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Maximum Set Estimators With
Bounded Estimation Error

Zvika Ben-Haim, Student Member, IEEE, and Yonina C. Eldar, Member, IEEE

Abstract—We consider the linear regression problem of esti-
mating a deterministic parameter vector x from observations
y = Hx + w, where H is known, and w is additive noise. We
seek an estimator whose estimation error does not exceed a given
maximum error for as wide a range of conditions as possible. The
maximum error is a design choice and is generally lower than the
error provided by the well-known least-squares (LS) estimator. We
develop estimators guaranteeing the required error for as large a
parameter set as possible and for as large a noise level as possible.
We discuss methods for finding these estimators and demonstrate
that in many cases, the proposed estimators outperform the LS
estimator.

Index Terms—Deterministic parameter estimation, linear esti-
mation, minimax mean squared error.

I. INTRODUCTION

THE problem of estimating an unknown deterministic pa-
rameter vector based on noisy measurements is a fun-

damental problem in science and engineering. It is often mod-
eled as a linear regression problem, in which
is a linear transformation of with additive zero-mean noise

. In an estimation context, we would like to design an esti-
mator to be close to in some sense. For example, we may
seek an estimator that minimizes the mean-squared error (MSE)

. The goal of this paper is to develop estimators that
guarantee a required estimation error for as large a range of op-
erating conditions as possible. The required estimation error is
known in many signal processing applications; for example, in
communication systems, a minimum signal to noise ratio (SNR)
may be necessaryfor data transmission to be possible.

Estimation problems may be grouped into two broad classes
[1]. The Bayesian estimation approach is used when the pa-
rameter vector is random with (partially) known statistics.
For instance, when second-order statistics of are known, the
well-known Wiener filter [2], [3] minimizes the MSE among
all linear estimators. The deterministic estimation approach, on
the other hand, assumes the parameter vector is deterministic,
which is an assumption we will adopt throughout this paper.

In the deterministic case, the MSE is the sum of the variance
of and the squared norm of the bias of [4]. However, since
the bias is a function of the unknown vector , direct minimiza-
tion of the MSE is not possible. A common approach to de-
signing MSE-based estimators is to choose the minimum MSE
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estimator among all linear unbiased estimators. For unbiased
estimators, the MSE equals the estimator variance, which does
not depend on the value of and can therefore be minimized
without knowledge of . Minimizing the variance for unbiased
estimators results in the (weighted) least-squares (LS) estimator
[4]. The LS estimator has the additional property that it mini-
mizes the measurement error , where is the
estimated measurement vector. However, in an estimation con-
text, typically, the objective is to minimize the estimation error,
i.e., a measure of the distance between and such as the MSE,
rather than the measurement error.

An unbiased estimator does not necessarily guarantee low
MSE. Indeed, we show that for any bounded set , a biased
estimator exists, whose MSE is lower than the MSE of the LS
estimator for all in . Several regularization techniques are
aimed at improving estimation performance by introducing a
bias; among these are Tichonov regularization [5] (also known
as ridge regression [6]) and the shrunken estimator [7].

Estimator design is a function of various system properties,
such as the transformation matrix and the noise covariance

. When these properties are uncertain, one approach is to
minimize the maximum (worst-case) estimation error among all
possible values. This minimax approach was first introduced for
dealing with uncertain noise statistics [8] and has since been ap-
plied in a variety of estimation problems [9]–[12]. Of particular
interest to us is the case of the bounded parameter set, in which
the estimator is designed to minimize the worst-case estimation
error for any parameter vector in a given parameter set [13],
[14]. An important property of bounded parameter set estima-
tion is that the analysis is performed on a particular (worst-case)
value of and can thus be used to minimize the estimation error,
for example, by minimizing the worst-case MSE. Minimax es-
timators can also be constructed to minimize the worst case of
other estimation error functions, such as the regret [15], which
is defined as the difference between the estimator’s MSE and
the best possible MSE obtained using a linear estimator which
has knowledge of the parameter vector .

