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ABSTRACT

In practice, Analog-to-Digital Converter (ADC) is used to perform
sampling. A practical bottleneck of ADC is its lower dynamic range,
leading to loss of information. To address this issue, researchers sug-
gested folding operation on the signal using a modulo operator be-
fore passing it as an input to ADC. Though this process preserves
the signal information, an unfolding algorithm is required to get the
true samples from the folded samples. Noise robustness and com-
putational time are two key parameters of an unfolding algorithm.
In this paper, we propose a fast and robust algorithm for unfolding.
Specifically, we first show that the first-order difference of the resid-
ual samples (the difference between the folded and true samples) is
sparse by deriving an upper bound on its sparsity, and can be recov-
ered from its partial Fourier measurements by formulating a sparse
recovery problem. We demonstrate that the proposed algorithm is
robust to noise and computationally efficient compared to the exist-
ing methods.

Index Terms— Sampling, modulo sampling, dynamic range,
LASSO, B2R2, unlimited sampling.

1. INTRODUCTION

Sampling plays a vital role in modern information processing sys-
tems. The Shannon-Nyquist theorem states that a Band-Limited
(BL) signal can be perfectly recovered from its equidistant samples
measured at or above the Nyquist rate, which is twice the maximum
frequency component of the signal [1]. Practically, sampling is per-
formed by an Analog-to-Digital Converter (ADC). A practical bot-
tleneck of an ADC is its dynamic range (DR) [−λ, λ]. Precisely,
if the given signal’s DR is beyond that of ADC’s, then the signal
is clipped, which is undesirable in many applications [2, 3, 4]. To
avoid clipping, ADC’s DR should be sufficiently high, leading to
high power consumption.

Modulo sampling is one of the well-known techniques used to
address the DR issue. In particular, whenever the signal’s amplitude
goes beyond [−λ, λ], a folding operation is performed using the non-
linear modulo operator such that the amplitude of the resultant folded
signal is within [−λ, λ]. Then the samples of the folded signal are
measured through a conventional ADC with low DR. Reconstruc-
tion algorithms are designed to operate on true samples. Thus, in
the context of modulo folding, an unfolding algorithm has to be ap-
plied to estimate true samples from the folded before reconstruction
[5, 6, 7, 8, 9]. In general, unfolding algorithms depend on the ADC’s
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DR, sampling rate of the signals, and noise levels. Hence, design-
ing a robust and computationally efficient unfolding algorithm that
operates close to the Nyquist rate is desirable.

Bhandari et al. [5, 6] proposed the so-called unlimited sampling
framework to recover the BL unfolded samples using Higher-Order
Differences (HODs) of the folded samples. This algorithm requires
a high sampling rate, approximately 2πe times the Nyquist rate,
where e denotes the Euler’s constant. The usage of HODs makes
the method sensitive to noise. Note that the problem of unfold-
ing is equivalent to phase unwrapping problem. Itoh’s algorithm is
the well-known phase unwrapping algorithm which is based on the
first-order difference of the phase-wrapped signal [10]. Hence, by
comparing with unlimited sampling in this paper, we are also com-
paring with a phase unwrapping approach. In [7], the authors pro-
posed a prediction-based algorithm and showed that perfect recov-
ery of finite-energy BL signals is possible by considering sampling
above the Nyquist rate. Specifically, for a given finite-energy BL sig-
nal, the authors used the fact that beyond a certain time instant, the
folded sample values are equal to the unfolded values, i.e., the resid-
ual samples, the difference between folded and unfolded samples,
form a finite-length vector. Recently, in [8, 9], the authors improved
upon [7] and proposed a robust recovery algorithm called B2R2.
The performance of B2R2 is good compared to the existing meth-
ods; however, it is computationally expensive. Precisely, the resid-
ual samples are recovered sample by sample in B2R2. Moreover, to
estimate each sample value, a constrained optimization problem is
formulated and solved using an iterative algorithm. Thus, we need
an algorithm that is robust, operates at a low sampling rate, and is
computationally efficient.

