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Abstract—The need to recover high-dimensional signals from
their noisy low-resolution quantized measurements is widely en-
countered in communications and sensing. In this paper, we fo-
cus on the extreme case of one-bit quantizers, and propose a
deep detector entitled LoRD-Net for recovering information sym-
bols from one-bit measurements. Our method is a model-aware
data-driven architecture based on deep unfolding of first-order
optimization iterations. LoRD-Net has a task-based architecture
dedicated to recovering the underlying signal of interest from the
one-bit noisy measurements without requiring prior knowledge of
the channel matrix through which the one-bit measurements are
obtained. The proposed deep detector has much fewer parameters
compared to black-box deep networks due to the incorporation
of domain-knowledge in the design of its architecture, allowing
it to operate in a data-driven fashion while benefiting from the
flexibility, versatility, and reliability of model-based optimization
methods. LoRD-Net operates in a blind fashion, which requires ad-
dressing both the non-linear nature of the data-acquisition system
as well as identifying a proper optimization objective for signal
recovery. Accordingly, we propose a two-stage training method
for LoRD-Net, in which the first stage is dedicated to identifying
the proper form of the optimization process to unfold, while the
latter trains the resulting model in an end-to-end manner. We
numerically evaluate the proposed receiver architecture for one-bit
signal recovery in wireless communications and demonstrate that
the proposed hybrid methodology outperforms both data-driven
and model-based state-of-the-art methods, while utilizing small
datasets, on the order of merely ∼ 500 samples, for training.

Index Terms—Model-based deep learning, deep unfolding,
machine learning, massive MIMO, low-resolution signal
processing, one-bit quantization.
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I. INTRODUCTION

ANALOG-TO-DIGITAL conversion plays an important
role in digital signal processing systems. While physical

signals take values in continuous-time over continuous sets, they
must be represented using a finite number of bits in order to
be processed in digital hardware [2]. This operation is carried
out using analog-to-digital converters (ADCs), which typically
perform uniform sampling followed by a uniform quantization
of the discrete-time samples. When using high-resolution ADCs,
this conversion induces a minimal distortion, allowing to ef-
fectively process the signal using methods derived assuming
access to the continuous-amplitude samples. However, the cost,
power consumption and memory requirements of ADCs grow
with the sampling rate and the number of bits assigned to
each sample [3]. Consequently, recent years have witnessed an
increasing interest in digital signal processing systems operat-
ing with low-resolution ADCs. Particularly, in multiple-input
multiple-output (MIMO) communication receivers, which are
required to simultaneously capture multiple analog signals with
high bandwidth, there is a growing need to operate reliably with
low-resolution ADCs [4]. The most coarse form of quantization
is reduction of the signal to a single bit per sample, which may be
accomplished via comparing the sample to some reference level,
and recording whether the signal is above or below the reference.
One-bit acquisition allows using high sampling rates at a low cost
and low energy consumption. Due to such favorable properties of
one-bit ADCs, they have been employed in a wide array of appli-
cations, including in wireless communications [1], [5], [6], radar
signal processing [7]–[9], and sparse signal recovery [10], [11].

The non-linear nature of low-resolution quantization makes
symbol detection a challenging task. This situation is signif-
icantly exacerbated in practical one-bit communication and
sensing where the channel is to be estimated in conjunction with
symbol detection. A coherent symbol detection task is concerned
with recovering the underlying signal of interest from the one-bit
measurements assuming the channel state information (CSI) is
known at the receiver. On the other hand, the more difficult task
of blind symbol detection, which is the focus here, carries out
recovery of the underlying transmitted symbols when CSI is not
available.

Two main strategies have been proposed in the literature to
facilitate operation with low-resolution ADCs: The first designs
the overall acquisition system in light of the task for which
the signals are acquired. For instance, MIMO communication
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receivers acquire their channel output in order to extract some
underlying information, e.g., symbol detection. As the analog
signals are not required to be recovered from their digital
representation, one can design the acquisition system to reliably
infer the desired information while operating with low resolution
ADCs [12]–[16]. Such task-based quantization systems rely on
pre-quantization processing, which requires dedicated hardware
in the form of hybrid receiver architectures [17], [18] or unique
antenna structures [19], [20], which are configured along with
the quantization rule.

An alternative approach to task-based quantization, which
does not require additional configurable analog hardware and
is the focus of the current work, is to recover the desired infor-
mation from the distorted coarsely discretized representation of
the signal in the digital domain. The main benefit of schemes
carried out only in the digital domain is their simplicity of im-
plementation, as they do not require to introduce modifications
to the quantization system and circumvent the need for adding
pre-quantization analog processing hardware. In the context of
MIMO systems, various methods have been proposed in the
literature for channel estimation and signal decoding from quan-
tized outputs, including model-based signal processing methods
as surveyed in [21], as well as model-agnostic systems based on
machine learning and data-driven techniques [22]–[29].

Most existing model-based detection algorithms require co-
herent operation, i.e., they rely on prior knowledge of the
CSI and other system parameters. Among these works are the
near-Maximum Likelihood (nML) detector proposed for one-bit
MIMO receivers in [30], the linear receivers studied in [31], [32],
and the message passing based detectors considered in [33], [34].
The fact that such approaches require accurate CSI led to several
works specifically dedicated to CSI estimation in the presence of
low-resolution ADCs. These include [30], [35], which studied
maximum-likelihood estimation for recovering the CSI in the
presence of one-bit data, the works in [36], [37], which devel-
oped linear estimators for CSI estimation purposes in one-bit
MIMO systems, and [38] which focuses on sparse channels and
utilizes one-bit sparse recovery methods for CSI estimation.
However, all these strategies inevitably induce non-negligible
CSI estimation error, which may notably degrade the accuracy
in signal detection based on the estimated CSI.

Over the past several years, data-driven methods, and specif-
ically deep neural networks (DNNs), have attracted unprece-
dented attention from research communities across the board.
The advent of low-cost specialized powerful computing re-
sources and the continually increasing amount of massive data
generated by the human population and machines, along with
new optimization and learning methods, have paved the way
for DNNs and machine learning-based models to prove their
effectiveness in many engineering areas, such as computer vision
and natural language processing [39]. DNNs learn their mapping
from data in a model-agnostic manner, and can thus facilitate
non-coherent (blind) detection.

Previously proposed DNN-aided symbol detection tech-
niques for communication receivers can be divided based on
their receiver architectures; namely, those that utilize conven-
tional machine learning architectures for detection, including

[40]–[42], and schemes combining DNNs with model-based
detection methods, such as the blind DNN-aided receivers
proposed in [43]–[46] and the coherent detectors of [47], [48],
see also surveys in [49], [50]. In the context of one-bit DNN-
aided receivers, previous works to date focus mainly on the
first approach, i.e., applying conventional DNNs for the overall
detection task. Among these works are [22], [25] and [23],
which applied generic DNNs for channel estimation in one-
bit MIMO receivers. The application of conventional architec-
tures for symbol detection was studied in [24], [27] and [28],
while [26] showed that autoencoders can facilitate the design
of error correction codes for communications with one-bit re-
ceivers. Recently, the authors in [29] considered the problem
of symbol detection for a one-bit massive MIMO system and
proposed a linear estimator module based on the Bussgang
decomposition technique combined with a model-driven neural
network.

