm = θ1c
(m−1) + θ2êmη(vm, tm),

(17)

where θ, θ1, θ2 > 0. Note that:
• ∇qm is Lipschitz continuous with Lipschitz

constant Lipm = 2‖η(vm, tm)‖2 + 2 μ
M . Define

Lipmax =maxm Lipm.
• qm is convex.
• q is 2μ-strongly convex (cf. [38, Lemma 2.12]).
According to [38, Theorem 5.7], if θ ∈ (0, 1

2Lipmax
), the con-

vergence rate of SGD is linear when μ > 0. Since pvm
only

has non-zero entries in NL0
(vm), and êm can be evaluated in

a distributed way, we see that (17) is an online and distributed
update. This is always achievable when kT is a RBF kernel.

IV. CONDITIONAL MSE OF KRR-GGSP IN THE

BAYESIAN FRAMEWORK

In this section, we consider f ∼ GP(0, k), i.e., the Bayesian
framework considered in Section III-B. We derive the MSE
of the estimate given by KRR-GGSP at a particular node
v0 ∈ V and time t0 ∈ T , conditioned on an observation set
{(vm, tm, ym) :m= 1, . . . ,M}. To be specific, we analyze

var(f(v0, t0) | {(vm, tm, ym)})
= E[(f̂(v0, t0)− f(v0, t0))

2 | {(vm, tm, ym)}] (18)

under the scenario when the noise energy is unknown, and the
MSE is hard to compute when M →∞ as it involves taking
the inverse of the kernel matrix of the observations. We study
the dependence of the MSE on the graph structure when a
subset of vertices have dense observation samples (M →∞).
The asymptotic MSE and its upper bound can be used as a
criterion to choose an optimal sampling vertex set.

We consider the asymptotic MSE of inference for f(v0, t0),
i.e., the limit of (18) when M →∞. Note that if we allow
uniform sampling on every vertex with an ever-growing sample
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Fig. 3. The uniform exclusive sampling scheme with M0 = 5. The blue
circles denote S(M0), and the red triangle is (v0, t0).

size, then it is known that the posterior variance will uniformly
converge to 0 [39]. In order to examine the effect of leveraging
information from other vertices in KRR-GGSP, we consider the
case where there are no available sample points on {v0} × T ,
and the value of f(v0, t) is to be estimated.

Mathematically, let S(v;M0) be a set of M0 samples i.i.d.
from Unif({v} × T ), where v ∈ {v0}c. The sample set S(M0)
is then obtained by S(M0) =

⋃
v∈{v0}c S(v;M0). This sam-

pling scheme is illustrated in Fig. 3, and we call it uniform
exclusive sampling. In practice, this scheme mimics the scene
where only limited knowledge can be obtained from a certain
vertex, and an inference for that is desired.

For ease of notation, we define JS := {v0}c × T . We write
y(M0) to represent the observations y(S(M0)) from the sam-
pling set S(M0), and z to represent the restriction of f on JS .
We analyze var(f(v0, t0) |y(M0)) from two aspects: first, in
Theorem 2 we analyze the integration of var(f(v0, t) |y(M0))
over t; then in Theorem 3 we provide an asymptotic upper
bound for var(f(v0, t0) |y(M0)).

Let T0 be a subset of T . We consider the following integration

∫

T0

var(f(v0, t) |y(M0)) dτ(t), (19)

which represents the conditional MSE of the KRR-GGSP es-
timator over T0. Intuitively, when M0 tends to infinity, the
situation can be interpreted as f on JS is known and can be
utilized for inference. We formally address this in the follow-
ing theorem:

Theorem 2: Under Assumption 1, the limit posterior covari-
ance of f(v0, t) over T0 converges:

lim
M0→∞

∫

T0

var(f(v0, t) |y(M0)) dτ(t)

=

∫

T0

var(f(v0, t) | z) dτ(t). (20)

Proof: See Appendix D.
From Theorem 2 we know the limiting posterior variance

given an infinite number of sample points. This result can also
be applied when only a subset of vertices have dense samples.
In that case, the right-hand side (R.H.S.) of (20) becomes an
asymptotic upper bound by letting z be the restriction of f on
the vertices with dense samples. Moreover, we can get a rough
idea of the behavior of var(f(v0, t0) |y(M0)) if we consider

the following sequence of continuous functions

ρM0
(α) :=

{
1
α

∫
B(t0,α)

var(f(v0, t) |y(M0)) dτ(t), α > 0

var(f(v0, t0) |y(M0)), α= 0

where B(t0, α) is the open ball centered at t0 with measure
α. Specifically, by [39, Theorem 3] we note that ρM0