The minimax approach assumes that bounds on various
system properties are known. These bounds have considerable
impact on the obtained estimator: If the parameter set is too
small, then the estimator may receive values of for which it
was not designed, and the estimation error will be larger than
expected. Yet the parameter set, which defines extreme param-
eter values, is sometimes difficult to characterize based on past
experience, which contains mostly nominal parameter values.
Furthermore, attempts to estimate the parameter set from the
measurements generally result in a nonlinear estimator,
whose computational complexity is higher.
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We propose an alternative approach that is intended for
estimation problems in which a maximum allowed estima-
tion error is given. For such cases, following the philosophy
of information-gap decision theory [16], [17], we propose a
maximum set estimation approach [18]; in general terms, this
approach designs an estimator to guarantee the required error
for the widest range of conditions possible. The maximum set
estimation strategy can be applied in several ways, depending
on the uncertain system property. In Sections II–V, we discuss
the case in which the parameter set is uncertain and describe the
maximum parameter set (MPS) estimator, which maximizes
the parameter set for which error requirements are maintained.
Section II opens the discussion of MPS estimation with a
concrete example, which is expanded to a general framework
in Section III. Theorems for the construction of several types of
MPS estimators are provided in Section IV, including, in some
cases, closed forms of the estimators. An application of MPS
estimation in the context of channel estimation is described in
Section V.

Applying the concept of maximum set estimation in a
different setting, in Section VI, we consider the estimation
problem when the noise covariance is known up to a constant,
i.e., , where is unknown. In this case,
we assume that lies in a known parameter set and find a
maximum noise level (MNL) estimator that guarantees a re-
quired estimation error for as large a range of noise levels as
possible. Here again, we derive a closed form for the estimator
obtained under the most common settings. We conclude with a
discussion in Section VII.

Throughout the paper, matrices are denoted by boldface up-
percase letters, and vectors are denoted by boldface lowercase
letters. The Hermitian conjugate of a matrix is denoted by

. The notation indicates that the matrix is positive
semidefinite, and the notation indicates that .
For any matrix is the unique positive semidefinite
matrix satisfying .

II. MPS ESTIMATION: USEFUL SPECIAL CASE

To demonstrate the main ideas of this paper, we begin by pre-
senting an important special case of the maximum parameter set
(MPS) estimator. This example is generalized and formalized in
Section III.

Consider the system of measurements , given by

(1)

where is an unknown deterministic vector,
is a known full-rank matrix, and is a zero-mean random vector
with positive definite covariance . We wish to construct a
linear estimator of , such that the estimate is close
to the unknown parameter , i.e., the estimation error
is small in some sense. For clarity, this section makes use of
the MSE as the estimation error function; a general discussion
follows in Section III, in which any continuous error function

may be used.
The MSE is given by [4]

(2)

where

Tr (3)

is the variance of , and

(4)

is the bias of . Since depends on the unknown value of
, direct minimization of the MSE is not possible. A common

approach is to limit discussion to unbiased estimators, in which
case the MSE no longer depends on , and then seek the linear
estimator that minimizes the MSE. This results in the least-
squares (LS) estimator, given by

(5)

The MSE of the LS estimator is

Tr (6)

Since the bias is a linear function of , a nonzero bias causes the
MSE to tend to infinity as . Thus, if one requires the
ability to successfully estimate any value of , then an unbiased
estimator must be used. However, in some cases, a reasonable
assumption can be made regarding the size of . If is known
to lie within some compact parameter set , then an estimator
minimizing the worst-case MSE among all values of in
can be determined. Such an estimator is called a minimax MSE
estimator [13], [14] and is defined as

(7)

Many possibilities for choosing the parameter set exist
[19]. One commonly used set is the ellipsoid

(8)

where is a known constant, and for a
Hermitian positive-definite weighting matrix . For clarity, we
continue the discussion in this section using ellipsoidal param-
eter sets. A more general discussion is presented in the following
section.