The vast majority of the aforementioned works on learning-
aided one-bit receivers rely on conventional DNN architectures.
Such DNNs require a massive amount of training samples and
must be trained on data from the same (or a similar) statistical
model as the one under which they are required to operate, im-
posing a major challenge in dynamic wireless communications.
In fact, the use of generic black-box DNNs is mostly justified in
applications where a satisfactory description of the underlying
governing dynamics of the system is not achievable, as is the case
in computer vision and natural language processing fields. As
surveyed above, this is not the case in the field of one-bit MIMO
systems. This gives rise to the need that is bridging the gap be-
tween data-driven and model-based approaches in this context,
and moving towards specialized deep learning models for signal
processing techniques in one-bit MIMO systems—which is the
aim of this work.

In this paper, we develop a hybrid model-based and data-
driven system which learns to carry out blind symbol detection
from one-bit measurements. The proposed architecture, referred
to as LoRD-Net (Low Resolution Detection Network), com-
bines the well-established model-based maximum-likelihood
estimator (MLE) with machine learning tools through the deep
unfolding method [51]–[56] for designing DNNs based on
model-based optimization algorithms. To derive LoRD-Net, we
first formulate the MLE for the task of symbol detection from
one-bit samples. Next, we resort to first-order gradient-based
methods for the MLE computation, and unfold the iterations
onto layers of a DNN. The resulting LoRD-Net learns to carry
out MLE-approaching symbol detection without requiring CSI.

Applying conventional gradient-based optimization methods
requires knowledge of the underlying system parameters, i.e.,
full CSI. Hence, a typical approach to unfold such a sym-
bol detection algorithm would be to estimate the unknown
parameters from training, and substitute it into the unfolded
network [46]. We show that instead of estimating the unknown
system parameters, it is preferable to learn an alternative channel
which allows the receiver to detect the symbols reliably. Surpris-
ingly, we demonstrate that the alternative channel learned by
LoRD-Net is in general not the true channel. Based on this ob-
servation, we propose a two-stage training procedure, comprised
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of learning the proper optimization process to unfold, followed
by an end-to-end training of the unfolded DNN.

The proposed LoRD-Net has thus the following properties:
i) Compared to the vanilla MLE symbol detector, our model

does not need to estimate the channel separately.
ii) Owing to its hybrid nature, it has low computational

cost in operation and is highly scalable, facilitating much
faster inference as compared to its black-box data-driven
and model-based counterparts.

iii) The proposed deep architecture is interpretable and has
far fewer parameters compared to existing black-box deep
learning solutions. This follows from the incorporation
of domain-knowledge in the design of the network archi-
tecture (i.e., being model-based), allowing LoRD-Net to
train with much fewer labeled samples as compared to
existing data-driven one-bit receivers.

We verify the above characteristics of LoRD-Net in an ex-
perimental study, where we show that training of the proposed
LoRD-Net architecture can be performed with far fewer sam-
ples as compared to its data-driven counterparts, and demon-
strate substantially superior performance compared to existing
model-based and data-driven algorithms for symbol detection in
massive MIMO channels with one-bit ADCs.

The rest of the paper is organized as follows. In Section II,
we present the considered system model and the correspond-
ing MLE formulation. In Section III, we derive LoRD-Net by
unfolding the first-order gradient iterations associated with the
MLE computation, and present its two-stage training procedure.
Section IV provides a detailed numerical analysis of LoRD-Net
applied to MIMO communications. Finally, Section V concludes
the paper.

Throughout the paper, we use the following notation. Bold
lowercase and bold uppercase letters denote vectors and matri-
ces, respectively. We use (·)T , Diag(·), and sign(·), and log{·}
to denote the transpose operator, the diagonal matrix formed by
the entries of the vector argument, the sign operator, and the
natural logarithm, respectively. The symbol � represents the
Hadamard product, while 1 and 0 are the all-one and all-zero
vectors/matrices. The i-th entry of the vector x is xi, and ‖x‖p
is the �p-norm of x; Mn is the n-ary Cartesian product of a
set M, and S+ denotes the cone of symmetric positive definite
matrices.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we discuss the considered system model. We
focus on one-bit data acquisition and blind signal recovery. We
then formulate the MLE for this problem, which is used in
designing the LoRD-Net architecture in Section III.

A. Problem Formulation

We consider a low-resolution data-acquisition system which
utilizesm one-bit ADCs. By lettingy ∈ Rm denote the received
signal, the discrete output of the ADCs can be written as r =
sign(y − b), where b ∈ Rm denotes the vector of quantization
thresholds, and sign(·) is the sign function, i.e., sign(x) = +1
if x ≥ 0 and sign(x) = −1 otherwise. The received vector y is

Fig. 1. System model illustration.

statistically related to the unknown vector of interestx ∈ Mn ⊆
Rn according to the following linear relationship:

y = Hx+ n, (1)

where n ∼ N (0,C) denotes additive Gaussian noise with a co-
variance matrix of the form C = Diag(σ2

0 , σ
2
1 , . . . , σ

2
m−1) with

diagonal entries{σ2
i }m−1

i=0 representing the noise variance at each
respective dimension, andH ∈ Rm×n is the channel matrix. We
assume that the elements of the unknown vector x are chosen
independently from a finite alphabet M = {s1, s2, . . . , s|M|}.
This setup represents low-resolution receivers in uplink multi-
user MIMO systems, where x is the symbols transmitted by the
users, and y is the corresponding channel output, as illustrated
in Fig. 1.

The overall dynamics of the system are thus compactly ex-
pressed as:

r = sign(Hx+ n− b). (2)

In the sequel, we refer toΘ = {H ,C} as the system parameters.
Note that the above system model can be modified using con-
ventional transformations to accommodate a complex-valued
system model.

Our main goal is to perform the task of symbol detection, i.e.,
recover x, from the collected one-bit measurements r. We focus
on blind (non-coherent) recovery, namely, the system parameters
Θ = {H ,C}, i.e., the channel matrix and the covariance of the
noise, are not available to the receiver. Nonetheless, the receiver
has access to a limited set of B labeled samples {xb

p, r
b
p}B−1

b=0 ,
representing, e.g., pilot transmissions. The quantization thresh-
olds of the ADCs, i.e., the vector b, are assumed to be fixed
and known. While we do not consider the selection of b in the
following, we discuss in the sequel how its optimization can be
incorporated into the detection method.