In this paper, we propose a fast and robust algorithm by formu-
lating the problem of recovering the finite-length residual samples as
a sparse recovery problem. The key observation of the algorithm is
that the first-order difference of the residual samples, denoted ẑ(n),
is sparse. Theoretically, we justify this by deriving an upper bound
on the number of non-zero elements in ẑ(n). As the first-order dif-
ference of the unfolded samples is also BL, we formulate a linear
inverse problem to estimate ẑ(n), using beyond the bandwidth fre-
quency information of f̂λ(n), where f̂λ(n) denotes the first-order
difference of the given folded samples. As ẑ(n) is sparse, we solve
the linear inverse problem using Least Absolute Shrinkage and Se-
lection Operator (LASSO). Thus, the proposed algorithm is called
LASSO-B2R2. We use the standard Iterative Soft-Thresholding Al-
gorithm (ISTA) to solve the LASSO optimization problem.

In [11], the authors proposed a recovery algorithm, known as
Fourier-Prony, for periodic BL signals, which also employs the first-
order difference of the residual samples. However, LASSO-B2R2

differs from Fourier-Prony, a spectral estimation-based method.
Fourier-Prony requires prior information about the number of fold-IC
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ing instants in the folded signal, which is not generally available.
Moreover, in the presence of noise, the algorithm uses a matrix
pencil method [12] with some tuning parameter, whose details are
not explored in [11]. Thus, we compare LASSO-B2R2 with the al-
gorithms proposed in [5, 6, 7, 8, 9]. Through simulation results, we
show that the performance of LASSO-B2R2 is better in comparison
with HOD and prediction-based methods; and is comparable with
B2R2. However, LASSO-B2R2 requires a lower computational
time in comparison with B2R2. To address the uncertainties oc-
curred in a hardware prototype, the authors in [13, 14, 15] proposed
a generalized model called modulo-hysteresis. However, this paper
deals with ideal modulo operator.

The paper is organized as follows. Section 2 introduces the prob-
lem. The upper bound on the sparsity of ẑ(n) is derived in section
3. The proposed LASSO-B2R2 algorithm is discussed in Section
4. Simulation results are presented in Section 5. Section 6 draws
conclusions.

We use the following notations throughout the paper. The space
of continuous time band-limited signals with bandwidth [−ωm, ωm]
is denoted by Bωm . The first-order difference operator of a signal
f(n) is f̂(n) = ∆f(n)1. Symbols R, R+, Z, denote the set of
real numbers, a set of all positive real numbers, and integers, re-
spectively. We use bold lowercase letters, e.g., z, for vectors, and
bold capital letters, e.g., V, for matrices. Symbols ||z||1, ||z||2, and
||z||∞ denote the l1-norm, l2-norm, and l∞-norm of z, respectively.
The spectral norm of a matrix V is written as ||V||2. Symbol L2(R)
denotes the space of square-integrable functions on R. For a given
x ∈ R and λ ∈ R+, the non-linear modulo operation, Mλ(.), is
defined asMλ(x) = (x+ λ) mod 2λ− λ. The cumulative sum of

x = [x1, . . . , xN ]T is y = [y1, . . . , yN ]T , where yk =
k∑

i=1

xi.

2. PROBLEM STATEMENT

Consider a signal f(t) ∈ L2(R) ∩ Bωm , whose amplitude is be-
yond the ADC’s dynamic range [−λ, λ]. In this case, we use mod-
ulo sampling to avoid clipping. In particular, before sampling, we
pass f(t) through a non-linear modulo operator such that the resul-
tant folded signal, fλ(t), is within the ADC’s dynamic range. The
folded signal is then uniformly sampled, which results in a sequence
fλ(nTs), n ∈ Z, where Ts is the sampling interval. The sampling
rate (in rad/sec) is given as ωs = 2π

Ts
= OF × 2ωm, where OF > 1

denotes the oversampling factor, and 2ωm is the Nyquist rate. Our
aim is to design a fast and robust algorithm that operates at a low OF
to recover the unfolded samples f(nTs) from the modulo (folded)
samples fλ(nTs). Hereafter fλ(nTs) and f(nTs) are denoted as
fλ(n) and f(n), respectively. Mathematically, the folded samples
can be decomposed as

fλ(n) = f(n) + z(n), n ∈ Z (1)

where z(n) ∈ 2λZ is the residual signal. From the decomposition,
we note that the problem of unfolding is equivalent to recovering the
residual samples z(n) from the folded samples. Hence, we focus on
designing an algorithm to determine the residual sequence.