(α) is
a monotonic sequence, i.e., ρM0

(α)≤ ρM ′
0
(α) if M0 >M ′

0.
According to Theorem 2, the limit function of ρM0

(α) is

ρ(α) = lim
M0→∞

ρM0
(α) =

1

α

∫

B(t0,α)

var(f(v0, t) | z) dτ(t)

when α > 0, and

ρ(0) = lim
M0→∞

var(f(v0, t0) |y(M0)).

Therefore, if we assume that the limit function of ρM0
(α) is

continuous w.r.t. α and var(f(v0, t) | z) is continuous w.r.t. t,
then ρ(0) = limα→0 ρ(α) = var(f(v0, t0) | z), i.e.,

lim
M0→∞

var(f(v0, t0) |y(M0)) = var(f(v0, t0) | z). (21)

From (21) we know that, although var(f(v0, t0) |y(M0))
is random due to the randomness of S(M0), its limit
var(f(v0, t0) | z) is a deterministic quantity when M0 →∞.
In addition, it can be shown by Lemma D.3 that

var(f(v0, t0) | f(Q))

= var(f(v0, t0) | z) + var(E[f(v0, t0) | z] | f(Q))

≥ var(f(v0, t0) | z),

for arbitrary finite set Q⊂ JS . Therefore, according to (21),
var(f(v0, t0) | f(Q)) can always serve as an upper bound
for var(f(v0, t0) |y(M0)) when M0 is large enough. Since
Q is finite, var(f(v0, t0) | f(Q)) may be numerically com-
puted. In contrast, We note that the quantities in (20) in-
volve the pseudo-inverse of a possibly infinite-rank operator
(cf. Lemma D.5), which may be difficult to numerically com-
pute. Consider the case when Q=Nd(v0)× {t0} where d ∈ N

is the number of neighborhood hops. Let Nd := |Nd(v0)|. For
simplicity, we introduce the following notations:

kG(v0,Nd) := (kG(v0, v))v∈V\{v0} ∈ R
Nd

KG(Nd,Nd) := (kG(u, v))u,v∈V\{v0} ∈ R
Nd×Nd

l(v0, d) := kG(v0, v0)

− kG(v0,Nd)T KG(Nd,Nd)
−1kG(v0,Nd),

so that

var(f(v0, t0) | f(Q)) = kT (t0, t0)l(v0, d).

To provide an explicit upper bound for (18), we derive an
asymptotic bound with a convergence rate for the posterior
variance which is locally computable.

Theorem 3: Suppose T is a compact subset of R
D whose

boundary set has measure zero, and t0 is an interior point of
T . Suppose kT is Lipschitz continuous on T . Let d ∈ N+.
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For any arbitrary c0 ∈ (0, 1) we have

var(f(v0, t0) |y(M0))≤ kT (t0, t0)l(v0, d)

+ (C1c
−1
0 + C2c

2
0)M

− 1
3D+1

0

+ C3c0M
− 2

3D+1

0 (22)

with probability at least
⎛

⎝1− 1

2

1

(1− c0)2CDM
1

3D+1

0

⎞

⎠
Nd

. (23)

Proof: As the proof is tedious and technical in nature, it is
provided in Section SIII in the supplementary.

We note that when kT is RBF kernel, kT (t0, t0)l(v0, d)
only depends on the graph structure. In other words, if we are
allowed to select a subset of vertices V ′ ⊂ V to recover the
signal on v0, then it is preferred that the subgraph with vertex set
V ′ ⋃{v0} has a small l(v0, d). Theorem 3 indicates a trade-off
between the quality and confidence of the upper bound (22).
From the proof of Theorem 3, when the number of samples
in a small neighborhood of every (v, t0) ∈ Nd(v0)× {t0} is
larger than a threshold m0, the conditional variance of f(v0, t0)
given these samples is approximately var(f(v0, t0) | f(Q)).
However, the probability that this event happens is smaller
when we require more vertices to at least m0 samples in their
neighborhoods. This explains why the probability lower bound
(23) decreases as Nd increases. On the other hand, for a fixed
(v0, t0), a larger Nd(v0) indicates a better asymptotic upper
bound for var(f(v0, t0) |y(M0)), i.e, l(v0, d) decreases with a
larger Nd(v0). This is because l(v0, d) is a conditional variance
of a Gaussian random variable by definition, and it is known that
when we condition on a larger set of Gaussian random variables,
the variance decreases [39, Lemma 9].