B. Maximum Likelihood Recovery

To understand the challenges associated with blind low-
resolution detection, we next discuss the MLE for recovering
x from r. In particular, the intuitive model-based approach is to
utilize the labeled data to estimate the system parameters Θ, and
then to use this estimation to compute the coherent (non-blind)
MLE. Therefore, to highlight the limitations of this strategy, we
assume here that the system parameters Θ = {H ,C} are fully
known at the receiver. Let

FΘ(x; r) � log Pr(r|x,Θ)
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Fig. 2. An illustration of the relation between the optimal point of a competitive
objective function (dashed blue line) and the true MLE x̂ML obtained by an
exact maximization of the log-likelihood objective function (solid black line)
over the discrete set M as well as an approximation of the MLE x̄Θ obtained
by a maximization of the log-likelihood objective function over the continuous
space R, when the true transmitted symbol is s3 ∈ M.

(a)
= −

m−1∑
i=0

log

{
Q

(
ri
σi

(
bi − hT

i x
))}

, (3)

represent the log-likelihood objective for a given vector of one-
bit observations r, where (a) is proven in [1], and hi represent
the i-th column of the matrix HT . The coherent MLE is then
given by

x̂ML(r) = argmax
x∈Mn

FΘ(x; r). (4)

Although the MLE in (4) has full accurate knowledge of
the parameters Θ, its computation is still challenging. The main
difficulty emanates from solving the underlying optimization
problem in the discrete domain, implying that the MLE requires
an exhaustive search over the discrete domain Mn, whose com-
putational complexity grows exponentially with n. A common
strategy to tackle the discrete optimization problem in (4) is
to relax the search space to be continuous. This results in the
following relaxed unconstrained MLE rule:

x̄Θ(r) = argmax
x∈Rn

FΘ(x; r). (5)

The optimization problem in (5) is convex due to the log-
concavity of Q(·), and thus can be solved using first-order
gradient optimization. In particular, the negative log-likelihood
function with respect to the unknown vector x can be compactly
expressed as [1]:

∇xFΘ(x; r) = HT R̃ η
(
R̃ (b−Hx)

)
, (6)

where η is a non-linear function defined as η(x) � Q′(x)

Q(x), in which the operator
 denotes the element-wise division
operation, Q′(x) is the derivative of Q(x), that is given by
the negative probability density function of a standard Normal
distribution, and R̃ = RC− 1

2 is the semi-whitened version of
the one-bit matrix R = Diag(r0, . . . , rm−1).

As x̄Θ(r) obtained via (5) is not guaranteed to take values in
Mn, the final estimate of the symbols is obtained by applying
a projection operator PMn : Rn �→ Mn to x̄(r). This operator
maps the continuous input vector onto its closest lattice point on

the discrete set Mn, i.e.,

PMn(x) = argmin
z∈Mn

‖z − x‖22. (7)

Tackling a discrete program via continuous relaxation, as done
in (5), is subject to an inherent drawback. As a case in point, one
can only expect x̄Θ(r) to provide an accurate approximation of
the true MLE if the real-valued vector x̄Θ(r) is very close to
the discrete valued MLE x̂ML(r). In such a case, the MLE is
obtained by projecting into the lattice points in Mn. However,
this is not the case in many scenarios, and specifically, when
the noise variance in each respective dimension is high. In other
words, it is not necessarily the case that the minimizer of the
objective function on the continuous domain (5) is close to the
MLE, which takes values in the discrete set Mn. Note that
utilizing the true system parameters will only lead to optimal
estimates when considering the original discrete problem (4). In
fact, one can no longer necessarily argue that the true system
parameters are optimal choices for Θ in the relaxed MLE. This
insight, which is obtained from the computation of the coherent
MLE, is used in our derivation of the blind unfolded detector in
the following section.

III. PROPOSED METHODOLOGY

In this section, we present the proposed Low Resolution
Detection Network, abbreviated as LoRD-Net. We begin with a
high-level description of LoRD-Net in Section III-A. Then, we
present the unfolded architecture in Section III-B and discuss
the training procedure in Section III-C. Finally, we provide a
discussion in Section III-D.

A. High-Level Description

As noted in the previous section, the intuitive approach to
blind symbol detection is to utilize the labeled data {xb

p, r
b
p}B−1

b=0

to estimate the true system model Θ, and then to recover the
symbol vector x from r using the MLE. Nonetheless, the co-
herent MLE (4) is computationally prohibitive, while its relaxed
version in (5) may be inaccurate. Alternatively, one can seek a
purely data-driven strategy, using the data to train a black-box
highly-parameterized DNN for detection, requiring a massive
amount of labeled samples. Consequently, to facilitate accurate
detection at affordable complexity and with limited data, we
design LoRD-Net via model-based deep learning [57], by com-
bining the learning of a competitive objective, combined with
deep unfolding of the relaxed MLE.

Learning a competitive objective refers to the setting of the
unknown system parameters Θ. However, the goal here is not
to estimate the true system parameters, but rather the ones for
which the solution to the relaxed MLE coincides with the true
value of x. This system identification problem can be written as

FΘ�(r;x)=min
Θ

1

B

B−1∑
b=0

∥∥x̄Θ(r
b
p)−xb

p

∥∥2
2
, (8)

where x̄Θ is the relaxed MLE (5). The optimization problem (8)
yields a surrogate objective function FΘ� , or equivalently, a set
of system parameters Θ�, referred to as a competitive objective
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Fig. 3. An illustration of LoRD-Net, where trainable system parameters and unfolded weights are highlighted in red and green colors, respectively.

to the true FΘ. An illustration of such a competitive objective
obtained for the case of n = 1 is depicted in Fig. 2.

The main difficulty in solving (8) stems from the fact that
x̄Θ(r) = argmax

x∈Rn

FΘ(x; r) is not differentiable with respect

to the system parameters Θ. We overcome this obstacle by
applying a differentiable approximation of x̄(r), or equivalently,
an algorithm that approximates the argmax operator specific
to our problem. Since x̄Θ(r) can be computed by first-order
gradient methods, we design a deep unfolded network [52] to
compute the relaxed MLE in manner which is differentiable
with respect to Θ. The usage of deep unfolding allows not
only to learn a competitive objective via (8), but also results in
accurate inference with a reduced number of iterations compared
to model-based first-order gradient optimization. Furthermore,
the unfolded network utilizes a relatively small amount of train-
able parameters, thus enabling learning from small amounts of
labeled samples.

B. LoRD-Net Architecture

We now present the architecture of LoRD-Net, which maps
the low resolution r into an estimated x̂. For given system pa-
rameters Θ whose learning is detailed in Section III-C based on
the competitive objective rationale described above, LoRD-Net
is obtained by unfolding the iterations of a first-order optimiza-
tion of the relaxed MLE (5). Our derivation thus begins by
formulating the first-order methods to iteratively solve (5) for
a given Θ.