To this end, we use the following time-domain decay property of
finite-energy BL signals. According to Riemann-Lebesgue lemma
[7], we can show that lim|t|→∞ f(t) = 0. This implies that the
folded/unfolded sample values are negligible beyond a certain time

1Here, while computing the first-order difference, we pre-append f(n)

with zero to get both f(n) and f̂(n) of the same length.

interval. Assume we have N samples within that time interval. Thus
we can treat z(n) as a finite N -length sequence. In practice, to
choose N , we follow a two-step process: First, compute the energy
of the given fλ(n). Second, consider the number of samples (N )
that covers 98− 99% of that energy. Observe that the actual support
set of z(n), sayNλ ⊂ {0, · · · , N − 1}, could be much smaller than
N , i.e., f(n) = fλ(n),∀ n/∈Nλ. For instance, in Fig. 1, we consid-
ered a signal with N = 1024. In this case,Nλ consists of the values
between the interval (350, 670).

Applying the first-order difference operator on both sides of (1)
leads to

f̂λ(n) = f̂(n) + ẑ(n). (2)

As f̂(n) is also a band-limited signal with bandwidth [−ρπ, ρπ]
(or [0, ρπ] ∪ [2π − ρπ, 2π)), where ρ = 2ωm

ωs
= 1

OF , we can write
the following Discrete Fourier Transform (DFT) relation for ẑ(n):

F̂λ

(
e

j2πk
N

)
=

N−1∑
n=0

ẑ(n)e
−j2πkn

N ,
2πk

N
∈ (ρπ, 2π − ρπ). (3)

Here F̂λ(e
jω) denotes the discrete-time Fourier transform of f̂λ(n).

The above relation can be written in matrix form as[
F̂λ

]
M×1

= [V]M×N [ẑ]N×1, (4)

where Vk,n = e
−j2πkn

N , M denotes the number of discrete frequen-
cies k that belong to (ρπ, 2π − ρπ) and M < N .

Our aim is to solve the above linear inverse problem to estimate
ẑ. From ẑ one can easily recover z using the cumulative sum oper-
ator. Note that here we formulated the linear inverse problem using
(2). Whereas, in [8, 9], a linear inverse problem is formulated using
(1) and solved by formulating a constrained optimization problem
that estimates z sample by sample. In the next section, we first show
that ẑ is a sparse vector by deriving an upper bound on the sparsity
of ẑ. We then formulate the problem of estimating ẑ as a sparse
recovery problem.

3. SPARSITY OF FIRST-ORDER DIFFERENCE OF THE
RESIDUAL SAMPLES

The main idea behind the proposed algorithm is using the fact that ẑ
in (4) is sparse. A typical ẑ is depicted in Fig. 1(c). Observe that ẑ
is a sparse signal. To show that it is always sparse, we now find an
upper bound on the number of non-zero values in ẑ

Generally, the non-zero value at an index in ẑ represents the
(2Z + 1)λ level-crossing in f(t) or 2λZ level jump in z(t). Let
ẑ be an L-sparse vector. To find an upper bound on L, we first
truncate f(t) to T = NTs and denote it as f̃(t). Since f(t) ∈
Bωm , f̃(t) ∈ B(ωm+∆ω), here ∆ω is due to the spectral leakage
that occurred by the process of truncation. Note that, beyond T , f(t)
has negligible energy and f(t) = fλ(t). Hence, we approximate the
bandwidth of f̃(t) to [−ωm, ωm]. We then construct a T -periodic
signal, fp(t) =

∑
l∈Z f̃(t − lT ). The Fourier series coefficients,

Fp(k), of fp(t) satisfies

fp(t) =
K∑

k=−K

Fp(k)e
−jkω0t, (5)

where ω0 = 2π
T

and K = ⌊ωm
ω0
⌋ = ⌊ N

2OF⌋.
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Fig. 1. (a) Samples of a band-limited signal f(n) with OF = 6 and
λ = 0.25, and the corresponding modulo signal fλ(n). (b) Residual
signal, z(n) = fλ(n)−f(n). (c) First-order difference of the resid-
ual signal. The samples between [300, 750] are displayed for better
visibility.