V. NUMERICAL EXPERIMENTS

In this section, we conduct experiments to illustrate the the-
ory and methods of the KRR-GGSP approach. In the experi-
ments, T is an interval, and the target signal is a function on
V × T . In the datasets, the target signal is downsampled on
every vertex. We aim to reconstruct the target signal from the
randomly selected samples with additive noise. We compare the
following algorithms in the experiments:

1) KRR-GGSP. We reconstruct the signal using (5) with the
tensor product kernel (3). We set KG = a(L− λNI)2 +
bI such that

a(λ1 − λN )2 + b= 1, (24)

and 0≤ b≤ 1 is a tunable parameter. This parameter
setting ensures that 1 = r(λ1)≥ · · · ≥ r(λN ) = b (cf.
(4)). We set kT to be the RBF kernel kT (s, t) =
exp(−|s− t|2/βscale), where βscale is a tunable
parameter.

2) Isolated KRR. We recover the signal on each vertex
separately using KRR (cf. (36) and (8)). In Section III,
we have shown that this method is equivalent to using
KG = I in KRR-GGSP, i.e., fixing b= 1 in (24).

3) GTRSS. We recover the signal using (13), where μTV, α
and β are tunable parameters.

4) Graph recurrent imputation network (GRIN). We imple-
ment this method using the Spatiotemporal library [40].

5) Bandlimited-GGSP. We recover the signal using (11),
where B′, B′′ and μ are tunable parameters. The eigen-
values r(λn) and γi in (11) are set to be 1.

A. ECoG Dataset

We test the reconstruction performance of KRR-GGSP on
an ECoG multivariate time series dataset.4 This dataset con-
tains measurements from 76 electrodes on an epilepsy patient
during both ictal and pre-ictal periods [41]. We make use of
the data from 2 ictal periods. Each period lasts 10 seconds
with a sampling rate of 400 Hz. Therefore, the dataset we
use is a 76× 8000 matrix. We use the last 320 time steps for
testing and the 160 time steps before the test set for training.
We add additive white Gaussian noise (AWGN) to the dataset
and randomly mask the data so that both training and test
sets are incomplete and noisy. We test the recovery perfor-
mances of KRR-GGSP, GTRSS, isolated KRR and GRIN on
this dataset.

Except for the isolated KRR method, all other methods rely
on a graph structure. To construct the graph, we first use the
isolated KRR to roughly reconstruct the unknown signal values
on 160 time steps in the training set, and then calculate the
correlation coefficients of these recovered data. We regard two
electrodes as connected if the correlation coefficients between
them are larger than 0.5. We set the edge weights to be the
correlation coefficients. For GRIN, the training set is used for
model training and validation. Besides the small training set
with 160 time steps, we also show its performance trained on
all available training data from the dataset, i.e., 7680 time steps.
For other methods, the training set is used for tuning parameters.
The recovery performance is measured by the relative error

E[(f(v, t)− f̂(v, t))2]

E[f(v, t)2]
. (25)

Similarly, we define the noise level to be

E[ε2]

E[f(v, t)2]
. (26)

The recovery results are shown in Fig. 4. We observe that
KRR-GGSP shows good recovery results and outperforms other
methods. Since KRR-GGSP has a tunable kernel in the time do-
main, it shows better performance than GTRSS. This effect can
be better observed in Section V-B. The isolated KRR method
has a tunable kernel, but it is not able to take advantage of the
graph structure, hence is outperformed by KRR-GGSP. Here,
we show the performance of GRIN trained with 7680 time
steps. We remark that the deep learning method GRIN requires a
sufficiently large training set to obtain reasonable results. When
the training set is as small as 160 time steps, GRIN does not
yield reasonable reconstruction results. Since the bandlimited-
GGSP method does not have comparable performances with

4https://math.bu.edu/people/kolaczyk/datasets.html

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on May 12,2024 at 02:44:58 UTC from IEEE Xplore.  Restrictions apply. 

https://math.bu.edu/people/kolaczyk/datasets.html


JIAN et al.: KERNEL BASED RECONSTRUCTION FOR GENERALIZED GRAPH SIGNAL PROCESSING 2317

Fig. 4. Comparison of different reconstruction methods on ECoG dataset.
Each point in the figure is obtained by 20 repetitions.

the other methods (when noise level = 0.01 and missing value
probability = 0.5, its imputation error is 0.28), we do not show
its performance here.