Let gφi
: Rn �→ R be a parametrized operator defined as

gφi
(x; Θ, r) = x−Gi∇xFΘ(x; r), where Gi ∈ Rn×n is a

positive-definite weight matrix and φi = {Gi} denotes the set
of parameters of the operator gφi

. Such a linear operator can be
used to model a first-order optimization solver by considering a
composition of t mappings of the form:

xt+1 = Gt
φ(x0; Θ, r) = xt −Gt∇xFΘ(xt; Θ, r),

� gφt
◦ · · · ◦ gφ1

◦ gφ0
(x0; Θ, r) (9)

where x0 is an initial point, φ = {φ0, . . . , φt−1} is the set of
parameters of the overall mapping Gt

φ. The mapping (9) is
differentiable with respect to the system parameters Θ, and
its local weights φ. For a fixed number of iterations L, the
resulting function GL

φ(x0; Θ, r) is thus differentiable with re-
spect to the set of parameters {φ,Θ} and its input (unlike the

original argmax operator). Therefore, it can now be used as
a differentiable approximation of x̄Θ(r), which allows for a
training (optimization) over the set of its parameters based on
the gradient-based training algorithms and the back-propagation
technique.

Following the deep unfolding framework [52], the function
GL
φ(x0; Θ, r) can be implemented as a L-layer feed-forward

neural network, where the initial point x0 and the one-bit sam-
ples r constitute the input to the network, and with trainable
parameters that are given by {Θ,φ}. By (6), the i-th layer
computes:

gφi
(xi; Θ, r) = xi −Gizi, with (10)

zi = HT R̃ η
(
R̃ (b−Hxi)

)
, (11)

where the overall dynamics of the LoRD-Net is given by:

GL
φ(x0; Θ, r)=gφL−1 ◦ gφL−2 ◦ · · · ◦ gφ0

(x0; Θ, r). (12)

Each vector xi in (10) represents the input to the i-th layer
(or equivalently, the output of the previous iteration), with x0

being the input of the entire network (which represents the initial
point for the optimization task). Upon the arrival of any new
one-bit measurement r, the recovered symbols x̂ are obtained
by feed-forwardingr through theL layers of LoRD-Net. In order
to obtain discrete samples, the output of LoRD-Net is projected
into the feasible discrete set Mn via

x̂ = PMn

(GL
φ(x0; Θ, r)

)
. (13)

An illustration of LoRD-Net is depicted in Fig. 3.
We note that one can also propose an alternative architecture,

derived by applying the projection operatorPMn at the output of
each layer, i.e., by defining gφi

(xi; θ, r) = PMn(xi −Gizi).
Such a setting corresponds to the unfolding of a projected
gradient descent method. However, our numerical investigations
have consistently shown that such an architecture suffers from
the vanishing gradient problem during training and a signifi-
cant degradation in performance. As a result, we implement
LoRD-Net while applying the projection operator once on the
output of the network, and only during inference, as discussed
above.

In principle, one can fix Gi = δI for some δ > 0, for which
(12) representsL steps of gradient descent with step size δ. In the
unfolded implementation, the weights {Gi} are tuned from data,
allowing to detect with less iterations, i.e., layers. As a result,
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once LoRD-Net is trained, i.e., its weight matrices φ = {Gi}
and the unknown system parameters Θ are learned from data,
it is capable of carrying out fast inference, owing to its hybrid
model-based/data-driven structure. Furthermore, the number of
iterations L is optimized to boost fast inference in the training
procedure, as detailed in the following.

C. Training Procedure

Herein, we present the training procedure for LoRD-Net.
In particular, our main goal is to perform inference of the
unknown system parameters Θ based on the rationale detailed
in Section III-A, i.e., to obtain a competitive objective. The
learning competitive objective is used to tune the weights of
the unfolded network φ. Accordingly, we present a two-stage
training procedure for LoRD-Net (12). Once the training of the
LoRD-Net is completed, it carries out symbol detection from
one-bit information without requiring the knowledge of system
parameters Θ.

1) Training Stage 1 - Learning a Competitive Objective:
The first stage corresponds to learning the unknown system
parameter Θ. However, as formulated in (8), we do not seek
to estimate the true values of the channel matrix H and noise
covariance C, but rather learn the surrogate values which will
facilitate accurate detection using the relaxed MLE formulation.
We do this by taking advantage of two propertities of LoRD-Net:
The first is the differentiability of the unfolded architecture
with respect toΘ, which facilitates gradient-based optimization.
The second is the fact that for Gi = δI , LoRD-Net essentially
implements L steps of gradient descent with step size δ over the
convex objective (5), and is thus expected to reach its maxima.

Based on the above properties, we fix a relatively large number
of layers/iterations L for this training stage, and fix the weights
φ to Gi = δI . Under this setting, the output of LoRD-Net
GL
φ={δI}(x; Θ, r) represents an approximation of the relaxed

MLE for a given parameter Θ, denoted x̄Θ(r), i.e., we have that

x̄Θ(r) ≈ GL
φ={δI}(x0; Θ, r). (14)

We refer to the setting φ = {δI} using in this stage as the
basic optimization policy. Note that as the number of layers
grows large, the above approximation becomes more accurate.
Hence, by substituting (14) into (8) and replacing x̄Θ(r

i
p) with

the corresponding outputs of LoRD-Net, we formulate the loss
measure of the first training stage of LoRD-Net as:

Θ� = argmin
Θ

1

B

B−1∑
i=0

∥∥∥GL
φ={δI}(x0; Θ, rip)− xi

p

∥∥∥2
2
. (15)

Owing to the differentiable nature of GL
φ(x0; Θ, r) with respect

to Θ, we recover Θ� based on (15) using conventional gradient-
based training, e.g., stochastic gradient descent with backprop-
agation, as detailed in our numerical evaluations description in
Section IV

2) Training Stage 2 - Learning the Unfolded Weights: Hav-
ing learned the unknown system parametersΘ in Stage 1, we turn
to tuning the parameters of LoRD-Net, i.e., the set φ = {Gi}.
We note that in Stage 1, the rationale was to use the basic

Algorithm 1: Training LoRD-Net.