A suitable value of is often difficult to determine. Even if a
small amount of information about is available, such as sev-
eral past measurements, then these usually characterize typical
values of , whereas is meant to characterize the extreme or
rare values of . Thus, in some cases, it is our interest to find
an estimator achieving “satisfactory” performance for as large
a parameter set as possible. To this end, we assume that a max-
imum error is known; this is the maximum error allowed
for satisfactory performance of the system. We aim to design an
MPS estimator, for which satisfactory performance is achieved
for as large a parameter set as possible.

Formally, the parameter robustness of an estimator is
defined as the largest , for which performance is satisfactory:

(9)

An MPS estimator is an estimator achieving maximal pa-
rameter robustness, i.e., for any other linear estimator

(10)
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Suppose we wish to find an MPS estimator for maximum
error equal to of (6), which is the MSE of the LS es-
timator. The LS estimator achieves this error regardless of the
value of ; thus, its parameter robustness is infinite when the
maximum error is or greater. This implies that requiring a
maximum error of (or greater) yields the LS estimator as an
MPS estimator. More interesting is the case , for which
the LS estimator no longer achieves the required error, regard-
less of the value of . An MPS estimator for a given error
level has finite robustness, but within the parameter set

, its worst-case error does not exceed . Thus, an MPS
estimator outperforms the LS estimator for any .

In the remainder of this section, we show that a linear MPS
estimator can be found by solving a quasiconvex optimization
problem. An optimization problem is quasiconvex if its con-
straints are convex and its objective function is quasiconvex; the
function is quasiconvex if the sublevel sets
are all convex. Quasiconvex problems can be efficiently solved,
for example, using bisection [20]. In addition, as we will see in
Section IV-A, in many special cases, a closed form for an MPS
estimator can be obtained by exploring its relation to the min-
imax MSE estimator.

Theorem 1: A linear maximum parameter set (MPS) esti-
mator satisfying (10) can be found by solving the
following quasiconvex optimization problem:

s.t. (11)

where is the vector obtained by stacking the columns of
. The parameter robustness of this estimator is given

by for the optimal values of and .
Proof: We seek an estimator satisfying (10) with
defined by (9), which is equivalent to solving the opti-

mization problem

s.t. (12)

where . Using (2)–(4), we find that for any given

Tr (13)

However

(14)

where and is the maximum
eigenvalue of . We can express as the solution to the
semidefinite problem

s.t. (15)

Consider the problem

(16)

s.t.
Tr (a

(b

We claim that the optimal solution to this problem always has
so that (16) and (12) are equivalent.

Let be the vector obtained by stacking the columns of
. Using Schur’s Lemma [21, p. 472], it is shown in

[14] that (16a) and (16b) are equivalent to the following matrix
inequalities:

(17a)

(17b)

Defining , (17a) becomes

(18)

We now add a scalar optimization parameter and note that the
optimization problem is equivalent to

s.t. (19)

It is evident that the optimal solution to this problem satisfies
; substituting this into the above problem yields the

required optimization problem (11). The objective function of
(11) is quasiconvex, and all its constraints are convex; therefore,
this is a quasiconvex optimization problem [20].

In the next section, we generalize the discussion to MPS es-
timators that optimize various error functions over different pa-
rameter sets. We also demonstrate a relation between MPS esti-
mation and minimax estimation, which provides further insight
into the idea of MPS estimation and yields an alternative method
for finding MPS estimators. In particular, this leads to a closed
form for an MPS estimator when the weighting matrix com-
mutes with , which occurs, for example, when .

III. GENERAL FORM OF MPS ESTIMATORS

The example presented in Section II is a special case of an
MPS estimator, which can be generalized to include different
error functions and parameter sets. In Section III-A, we provide
definitions that construct the general form of MPS estimators.
In Section III-B, we use these definitions to prove a useful re-
lation between minimax and MPS estimators. This relation will
be used in Section IV to find efficient algorithms for identifying
MPS estimators and, in some cases, allows us to derive closed
forms for MPS estimators.
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A. Definitions

Based on the system of measurements (1), the following set
of definitions constructs the MPS estimator.