B. Intel-Lab Temperature Data

We test the reconstruction performance of KRR-GGSP on
the Intel lab temperature dataset illustrated in Fig. 1. In this
experiment, we use the data from the first and second days.
Since there are 86400 seconds in a day, the entire dataset we
use is a 54× 172800 matrix. Here we remark that since the
sampling rate of each sensor is much smaller than 1 Hz and
not uniform, only 1.93% of the entries are non-null. Therefore,
this dataset is very sparse. We identify the temperature records
outside the upper 99.92% quantile and lower 0.001% quantile
as outliers and discard them. We subtract the mean value of
all observed temperature records from the dataset. We treat
each sensor as a vertex and construct a 5-NN graph using their
locations. We use half of the first day’s records for training and
the second day’s for testing. As in Section V-A, we add AWGN
to the data and assign a random mask. In this experiment, the
noise energy is set to be 5% of the signal energy. We compare
the methods as described in Section V-A with performance
measurement (25).

Fig. 5. Reconstruction error under different proportions of samples to be
used for reconstruction. Each point in the figure is obtained by 10 repetitions.

From the result in Fig. 5, we observe that KRR-GGSP
outperforms the isolated KRR and bandlimited-GGSP. This
indicates that by utilizing infinitely many features, the recon-
struction performance can be improved. On this dataset, GRIN
and GTRSS fail to yield reasonable results. For example, when
the observation ratio is 0.15, GTRSS has relative MSE around
0.8, and GRIN has relative MSE around 1.0. For GRIN, this is
mainly due to the sparsity of the available data in the dataset.
For GTRSS, this is due to the improper prior assumption on
the dataset.

C. COVID-19 Case Prediction

We use the online reconstruction method in Section III-C to
predict COVID-19 cases using only historical data. We use the
data from The New York Times, based on reports from state
and local health agencies5. From this dataset, we retrieve the
records from California’s 58 counties, starting from the first
day when all counties have cases reported so that there are 886
days in total. We treat each county as a vertex and connect
them if they are adjacent geographically. We set the datastream
and prediction rule as follows: on each date t, we randomly
choose a subset of vertices VS = {v1, . . . , vQ} ⊂ V such that
the learner is assumed to have access to y(VS × {t}). Besides,
for each date t, the sample points {(vi, t, y(vi, t))} are observed
sequentially, one datum at a time.

We compare the online KRR-GGSP with several existing
online and distributed reconstruction methods. The implemen-
tation details are the following:

1) Online KRR-GGSP. For each (vi, t) ∈ VS × {t}, we first
calculate the prediction f̂RFF(vi, t). Then we compute the
error êi = y(vi, t)− f̂RFF(vi, t), and update the predic-
tor by (17). Then for each (vj , t) ∈ Vc

S × {t}, we also
make predictions and compute the error, but will not
update the predictor since the learner is not supposed
to have access to the observations on them. We set
KG = g(L)2, where g is a polynomial of degree one
such that g(λ1) = 1, g(λN ) = 0.4. We let kT (s, t) =

5https://github.com/TorchSpatiotemporal/tsl
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Fig. 6. Prediction error under different proportions of vertices to be sampled
for learning. Each point in the figure is obtained by 10 repetitions.

exp(−(s− t)2/βscale), where βscale is an adjustable pa-
rameter. We set the dimension of z(t) to be 60.

2) Online isolated KRR. This is implemented by letting
KG = I in the online KRR-GGSP method.