Input: Labeled data {xb
p, r

b
p}Bb=0

1 Stage 1 Init: Fix (large) L, step-size δ ∈ (0, 1), and
weights Gl = δI . Initialize x0;

2 Optimize Θ� via (15) //Stage 1
3 Stage 2 Init: Fix (small) L. Initialize x0;
4 Set the trainable parameters to {Gi = W iW

T
i };

5 Optimize φ� according to (16) //Stage 2
Output:LoRD-Net parameters {Θ�,φ�}

optimization policy φ = {Gi = δI}L−1
i=0 with a large number of

layersL, exploiting the insight that under this setting, LoRD-Net
effectively implements conventional gradient descent. However,
once Stage 1 is concluded and Θ� is learned, it is preferable
to reduce the number of layers L compared to that used in
Stage 1, thus exploiting the ability of the unfolded network
to carry out faster inference compared to their model-based
iterative counterparts by learning the weights applied in each
iteration [52], [58]. Consequently, the first step in this stage is to
set a number of layers to a value which can potentially be smaller
than that used in the first training stage, and then optimize the
weights according to the following criterion:

φ�=argmin
φ

1

B

B−1∑
i=0

∥∥∥GL
φ={Gl}Ll=1

(x0; Θ
�, rip)−xi

p

∥∥∥2
2
. (16)

Generally speaking, in order for a first-order optimizer
(LoRD-Net in this case) to provide a descent direction at each
iteration (layer), the pre-conditioning matrices must be positive-
semidefinite so that each iteration does not reverse the gradi-
ent direction. To incorporate this requirement into LoRD-Net
training, we re-parameterize the pre-conditioning matrices by
writing {Gi = W iW

T
i } and performing the traning over the

matrices {W i}. The resulting two-stage training algorithm is
summarized as Algorithm 1.

When the network is properly trained, LoRD-Net is expected
to carry out learned and accelerated first-order optimization,
tuned to operate even in channel conditions for which such an
approach does not yield the MLE for the true channel.

D. Discussion

LoRD-Net is a data-driven acquisition system based on un-
folding first-order gradient optimization methods, designed for
low-resolution MIMO receivers operating without analog pro-
cessing. Its model-awareness enables the receiver to learn to
accurately infer from smaller training sets compared to con-
ventional DNN architectures applied to such setups, as sug-
gested, e.g., in [24], giving rise to the possibility of tracking
block-fading channel conditions via online training, as in [43].
Furthermore, LoRD-Net differs from previously proposed deep
unfolded MIMO receivers as surveyed in [49] in two key aspects:
First, LoRD-Net is particularly designed for one-bit observa-
tions, being derived from the iterative optimization formula-
tion which arises from such setups. Second, previous unfolded
MIMO receivers either assumed prior knowledge of the channel
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parameters, as in [47], or alternatively, utilize external modules
to directly estimate the CSI as in [46]. LoRD-Net exploits the fact
that, for its unfolded relaxed convex optimization algorithm to
yield the desired MLE, an alternative channel parameters, which
differ from the true Θ, should be estimated. Consequently, the
training procedure of LoRD-Net does not aim to recover the true
CSI, but the one which yields a competitive objective which
facilitates symbol detection, thus accounting for the overall
system task.

The proposed training procedure detailed in Algorithm 1
carries out each training stage once in a sequential manner. This
strategy can be extended to optimizing the hyperparameters and
the weights in an alternating fashion, i.e. repeating the stages
multiple times, while using the learnedφ in Stage 2 in the Stage 1
that follows. Alternatively, the hyperparameters and the weights
can be learned jointly in an end-to-end manner, by optimizing
(16) with respect to both Θ and φ simultaneously. The main
requirement for carrying out these training strategies compared
to that detailed in Section III-C is that the same number of layers
L should be used when learning both Θ and φ, while when
these stages are carried out once sequentially, it is preferable to
use large L at Stage 1 and a smaller value, which dictates the
number of learned weights, in Stage 2. Furthermore, our numer-
ical evaluations show that training once in a two-stage fashion
via Algorithm 1 yields similar and sometimes even improved
performance compared to learning bothΘ andφ simultaneously
in a one-stage manner, as well as when alternating between these
two stages, as demonstrated in Section IV.

A possible extension of the training procedure is to account for
ADCs with more than one bit, as well as allow LoRD-Net to opti-
mize the quantization thresholds b in light of the overall symbol
recovery task. While accounting for multi-level ADCs is a rather
simple extension achieved by reformulating the objective func-
tion (3), optimizing the quantization thresholds requires modify-
ing the overall training strategy. The challenge here is that modi-
fying b results in different one-bit measurements r. In a commu-
nication setup, in which periodic pilots are transmitted, one can
envision gradual optimization of b between consecutive pilot
sequences, using their corresponding one-bit observations to
further optimize LoRD-Net. The study of LoRD-Net with multi-
level ADCs and optimized thresholds is left for future work.

IV. NUMERICAL STUDY

In this section, we numerically evaluate LoRD-Net1, and
compare its performance with state-of-the-art model-based and
data-driven methodologies. As a motivating application for the
proposed LoRD-Net, we focus on the evaluation of LoRD-Net
for blind symbol detection task in one-bit MIMO wireless
communications. In the following, we first detail the considered
one-bit MIMO simulation settings in Section IV-A, after which
we evaluate the receiver performance, compare LoRD-Net to
alternative unfolded architectures, and numerically investigate
its training procedure in Sections IV-B, IV-C, and IV-D, respec-
tively.

1The source code is available at: https://github.com/skhobahi/LoRD-Net.

A. Simulation Setting

We consider an up-link one-bit multi-user MIMO scenario
as in (2). We focus on a single cell in which a base station
(BS) equipped withm antenna elements servesn single-antenna
users. Specifically, we consider two cases of (m,n) = (128, 16)
and (m,n) = (64, 10), i.e., a 128× 16 and a 64× 10 MIMO
channel setup.The transmitted symbols of the users, represented
by the unknown vector x, are randomized in an independent and
identically distributed (i.i.d.) fashion from a BPSK constellation
setM = {−1,+1}. The projection mapping is thusPMn(x) =
sign(x), where the sign function is applied element-wise on
the vector argument. In the sequel, we assume that while the
channel matrix H , representing the CSI, is not available at the
BS, the noise statistics C are known and are fixed to C = I .
Accordingly, our goal is to utilize LoRD-Net to recover the
transmitted symbols from the one-bit measurements. Note that,
as we will show later in this section, the proposed methodology
can carry out the task of symbol detection even for the case in
which the noise statistics C is unknown. For instance, consider
having the domain knowledge that the covariance matrix admits
a diagonal structure C = Diag(σ2

0 , σ
2
1 , . . . , σ

2
m−1). Then, one

can cast such a diagonal matrix as a trainable parameter in addi-
tion to other trainable parameters of the network, and successfuly
carry out the training procedure. In such scenarios, we note that
a covariance matrix is always positive definite, and hence, one
can incorporate this knowledge by performing the training on
squared variables {σ2

i } to ensure positive definiteness of the
learned matrix C—more on this below.