Definition 1: The system properties required for the design
of a MPS estimator are the following three components:

1) An error function , which quantifies the degree to
which an estimator misrepresents the specific value .
The error function must be continuous.

2) A maximum error , which defines the error value re-
quired for successful operation of the system. This is a
deterministic real number that must be known to the de-
signer. An MPS estimator seeks to maximize the range of
values of for which the maximum error is guaranteed.

3) A class of parameter sets , which defines
feasible values of under varying parameter set bounds

. These sets obey three basic properties:
a) As increases, more values of become feasible, so

that the sets are nested:

(20)

b) The parameter sets are linearly expanding: For all

(21)

This requirement implies that the parameter sets
are centered on the origin: an assumption we adopt
without loss of generality.

c) The sets are compact (i.e., closed and bounded).
This requirement ensures the existence of a maximum
error for every parameter set.

Most common bounds fulfill the requirements for the class of
parameter sets above. The weighted norm

used in Section II is one example. Another example is the
box bound , where are
constants.

Definition 2: The parameter robustness of an estimator
(for particular system properties) is the largest parameter set

bound for which the maximum error is guaranteed, namely

(22)

Definition 3: An MPS estimator (among estimators of a
given class ) is an estimator such that, for any

(23)

Definition 4: A minimax (or bounded parameter set) esti-
mator for the compact parameter set , among estimators of
a given class , is an estimator minimizing the worst-case
error in . In other words, for any

(24)

Note that the maxima in (24) are well-defined, since the con-
tinuous function obtains a maximum over any compact set

. In addition, note that Definitions 3 and 4 do not imply the
unique existence of MPS or minimax estimators. In fact, for

some choices of , many estimators with infinite robustness
exist. However, we will see that in many cases of interest, the
MPS estimator exists and is unique.

The estimator presented in Section II is a special case of an
MPS estimator, which makes use of a particular choice of the
error function and of the class of parameter sets. Specifically, the
MSE (2) is used as the error function, ellipsoids (8) of increasing
size, and constant axis ratios are used as the nested parameter
sets, and the estimator is restricted to being linear.

B. Minimax and MPS Estimators

An interesting and useful relation exists between the MPS es-
timator and the minimax estimator : The MPS estimator
maximizes the parameter robustness within a range defined by
the known value of , whereas the minimax estimator minimizes
the worst-case error within a range defined by the known value
of .

To formalize this relation, let be a class of param-
eter sets, and define the worst-case error function

(25)

where is a minimax estimator for the parameter set .
Clearly, is nondecreasing since enlarging the parameter set
cannot decrease the worst-case error. This tradeoff between pa-
rameter set size and worst-case error is applicable to MPS esti-
mators as well. Indeed, if is strictly increasing in , there
exists a one-to-one correspondence between the parameter set
bound and the worst-case error . In this case, it is intu-
itive to expect a one-to-one correspondence between minimax
and MPS estimators. Thus, we have the following theorem.

Theorem 2: Consider an error function and a class
of parameter sets , as defined in Definition 1. Assume
that the worst-case error of (25) is strictly increasing in .
For any , an estimator is an MPS estimator with worst-case
error if, and only if, it is a minimax estimator over
the uncertainty set .

Proof: Suppose first that is an MPS estimator with
worst-case error for a given . Let ,
and notice that (we will show presently that ).
Assume by contradiction that is not a minimax estimator
over . Then, by Definition 4, there exists an estimator
such that

(26)

By Definition 1, the parameter sets expand linearly, so that for
sufficiently small , each of the values in the parameter set

is arbitrarily close to some value in . Furthermore, by
Definition 1, is continuous so that sufficiently small changes
in yield arbitrarily small changes in . Hence, there
exists a sufficiently small for which

(27)

Thus, the parameter robustness of is at least
, which contradicts the fact that is an MPS esti-
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mator. Hence, is a minimax estimator over , and its
worst-case error is . However, from (26), the worst-case
error of is . Since is strictly increasing, this im-
plies . We conclude that is minimax over .