3) Online GTRSS. This method is a generalization of [14,
(35)], by replacing L with (L+ αI)β . Let f̂ lt ∈ R

N be the
estimation of ft = (y(1, t), . . . , y(N, t))T after observing
l samples on date t. The samples are denoted by yl

t ∈
R

N such that the unobserved entries are zero. We write
ml

t to denote the mask after observing l samples on date
t. Let f̂t−1 be the estimation of ft−1 after observing all
available samples on date t− 1. Then the update rule goes
as follows:

f̂ lt = f̂ l−1
t − μ(ml

t � f̂ l−1
t − yl

t)

− μλ(L+ αI)β(f̂ l−1
t − f̂t−1). (27)

When the l + 1-th sample arrives, we evaluate the er-
ror êl+1 = y(vl+1, t)− f̂(vl+1, t), where f̂(vl+1, t) is the
vl+1-th entry of f̂ lt . λ, μ, α and β are adjustable parame-
ters in this method.

We show the best performance of the methods with different
parameters in Fig. 6. The error measurement is (25). We observe
that the online KRR-GGSP method outperforms other online
and distributed methods. We also tested the ARMA method
on each vertex, but due to the missing values, it usually fails
to converge and yields unstable results. For example, when
the proportion of observed vertices is 80%, the ARMA(2, 0, 2)
model fails to converge on about 29% vertices, and the predic-
tion error on each vertex varies from 0.004 to 665× 104.

VI. CONCLUSION

In this paper, we devised a signal reconstruction approach for
GGSP, yielding a predictor that can be computed in a distributed
fashion. We interpreted this approach in both deterministic and
Bayesian aspects and cast it as an extension of existing frame-
works. In the former case where the signal is a deterministic
function, we showed that the approach imposes smoothness on
the reconstructed signal. In the latter case, the signal is regarded
as a GP, and we analyzed its moments. By utilizing RFF, the

reconstruction approach can be implemented online, and the
evaluation is still distributed.

We provided statistical analysis on the predictor. Under the
uniform exclusive sampling scheme, we derived the limit of
the posterior variance and provided a numerically computable
upper bound for it. We verified the KRR-GGSP approach by
numerical experiments. By testing KRR-GGSP against existing
methods on real datasets, we validated that introducing the
graph structure and the product kernel improves reconstruc-
tion performance.

APPENDIX A
PRELIMINARIES: GGSP

In GSP theory, typical choices of the GSO are the adjacency
matrix, Laplacian matrix L, and their normalized versions.
We assume a normal GSO denoted as AG. Let AG =ΦΛΦᵀ be
the eigendecomposition of AG, where Φ= [φ1, . . . ,φN ] con-
sists of orthonormal eigenvectors and Λ= diag(λ1, . . . , λN ).
Without loss of generality, we assume that {λi} is indexed
in increasing order of the graph frequencies, i.e., φN is the
eigenvector with the highest frequency. The GFT is then defined
as the Euclidean inner product with the orthonormal basis Φ,
i.e., the operator Φᵀ. In GGSP, due to the additional structure
in H, we further assume a shift operator (compact linear trans-
formation) AH on H. The shift operator S on R

N ⊗H is then
defined as S :=AG ⊗AH. In L2(J ), S operates as follows:

S : L2(J )→ L2(J )

f(v, t) 
→ S(f)(v, t) =

N∑

n=1

AG(v, n)AH(f(n, ·))(t),

Suppose we are given a complete orthonormal basis
{ψi : i≥ 1} ⊂ L2(T ). On the space L2(J ), the JFT is defined
as follows: for n= 1, . . . , N and i≥ 1,

Fn,i : L
2(J )→ R

f 
→
N∑

n′=1

∫

T
f(n′, t)φn(n

′)ψi(t) dτ(t), (28)

where φn(n
′) is the n′-th element of φn. Using the JFT, the

signal is decomposed in the joint frequency domain indexed by
{(n, i) : n= 1 . . . , N, i≥ 1}.

APPENDIX B
PRELIMINARIES: RANDOM ELEMENTS

In order to analyze the case where f is a stochastic process
indexed by (v, t), we model f as a random element [32], [42],
[43]. Consider a probability space (Ω,F , μ) where F stands
for its σ-algebra, and a real separable Hilbert space H with its
norm-induced Borel σ-algebra B. A random element is defined
as a measurable map w : Ω 
→ H, which induces a probability
measure P on (H,B) given by

P(B) = μ(w−1(B)), ∀B ∈ B.
Assume that E[‖w‖]<∞. The mean of w is defined as the
element mw ∈H such that

〈mw,h〉= E[〈w,h〉], ∀h ∈H.
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Assume that E[‖w‖2]<∞. The covariance of w is defined as
the operator Cww on H such that

〈Cwwh,h′〉= E[〈w −mw,h〉〈w −mw,h′〉], ∀h,h′ ∈H.