Channel Models: We evaluate LoRD-Net under two chan-
nel models: (i) i.i.d. Rayleigh fading channels, where H ∼
N (0, I); and (ii) the COST-2100 massive MIMO channel [59].
The COST-2100 channel model is a realistic geometry-based
stochastic model which accounts for prominent characteristics of
massive MIMO channels, and is considered to be an established
benchmark for evaluating MIMO communication systems. We
generate the channel matrices for the COST-2100 model for
a narrow-band indoor scenario with closely-spaced users at
2.6 GHz band, where the BS is equipped with a uniform lin-
ear array (ULA) that has m omni-directional receive antenna
elements. The one-bit ADC operation uses zero thresholds, i.e.
b = 0. We define the signal-to-noise ratio (SNR) as:

SNR = E{‖Hx‖22}E{‖n‖22}. (17)

Benchmark Algorithms: As LoRD-Net combines both model-
based and data-driven inference, we compare its performance
with state-of-the-art model-based and data-driven methodolo-
gies in a one-bit MIMO receiver scenario. In particular, we use
the following benchmarking detection algorithms:
� The model-based nML proposed in [30]. The nML algo-

rithm is based on a convex relaxation of the conventional
ML estimator, and requires the exact knowledge of the
channel parameters Θ = {H ,C}. We set the number of
iterations of the nML algorithm to 700, and the step-size is
chosen using a grid search method to further improve the
performance of the nML, while the remaining parameters
are those reported in [30]. In addition, each iteration of

https://github.com/skhobahi/LoRD-Net
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Fig. 4. BER performance versus SNR over a 128× 16 channel configuration.

the nML algorithm admits a similar computational burden
as compared to the proposed LoRD-Net. Hence, we later
study the convergence speed of both algorithms in terms
of total number of iterations.

� The data-driven Deep Soft Interference Cancellation
(DeepSIC) methodology proposed in [44], with five
learned interference cancellation iterations. DeepSIC is
channel-model-agnostic and can be utilized for symbol
detection in non-linear settings such as low-resolution
quantization setups. Unlike LoRD-Net, which is designed
particularly for observations of the form (2) where Θ =
{H,C} is unknown, DeepSIC has no prior knowledge of
neither the channel model nor its parameters.

LoRD-Net Setting: The LoRD-Net receiver is implemented
with L = 30 layers. Recall that the first training stage of the
LoRD-Net is concerned with finding a competitive objective by
carrying out the training of the network over the unknown set of
channel parameters Θ = {H,C}. Unless otherwise specified,
we focus on the case where only H is unknown, and the
correlation matrix of the noise C is available.

During the first training stage, we set δ = 0.01, and recover
Θ� based on the objective (15) using the Adam stochastic
optimizer [60] with a constant learning rate of 10−3.Next, we
carry out the training of the LoRD-Net during the second stage
according to the objective function defined in (16) and over the
set of trainable parameters φ, using the Adam optimizer with a
learning rate of 10−4, and a mini-batch of size 512. We consider
the learning of diagonal pre-conditioning matrices (unfolded
weights) during the second training stage. The network is trained
for 400 epochs during the first training stage, and 400 epochs
during the second training stage, with the same value of L = 30
used in both stages.

B. Receiver Performance

Here, we evaluate the performance of the proposed LoRD-
Net, comparing it to the aforementioned benchmarks as well
as examining its dependence on the number of training sam-
ples B. In particular, we numerically evaluate the bit-error-rate
(BER) performance versus SNR using different training sizes

B ∈ {1024, 2048}, for both 128× 16 and 64× 10 channel
configurations. For DeepSIC, we use only B = 2048, while the
nML recever of [30] operates with perfect CSI, i.e., with full
accurate knowledge of Θ. All data-driven receivers are trained
for each SNR separately, using a dataset corresponding to that
specific SNR value.

The results are depicted in Fig. 4(a) and 4(b) for a 128× 16
channel configuration under the Rayleigh fading and COST-
2100 channel models, respectively. Furthermore, the BER per-
formance for a 64× 10 configuration under both channel models
are illustrated in Fig. 5(a) for the Rayleigh fading channel,
and in Fig. 5(b), for the COST-2100 channel model. Based on
the results presented in Figs. 4 and 5, one can observe that
LoRD-Net significantly outperforms the competing model-
based and data-driven algorithms and achieves improved de-
tection performance under both simulated channels, as well as
both MIMO configurations.

In particular, the nML algorithm, which is designed to
iteratively approach the MLE using ideal CSI (prior knowledge
of the channel matrix), is notably outperformed by LoRD-Net.
Such gains by LoRD-Net, which learns to compute the MLE
from data without requiring CSI, compared to the model-based
nML algorithm, demonstrate the benefits of learning a compet-
itive objective function combined with a relaxed deep unfolded
optimization process. Specifically, the results depicted in
Figs. 4-5 illustrate that one can significantly improve the receiver
performance by learning a new channel matrix H upon which
the learned competitive objective function admits optimal points
near the true symbols. The learning of the competitive objective
function is possible due to the hybrid model-based/data-driven
nature of LoRD-Net, and the fact that it is derived based on
the unfolding of first-order optimization techniques. From
a computational complexity point-of-view, the depicted
performance of the nML algorithm in Figs. 4-5 is achieved by
employing 700 iterations of a first-order optimization algorithm,
while LoRD-Net uses onlyL = 30 layers/iterations—exhibiting
a significant reduction in the computational cost during inference
as compared to the nML algorithm.

Comparing LoRD-Net to DeepSIC illustrates that LoRD-Net
benefits considerably from its model-aware architecture. The
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Fig. 5. BER performance versus SNR over a 64× 10 channel configuration.

fact that LoRD-Net is particularly tailored to the one-bit system
model of (2) allows it to achieve improved accuracy, even in the
case of training with small amounts of data. For instance, for the
128× 16MIMO Rayleigh fading channel (see Fig. 4(a)), LoRD-
Net trained with B = 2048 samples, achieves BER of 10−2 at
SNR of 3 dB, while DeepSIC trained with the same dataset
requires SNR as high as 5 dB to achieve such an error rate. Con-
sidering Fig. 4(b), a similar behavior is observed in the COST-
2100 channel, for a BER of 3× 10−2. A similar performance
gain for LoRD-Net can be observed in a 64× 10 configuration;
see Fig. 5. Furthermore, it can be observed that the LoRD-Net
still outperforms the DeepSIC methodology, even when trained
on 2 times less training samples. In particular, for the (128× 16)
channel setup considered in this part, the total number of train-
able parameters of LoRD-Net is merely |Θ = {H}|+ |φ| =
n(L+m) = 2528. For comparison, DeepSIC, which uses and
trains a multi-layer fully-connected network for each user at each
interference cancellation iterations, consists here of over8× 105

trainable parameters. Such a reduction in the number of param-
eters allows for achieving substantially improved performance
with much smaller training points, as observed in Figs. 4-5.
Finally, we note that the small number of trainable parameters
of LoRD-Net shows its potential for online or real-time training,
as proposed in [43]. This can be achieved by using periodic pilots
with minimal overhead on the communication, while inducing
a relatively low computational burden in its periodic retraining.