Equation (5) is a trigonometric polynomial of order K. We
know that a trigonometric polynomial q(t) of order K over a pe-
riod T has a maximum of 2K level-crossings for level l, where
|l| ≤ ||q(t)||∞ [16]. Moreover, the number of (2Z + 1)λ level-

crossings (the folding levels) in f(t) are 2+2
⌊

||fp(t)||∞−λ

2λ

⌋
. There-

fore, the number of times, say L̃, that fp(t) crosses the (2Z + 1)λ
levels is upper bounded as

L̃ ≤
(
2 + 2

⌊ ||fp(t)||∞ − λ

2λ

⌋)
2K. (6)

This implies that the number of (2Z+1)λ level-crossings in f(t) or
2λZ level jumps in z(t) is bounded as

L̃ ≤ 4K + 4K

⌊
||f(t)||∞ − λ

2λ

⌋
. (7)

From the above analysis and using the fact that ẑ is an N -length
vector, we can bound the sparsity of ẑ as

L ≤ min

(
4K + 4K

⌊
||f(t)||∞ − λ

2λ

⌋
, N

)
. (8)

For example, assume that the maximum value of f(t) is normalized
to 1 and N = 1024. Table 1 shows the upper bound on L for differ-
ent λ values of a particular OF. From Table 1, we draw the following
conclusions: For moderate λ and OF values, ẑ is sparse. A lower
λ value increases the L value, and a higher OF value decreases the
bound on L. In practice, the value of L is far less than its upper
bound. For instance, we have N = 1024, OF = 6, and λ = 0.25
for the signal depicted in Fig. 1(c). In this case, the actual L is equal
to 36, which is far less than its theoretical upper bound value of 680.
An intuitive reason for this huge difference is that the actual support
of z, i.e.,Nλ is much smaller than N .

OF = 4 OF = 6 OF = 8

λ 2K
Upper

bound on
L

2K
Upper

bound on
L

2K
Upper

bound on
L

0.75 256 512 170 340 128 256

0.5 256 512 170 340 128 256

0.25 256 1024 170 680 128 512

0.05 256 1024 170 1024 128 1024

Table 1. Upper bound on L for λ and OF values.

4. LASSO-B2R2 ALGORITHM

With the observation on the sparsity of ẑ, we formulate the problem
of estimating ẑ in equation (4) as a LASSO problem:

min
ẑ

1

2
||F̂λ −Vẑ||22 + γ||ẑ||1, (9)

where γ is a regularization parameter. We solve this optimization
problem using the well-known ISTA [17]. In particular, the update
of ẑ at the (i+ 1)th iteration is

ẑ(i+1) = Sγτ

(
ẑ(i) − τVH

(
Vẑ(i) − F̂λ

))
.

Here τ is the step size and Sγτ (.) is the soft-thresholding operator,

Sγτ (x) = sign(x)max (|x| − γτ, 0) .

As suggested in [17], for convergence we initialize γ = 0.1||VHF̂λ||∞
and τ = 1

||V||22
. Similar to B2R2, in this work also, we are using

beyond the bandwidth frequency information to recover the residual
samples by formulating a LASSO problem. Thus, we call this al-
gorithm LASSO-B2R2. The summary of the proposed algorithm is
presented in Algorithm 1.

Algorithm 1 LASSO-B2R2 Algorithm
1: Input: fλ(n), λ, ρ, maxItr ▷ maxItr denotes the maximum

number of iterations
2: Compute N
3: Construct [V]M×N using (4)
4: Compute F̂λ(e

j2πk
N ), ∀ k ∈ Z and 2πk

N
∈ (ρπ, 2π − ρπ)

5: Initialize: γ = 0.1||VHF̂λ||∞, τ = 1
||V||22

, maxItr = 1000,

and ẑ(0) ∈ N (0, 1)
6: for i = 0 : maxItr do
7: ẑ(i+1) = Sγτ

(
ẑ(i) − τVH

(
Vẑ(i) − F̂λ

))
8: if ||ẑ(i+1) − ẑ(i)||2 < 10−4 then
9: ẑ = ẑ(i+1)

10: exit
11: end if
12: end for
13: ẑ← ⌈ ⌊ẑ/λ⌋

2
⌉ ▷ Rounding the residual to 2λZ

14: z← cumsum(ẑ) ▷ Cumulative summation operator on ẑ
15: f(n)← fλ(n)− z(n)
16: Output: f(n)

5. SIMULATION RESULTS

In this section, we compare the performance of the proposed algo-
rithm with HOD-based [5], [6], prediction-based [7], and B2R2 [8]
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Fig. 2. Average NMSE vs SNR and average time vs SNR for OF= 4
and OF= 6 with λ = 0.25.