In this paper we alternatively write mw and Cww as E[w]
and cov(w). It can be shown that cov(w) is always compact,
self-adjoint, positive semi-definite and trace-class [43, Theo-
rem 7.2.5]. For a pair of random elements (w1,w2) : Ω→
H1 ×H2 which satisfies E[‖(w1,w2)‖2]<∞, their cross-
covariance operator is defined as the operator Cw1w2

:H2 →
H1 such that

〈Cw1w2
h2,h1〉= E[〈w1 − E[w1],h1〉〈w2 − E[w2],h2〉],

for all h1 ∈H1, h2 ∈H2. We alternatively write Cw1w2
as

cov(w1,w2). The mean element, covariance operator and
cross-covariance operator can be alternatively defined by
Bochner integral [43].

Let h1 ∈H1 and h2 ∈H2. We define h1 � h2 as the follow-
ing linear operator

h1 � h2 :H2 →H1

h 
→ 〈h,h2〉h1.

Note that h1 � h2 is in the space of Hilbert-Schmidt operators
from H2 to H1, which is a Hilbert space [43, Theorem 4.4.5].
Then Cw1w2

can be equivalently defined as E[(w1 −
E[w1])� (w2 − E[w2])]. The conditional expectation and
covariance of a random element are defined as follows [42,
Section II.4.1], [44]:

Definition B.1: Suppose the random element w takes values
in a separable Hilbert space H, E[‖w‖]<∞, and F ′ is a sub
σ-algebra of F . The conditional expectation of w w.r.t. F ′ is the
random element wcond ∈ F ′ such that E[‖wcond‖]<∞ and

E[wcondIA] = E[wIA], ∀A ∈ F ′, (29)

where IA is the indicator function on the set A. We de-
note wcond by E[w | F ′]. According to [42, Proposition 4.1],
E[w | F ′] always exists.

The conditional covariance is defined as

cov(w1,w2 | F ′)

= E[(w1 − E[w1 | F ′])� (w2 − E[w2 | F ′]) | F ′]

We write cov(w,w | F ′) as cov(w | F ′) for simplicity.
By the defining property (29) of conditional expectation it

can be shown that

〈E[w | F ′],h〉= E[〈w,h〉 | F ′],

〈E[w1 �w2 | F ′](h2),h1〉= E[〈w1,h1〉〈w2,h2〉 | F ′], (30)

for all h ∈H, h1 ∈H1, h2 ∈H2. From (30) we know that
E[w | F ′] is uniquely defined. Let F ′′ be a sub σ-algebra of
F ′. Like random variables, the random elements also satisfy
the property [42, Section II.4.1]:

E[E[w | F ′] | F ′′] = E[w | F ′′].

Let (I,FI , μI) be a σ-finite measure space. The stochastic
process {f(ω, ξ) : ω ∈ Ω, ξ ∈ I} can be modeled as a random
element if it satisfies regularity conditions:

Theorem B.1: [45, Theorem 2] Suppose
1) f is a μ× μI-measurable stochastic process.
2) the paths of f are in L2(I).
Then the map

Ω→ L2(I)
ω 
→ f(ω, ·) (31)

is a random element with mean element E[f(ξ)] ∈ L2(I). Its
covariance operator Cf is the integral operator with kernel
cov(f(ξ1), f(ξ2)). Specifically, if f is GP, then (31) is a Gaus-
sian random element, i.e., composing any linear functional with
it will yield a Gaussian random variable.

If we further assume that I is a compact metric space
and μI is a strictly positive Borel measure, and the function
cov(f(ξ1), f(ξ2)) is continuous on I × I, then it can be shown
by Mercer’s theorem [35] that

tr(Cf ) =

∫

I
cov(f(ξ1), f(ξ2)) dμI . (32)

In this paper we will make use of the following theorem which
is more general than Theorem B.1. The proof of it is included
in Section S1 in the supplementary for completeness.