So far, we have investigated the performance of the proposed
LoRD-Net for scenarios with known noise statistics, and un-
known H (i.e., Θ = {H}). Next, we investigate the detection
performance of LoRD-Net when both the channel and noise
covariance matrices are not available, i.e., we set Θ = {H,C}
and carry out the training according to the proposed two stage
methodology. Specifically, we consider the learning of a diago-
nally structured C in addition to the channel matrix H for this
scenario. Fig. 6 demonstrates the BER versus SNR performance
of LoRD-Net under both channel models, when trained using a
dataset of sizeB = 1024. The performance of LoRD-Net for the
case of Θ = {H} is further provided for comparison purposes.
Observing Fig. 6, one can readily conclude that the proposed

Fig. 6. BER versus SNR for both channel models and a training size of
B = 1024. The performance of the proposed LoRD-Net is provided for both
scenarios of training over Θ = {H} (i.e., known noise statistics C), and over
Θ = {H,C} corresponding to unknown channel matrix and noise statistics.

network can successfully perform the task of symbol detection
also when C in unknown. Furthermore, it can be observed that a
small gain in performance is achieved for both channel models
whenΘ = {H,C} as compared to the case ofΘ = {H}, which
is presumably due to the careful addition of more degrees of
freedom in learning a competitive surrogate model.

C. Performance of Competing Deep Unfolded Architectures

In this part, we compare the performance of the proposed
LoRD-Net with alternative deep unfolding-based architectures
tailored for the problem at hand. Recall that the architecture of
LoRD-Net uses trainable parameters which are shared among
the different layers, as illustrated in Fig. 3. Thus, LoRD-Net is
comprised of a relatively small number of trainable parameters,
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and uses a two-stage learning method to train the shared pa-
rameters, representing the competitive model, and the iteration-
specific weights, encapsulating the first-order optimization co-
efficient. Nonetheless, the conventional approach for unfolding
first-order optimization techniques is to over-parameterize the
iterations, and then, train in an end-to-end manner using a
one-stage training procedure discussed earlier. Therefore, to
numerically evaluate the proposed unfolding mechanism of
LoRD-Net, we next compare it to two conventional unfolding
based benchmarks derived from the relaxed MLE:
� Benchmark 1: An over-parameterized deep unfolded archi-

tecture obtained by setting the computational dynamics for
the ith layer as:

ḡφi
(xi; r) = xi −AiR η (R (b−Bixi)) . (18)

Here, φi = {Ai ∈ Rn×m,Bi ∈ Rm×n} are the trainable
parameters of the ith layer, and R = Diag(r).

� Benchmark 2: Here, we again use the unfolded ar-
chitecture given in (18), while limiting the num-
ber of trainable parameters by constraining the rank
of the learned matrices. In particular, we set Ai =
P iQi and Bi = RiSi, where φi = {P i ∈ Rn×r,Qi ∈
Rr×m,Ri ∈ Rm×r,Si ∈ Rr×n} denotes the set of train-
able parameters of the ith layer of the unfolded network.
The dimension r < min(m,n) controls the rank of the
resulting weight matrices {Ai,Bi}, and thus the number
of trainable parameters.

Comparing (18) with the corresponding dynamics of LoRD-
Net in (10), we note that the channel matrix H , the pre-
conditioning matrices Gi, and the noise covariance matrix C
are now absorbed into the per-layer trainable matrices Ai and
Bi. Accordingly, these unfolded benchmarks, which follow the
conventional approach for unfolding optimization algorithms,
are less faithful to the underlying model. These benchmarks also
differ from LoRD-Net in their number of trainable parameters.
In particular, Benchmark 1 with L layers has 2Lnm train-
able parameters, while Benchmark 2 has 2Lr(m+ n) weights,
which can be controlled by the setting of the hyperparame-
ter r. For comparison, LoRD-Net has n(L+m) trainable pa-
rameters for the case of Θ = {H} and diagonally structured
pre-conditioning matrices, while for the case of Θ = {H ,C}
with a diagonally structured pre-conditioning matrix and noise
covariance matrix it has n(L+m) +m trainable parameters.

We evaluate the performance of the proposed LoRD-Net
compared to the unfolded benchmarks in the following simu-
lation setup. We consider train all the considered network using
a dataset of size B = 1024, while the highly-parameterized
Benchmark 1 is also trained using B = 2048 samples. For
Benchmark 2, we set r = 1. All architectures have L = 30
layers and their performance are evaluated on the same testing
dataset of size B = 2048. The unfolded benchmarks are trained
in the conventional end-to-end fashion. The channel model
is a (128× 16) Rayleigh fading channel. For the considered
scenario above, the LoRD-Net admits a total of 2528 trainable
parameters, while Benchmark 1 has a total of 122880 (ap-
proximately 50 times more parameters than LoRD-Net), while
Benchmark 2 has 8640 trainable parameters.

Fig. 7. BER versus SNR of LoRD-Net compared to the unfolded benchmark
for a (128× 16) Rayleigh fading channel model.

Fig 7 depicts the BER versus SNR of LoRD-Net compared to
the unfolded benchmarks. We observe in Fig. 7 that the proposed
LoRD-Net significantly outperforms the conventional unfolding
based benchmarks,indicating the gains of the increased level of
domain knowledge Incorporated in to the architecture of LoRD-
Net and its two stage training procedure. It is also observed that
the performance of Benchmark 1 increases with more training
samples. Interestingly, for a small training set of B = 1024
samples, Benchmark 2, which is obtained by imposing a rank
constraint on the trainable parameters of Benchmark 1, achieves
improved performance over Benchmark 1, due to its notable
reduction in the number of trainable parameters.

D. Training Analysis

In this part, we analyze the performance of the proposed two-
stage training procedure described in Section III-C. The training
aspects of LoRD-Net are numerically evaluated for the 128× 16
Rayleigh channel model detailed before.

Following our insight on the ability of LoRD-Net to ac-
curately train with small datasets, we begin by evaluating
the performance of the LoRD-Net versus the training data
size B. For this study, we generate training datasets of size
B ∈ {32, 64, 128, 256, 512, 1024, 2048} and evaluate the per-
formance of LoRD-Net using 2048 test samples. Fig. 8 de-
picts the BER achieved for each training size B, for SNR ∈
{0, 2, 4, 6, 8, 10} dB. We can observe from Fig. 8 that the perfor-
mance of the LoRD-Net improves across all SNR values, where
the improvements are most notable for B ≤ 256. Interestingly,
it may be concluded from Fig. 8 that LoRD-Net is capable of
accurately and reliably performing the task of symbol detection
without CSI with as few as B = 512 samples. The ability of
LoRD-Net to train with very few training samples (compared to
the black-box DNN models for one-bit MIMO receivers [22],
[24], as well as the DeepSIC architecture), stems from its incor-
poration of the domain-knowledge in designing the LoRD-Net
architecture. This in turn leads to far fewer trainable parameters
requiring much less training samples for optimizing the network.
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Fig. 8. BER versus training size B for the Rayleigh fading channel.