algorithms. First, we compare the performance in terms of robust-
ness. The given fλ(n) (with certain OF and λ values) is added to
the noise of a particular Signal to Noise Ratio (SNR) value. Here,
noise follows the Gaussian distribution with mean zero and variance
v, where v is computed using the given SNR value. We then apply
different algorithms to estimate f(n). Let f̄(n) be the estimated un-
folded signal using a particular algorithm. The Normalized Mean
Square Error (NMSE) is computed as NMSE =

||f(n)−f̄(n)||22
||f(n)||22

. The
average NMSE is computed by repeating this process for 250 inde-
pendent and identically distributed noise realizations. Fig. 2(a) and
Fig. 2(b) depict the average NMSE results obtained by varying SNR
from 0 to 25 dB, for OF= 4 and OF= 6, respectively. Fig. 2(c)
and Fig. 2(d) depict the average time (again averaged over 250 noise
realizations for a fixed SNR value) required by each algorithm for
estimating the true unfolded signal. Note that for the simulations in
this section, we considered signals with N = 1024 and the maxi-
mum amplitude value of each signal is normalized to 1. Simulations
are executed using python version 3.9 on AMD Ryzen 7 3700x 8-
core processor with 16 GB RAM. From these results, we conclude
that the LASSO-B2R2 is more robust in comparison with the HOD-
based and prediction-based methods, and it requires slightly higher
computational time. The robustness of LASSO-B2R2 is comparable
with B2R2, but it requires a lower computational time. In B2R2, we
recover z(n) sample by sample. In particular, to estimate a sample
value, we solve a constrained optimization problem using an iterative
algorithm, and this process is repeated for all the samples in z(n).
In contrast, using LASSO-B2R2, we recover the complete residual
signal.

Next, we compare the performance of LASSO-B2R2 in terms
of the required OF value. Here we considered the modulo signal
with a particular SNR value and λ = 0.25. For each OF value, we
generated 250 signal realizations and computed the average NMSE.
Fig. 3(a) and Fig. 3(b) depict the average NMSE results obtained by
varying the OF values from 2 to 22, for SNR values 5 dB and 10 dB,
respectively. From these results, we conclude that LASSO-B2R2

requires a lower OF value compared with higher-order difference
and prediction-based methods, whereas it is comparable with B2R2.
Uniqueness guarantees: According to compressed sensing theory
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Fig. 3. Average NMSE vs OF for SNR= 5 dB and SNR= 10 dB.

Fig. 4. (a)-(b) Average NMSE and average L for different OF and λ
pair values, respectively.

[18, 19, 20], if M > CL log
(
N
ϵ

)
, then ẑ be the unique solution

to the LASSO problem formulated in (9) with probability at least
1− ϵ, where C is a constant. This implies that for a unique solution,
M must satisfy the following condition: CL log

(
N
ϵ

)
≤ M < N.

Here, the parameters M and L are controlled by the values of OF and
λ, respectively. For example, in the above analysis, with N = 1024
and λ = 0.25, the number of discrete frequencies, for OF = 6, that
are within [0, ρπ] ∪ [2π − ρπ, 2π) are 170, i.e., 2K = 170, this
implies M = N − 2K = 854. Assume C = 1 and ϵ = 10−4,
then ⌊CL log

(
N
ϵ

)
⌋ = 581 < M . As noted earlier, the smaller the

λ, the less sparse the ẑ will be. Hence, sufficient oversampling is
required to satisfy the above condition; the same can be observed in
Fig 4. Fig. 4(a) and Fig. 4(b) depict the average NMSE and the
corresponding average L, respectively, for different OF and λ pairs.
Here, for each OF and λ pair, the average NMSE and average L
are computed by using 100 signal realizations. For low λ values, we
observed that the non-zero values in ẑ are forming groups. Thus, one
may address this oversampling issue by formulating the problem of
residual signal recovery as a group LASSO or sparse group LASSO.

6. CONCLUSION

In this work, we proposed a fast and robust algorithm to recover the
residual signal in modulo sampling. In the process, we have initially
shown that the residual signal’s first-order difference is a sparse vec-
tor by deriving an upper bound on its sparsity. Then, the problem
of recovering the residual signal is formulated as a sparse recovery
problem. Precisely, we formulated a LASSO problem and solved it
by using the ISTA algorithm. Through simulations, we demonstrated
that the proposed algorithm is fast and robust compared to existing
methods.
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