Theorem B.2: Suppose a stochastic process f satisfies condi-
tion 1 and condition 2 in Theorem B.1. F ′ is a sub σ-algebra of
the underlying probability space. Suppose f and E[f(ξ) | F ′] ∈
L2(Ω× I). Then

E[f | F ′] = E[f(ξ) | F ′], (33)

cov(f | F ′) : L2(I)→ L2(I),

g(·) 
→
∫

I
cov(f(ξ1), f(ξ2)|F ′)g(ξ2) dμI(ξ2).

(34)

Let var(f(ξ) | F ′) be the conditional variance of the random
variable f(ξ). If we further assume that I is a compact metric
space, and cov(f(ξ1), f(ξ2) | F ′) is continuous w.r.t. (ξ1, ξ2),
then we have

tr(cov(f | F ′)) = E[‖f − E[f | F ′]‖2 | F ′]

=

∫

I
var(f(ξ) | F ′) dμI(ξ). (35)

In the above formulas, the left-hand side (L.H.S.) are defined
by moments of f as a random element. The moments in R.H.S.
are defined pointwise, as functions on I or I × I.

In this paper, the index set I can be V × T or a subset of
V × T . We always assume that the conditions in Theorem B.1
are met for the stochastic processes in concern. In this case,
we call the stochastic process f as GRP [32]. In statistical
GSP, a random graph signal is said to be WSS if its covari-
ance commutes with AG [46], [47]. Analogously, in the GGSP
framework, a GRP f is said to be JWSS if its covariance
operator Cf commutes with S [32].

APPENDIX C
PRELIMINARIES: KRR RECONSTRUCTION AND

INTERPRETATION

KRR is a supervised learning approach that aims to learn a
map from X to Y where Y ⊂ R. Given a set of training inputs
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and outputs, it searches for the best fitting function in a RKHS.
Given a symmetric positive semi-definite kernel

k : X × X →Y
(x,x′) 
→ k(x,x′),

the associated RKHS Hk is defined as the Hilbert space satis-
fying [34, Definition 1]:

1) k(·,x) ∈Hk for all x ∈ X .
2) 〈g, k(·,x)〉Hk

= g(x) for all x ∈ X and g ∈Hk.
According to the Moore-Aronszajn theorem [34, Theorem 3],

there exists a unique Hilbert space Hk satisfying these condi-
tions. When X is a subset of Euclidean space, typical choices
for k include the polynomial kernel (k(x,x′) = (axᵀx′ + 1)b

with parameters a ∈ R, b ∈ N), linear kernel (polynomial kernel
with a= 1, b= 1), and RBF kernel (k(x,x′) is a function of
‖x− x′‖X ).

Given a training set {(xm, ym) : xm ∈ X , ym ∈ Y,m=
1, . . . ,M}, KRR searches for an optimal function in Hk to fit
the data by solving for

f̂ = argmin
f̃∈Hk

M∑

m=1

|f̃(xm)− ym|2 + μJ(‖f̃‖Hk
), (36)

where J(·) is an increasing function, and μ is a penalty weight.
The representer theorem [48, Theorem 4.2] states that the op-
timal solution to (36) takes the form

f̂ =

M∑

m=1

cmk(·,xm), (37)

where cm, m= 1, . . . ,M , are coefficients to be determined.
By substituting (37) into (36), the problem (36) becomes an
optimization over {cm}Mm=1. Specifically, when J(·) = (·)2,
problem (36) is quadratic and its solution is given by

(c1, . . . , cM )T = (K+ μIM )−1y, (38)

where K= (k(xi,xj))
M
i,j=1 ∈ R

M×M and y = (y1, . . . , yM )T .
In the sequel, we assume J(·) = (·)2 unless otherwise stated.
When k is chosen as the linear kernel, (36) is equivalent to
learning a linear function from X to Y , i.e., linear regression.

It is natural to consider whether we can recover any continu-
ous function pointwise to within arbitrary fidelity with a suffi-
ciently large number of samples by KRR. This is achievable by
employing a universal kernel k [49]. Let X be a Hausdorff topo-
logical space (e.g., R) and Z ⊂ X be a compact subset (e.g.,
[a, b]). Let C(Z) be the space of continuous functions on Z with
the supremum norm. Define K(Z) := span{k(·,x) : x ∈ Z},
where the closure is taken w.r.t. the norm in C(Z). The kernel k
is said to be universal if K(Z) = C(Z) for any compact Z ⊂ X .
In other words, span{k(·,x) : x ∈ Z} is dense in C(Z).