Next, we analyze the performance and the effect of the two
stage training methodology detailed in Algorithm 1 on the
detection performance of the LoRD-Net architecture. Recall that
the first training stage is concerned with finding a competitive
objective function through an optimization of LoRD-Net over
the unknown system parameters Θ, while the second train-
ing stage tunes the positive definite preconditioning matrices
φ = {Gi} to accelerate the convergence of the LoRD-Net to
the optimal points of the obtained competitive objective. To nu-
merically evaluate the performance of the training methodology,
we set SNR = 8 dB, and generate a training dataset of size
B = 512 and a testing dataset of size 2048. Then, we compare
performance of Algorithm 1 with two other competing training
procedures:
• One-Stage Training: Here, the weights φ and the unknown

system parameters Θ are jointly learned in a single stage. The
objective of this one stage training procedure for LoRD-Net is

min
φ={Gl}l,Θ∈Θ

1

B

B−1∑
i=0

∥∥GL
φ(x0; Θ, ri

p)− xi
p

∥∥2
2
. (19)

• Alternating Training: This procedure is concerned with train-
ing the network by alternating between the two optimization
problems (15) and (16) consecutively with respect to each train-
ing epoch. Here, the network is trained over 400 alternations,
corresponding to a total of 800 training epochs. Namely, at each
epoch index i, we update the variables Θ for odd i and update
φ for even i.

Before we proceed with the evaluation results, we provide
some useful connections to notions widely used in the deep
learning literature. Generally speaking, the performance of a
statistical learning framework and its training procedure is eval-
uated using its generalization gap and testing error. The general-
ization gap of a model can be defined as the difference between
the training and testing errors. Specifically, a model with smaller
generalization gap and smaller testing error is highly favourable.
Furthermore, a higher generalization gap may indicate that the
network has over-fitted to the data, and hence, it does not
generalize well. For two models with the same generalization
gap, the one with lower testing error is favourable. Fig. 9 depicts

Fig. 9. BER versus the training epoch number of LoRD-Net, Rayleigh fading
channel, SNR = 8 dB.

the BER versus the training epoch for both the training and
testing dataset. We first note that the proposed two-stage training
method (Algorithm 1) outperforms the competing procedures,
yielding lower testing error values. Interestingly, we observe
that the proposed methodology successfully closes the gener-
alization gap as the testing and training error are very close to
each other. On the other hand, the other two training procedures
admit relatively large generalization gaps, indicating the fact that
their utilization has resulted in an over-fitting of the network to
the data. Furthermore, it can be observed from Fig. 9 that the
major improvement of the detection accuracy of the LoRD-Net
is taking place during the first training stage when finding a
competitive objective function, i.e., epochs i < 80(×5), where
a slight improvement in the BER is achieved during the second
stage, i.e., i ≥ 80(×5).

The success of the proposed two stage training procedure in
closing the generalization gap compared to the one stage training
procedure is presumably due to the fact that the two-stage
training approach leads to an implicit regularization on the
model capacity limiting the total number of parameters used
during the entire training procedure. On the contrary, the one
stage training procedure allows the neural network to use its full
capacity leading to an over-fitting and a larger generalization
gap, as observed in Fig. 9.

As discussed in Section III-C, the second training stage allows
LoRD-Net to achieve fast inference, i.e., accelerated conver-
gence to the optimal points of the competitive objective function.
To illustrate this behavior, we perform a per-layer BER evalua-
tion of LoRD-Net, exploiting the interpretable model-based na-
ture of the LoRD-Net, in which each layer represents an unfolded
first-order optimization iteration, and thus its output can be used
as an estimate of the transmitted symbols. Fig. 10(a) and 10(b)
depict the BER versus the layer/iteration number of LoRD-Net
at the completion of training stages 1 and 2, for the Rayleigh
fading channel and the COST-2100 channel model, respectively.
We observe in Fig. 10 that the convergence of LoRD-Net after
the completion of the first training stage is slow and requires
at least L = 30 layers/iterations to converge. Interestingly, we
note from Fig. 10 that the second training stage indeed results
in an acceleration of the convergence of LoRD-Net via learning
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Fig. 10. BER performance of LoRD-Net after completing training stages 1 and 2 versus the layer/iteration number for (a) the Rayleigh fading channel, and (b)
the COST-2100 massive MIMO channel, with SNR = 8 dB.

the best set of pre-conditioning matrices for the problem at hand
in an end-to-end manner. In particular, after the completion of
the second training stage, LoRD-Net can accurately and reliably
recover the symbols with as few as 10 layers. This observation
hints that one can consider further truncation of the LoRD-Net
after the training to reduce the computational complexity while
maintaining its superior performance.

In order to quantify the quality of the learned competitive
objective in closing the gap between the discrete optimization
problem and its continuous version, we further provide the per-
iteration performance of the nML algorithm and the LoRD-Net
algorithm which operate with perfect CSI. For this scenario,
LoRD-Net utilizes the trueΘ, and is thus optimizer only over the
weightsφwhile employing the exact channel modelH . It is ob-
served from Fig. 10(a)-10(b) that learning a new surrogate model
for the continuous optimization problem at hand is indeed highly
beneficial and admits a far superior performance in recovering
the transmitted symbols. The analysis provided in Fig. 10 further
supports the rationale behind the proposed two-stage training
methodology, and the fact that the second training stage results in
an acceleration of the underlying first-order optimization solver
(i.e., achieving a much faster descent per step) upon which the
layers of the LoRD-Net are based.

V. CONCLUSION

In this work, we introduced LoRD-Net, which is a hybrid
data-driven and model-based deep architecture for blind symbol
detection from one-bit observations. The proposed methodology
is based the unfolding of first-order optimization iterations for
the recovery of the MLE. We proposed a two-stage training
procedure incorporating the learning of a competitive objective
function, for which the unfolded network yields an accurate
recovery of the transmitted symbols from one-bit noisy measure-
ments. In particular, owing to its model-based nature, LoRD-Net
has far fewer trainable parameters compared to its data-driven
counterparts, and can be trained with very few training samples.
Our numerical results demonstrate that the proposed LoRD-Net
architecture outperforms the state-of-the-art model-based and

data-driven symbol detectors in multi-user one-bit MIMO sys-
tems. We also numerically illustrate the benefits of the proposed
two-stage training procedure, which allows to train with small
training sets and infer quickly, due to its interpretable model-
aware nature.
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