Problem (36) has a Bayesian interpretation. Consider a GP
w with mean function zero and covariance function k(x,x′),
denoted as w ∼ GP(0, k). Given the noisy observations ym =

w(xm) + εm, εm
i.i.d.∼ N (0, μ), the MAP estimator of w(x) is

f̂(x) as defined in (37) and (38) for any x ∈ X .
The readers are referred to [34], [50] for more detailed dis-

cussions on RKHS and KRR.

APPENDIX D
PROOF OF THEOREM 2

In order to prove Theorem 2, we introduce the following
definitions and lemmas. The proofs of the lemmas are included
in the supplementary for completeness.

Let x0 be the restriction of f on {v0} × T0, and Cx0 |y :=
cov(x0 |y(M0)). Note that (19) can be equally written as
tr(Cx0 |y) (cf. (32)). Based on this observation, we analyze the
asymptotic behavior of Cx0 |y.

We compute the covariance operators Czz and Czx0
for

later use:

Czz : L
2(JS)→ L2(JS)

g(·) 
→
∫

T

∑

u∈{v0}c

kG(v, u)kT (t, s)g(u, s) dτ(s),

Czx0
: L2(T0)→ L2(JS)

g(·) 
→
∫

T0

kG(v0, v)kT (t, s)g(v0, s) dτ(s). (39)

Define the integral operators

H : L2(T )→ L2(T )

g(·) 
→
∫

T
kT (t, s)g(s) dτ(s),

H0 : L
2(T0)→ L2(T )

g(·) 
→
∫

T0

kT (t, s)g(s) dτ(s).

Define KG,∗∗ as the submatrix of KG without the v0-th row
and the v0-th column. Let kG,0∗ be the v0-th column of KG

but without the v0-th entry. Then we have

Czz =KG,∗∗ ⊗H,

Czx0
= kG,0∗ ⊗H0. (40)

Lemma D.1: Suppose a sequence of operators {Cn} on a sep-
arable Hilbert space H, all of which are compact, self-adjoint,
positive semi-definite and trace-class. Suppose J is a bounded
linear operator from H to G, where G is also a separable Hilbert
space. If limn→∞ tr(Cn) = 0, then limn→∞ tr(JCnJ

∗) = 0.
Lemma D.2: Suppose w1 is a random element in H1, and w2

is a random element in H2. H1 and H2 are separable Hilbert
spaces. F ′ is a sub σ-algebra of the underlying probability
space. Suppose w2 ∈ F ′, then we have

E[w1 �w2 | F ′] = E[w1 | F ′]�w2,

E[w2 �w1 | F ′] =w2 � E[w1 | F ′].

Using Lemma D.2 we can simplify the definition of condi-
tional covariance operator as

cov(w1,w2 | F ′)=E[w1 �w2 | F ′]−E[w1 | F ′]�E[w2|F ′].

Lemma D.3: We have

Cx0 |y = E[cov(x0 | z) |y(M0)] + cov(E[x0 | z] |y(M0)).

Lemma D.4: LetCz |y be the conditional covariance operator
of z given y(M0). Then limM0→∞ tr(Cz |y) = 0 almost surely.
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Lemma D.5: The conditional expectation and covariance of
x0 given z are as follows:

E[x0 | z] = (C†
zzCx0z)

∗z,

cov(x0 | z) =Cx0
−Cx0zC

†
zzC

∗
x0z, (41)

where the operator C†
zzCx0z is bounded.

Proof of Theorem 2: We can rewrite Cx0 |y as follows:

Cx0 |y = E[cov(x0 | z) |y(M0)] + cov(E[x0 | z] |y(M0))

= cov(x0 | z) + cov(Cx0zC
†
zzz |y(M0))

= cov(x0 | z) +C†
zzCx0zCz |y(C

†
zzCx0z)

∗. (42)

The first equality holds by Lemma D.3. The second equality
holds by the fact that cov(x0 | z) is deterministic. By taking
trace and limit on (42) we have

lim
M0→∞

tr(Cx0 |y − cov(x0 | z))

= lim
M0→∞

tr(C†
zzCx0zCz |y(C

†
zzCx0z)

∗).

From Lemma D.1 and Lemma D.4 we know that the R.H.S.
tends to zero. By writing cov(x0 | z) as (41) and using (34) we
conclude the proof.
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