We now prove that a minimax estimator is an MPS estimator.
For any , let be a minimax estimator for the un-
certainty set . Assume by contradiction that is not
an MPS estimator for the maximum error . Then,
there exists an with robustness such that

. Therefore

(28)

However, by (25)

(29)

Hence, achieves a lower worst-case error over than the
minimax estimator of , which is a contradiction. We con-
clude that must be an MPS estimator.

We have shown that when the worst-case error function
is strictly increasing in , there is a one-to-one correspondence
between minimax and MPS estimators. As we will see in the fol-
lowing sections, is indeed strictly increasing for many im-
portant cases, such as the MSE error function. However, this is
not always the case. For instance, if the error function decreases
with , then increasing the parameter set will not increase the
worst-case error.

Theorem 2 can be used to efficiently find an MPS estimator
using known minimax estimators. This is done using bisection
on the worst-case error function . Since the function is
strictly monotonic, a value of yielding , which equals

to any desired accuracy, can efficiently be found. From The-
orem 2, the minimax estimator equals the desired MPS
estimator.

Similarities notwithstanding, minimax and MPS estimators
differ qualitatively in the type of information on which their de-
sign is based. A minimax estimator requires that a bound on the
uncertain parameter be stated, whereas an MPS estimator re-
quires knowledge of the maximum error under which the system
still operates correctly. Thus, a proper choice of an estimator
should depend on the nature of the information available to the
designer.

IV. ESTIMATORS FOR VARIOUS ERROR FUNCTIONS

We now use Theorem 2 to develop MPS estimators for two
cases of interest: the MSE estimator (Section IV-A) and the re-
gret estimator (Section IV-B).

A. Linear MSE Estimators

Consider the MPS estimation problem when the error func-
tion of interest is the MSE, and the estimator is restricted to
being linear. In Theorem 3, we show that minimax and MPS cri-
teria for optimality are equivalent in these circumstances. This
allows us to find an MPS estimator whenever an algorithm for
finding a minimax estimator is known. In particular, Theorem

4 derives a closed form for the estimator when the uncertainty
sets are spherical.

Theorem 3: Suppose that the error function of interest is the
MSE (2), let be the class of linear estimators, and let
be a class of parameter sets, as defined in Definition 1. An esti-
mator is a linear minimax estimator over if, and only
if, it is a linear MPS estimator with maximum error equal to
the worst-case error of (25).

The proof of Theorem 3 is based on the following lemma.
Lemma 1: Given any bounded parameter set , there exists

a linear biased estimator whose MSE is lower than the MSE
of the least-squares estimator, for all .

Proof: For any bounded , there exists a finite such that
is bounded within a sphere of radius . The linear minimax

MSE estimator for this sphere is given by [14]

(30)

where is the MSE of the unbiased estimator (6). We now
show that achieves a lower MSE than the LS estimator for
all . The bias of is given by

(31)

where . The variance of is

Tr (32)

Using (2), we have, for all

MSE (33)

(34)

(35)

(36)

Hence, for all , the MSE using is lower than the MSE
for an unbiased estimator.

Proof of Theorem 3: By Theorem 2, it is sufficient to show
that is strictly increasing. Let be a linear
minimax MSE estimator over the set . From (2)–(4), we have

Tr (37)

Lemma 1 states that there exists a biased estimator that achieves
lower MSE than the LS estimator for any . Since the LS
estimator achieves the lowest possible MSE among all unbiased
estimators, it follows that the minimax MSE estimator must be
biased, i.e., .

We now show that is obtained
only on the boundary of . Let be a point that is not
on the boundary. Then, there exists a sufficiently small sphere ,
centered on , such that . In particular, necessarily
includes a point (for a sufficiently small ). Since

, we have

(38)
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Thus, is not obtained at ; rather,
the maximum is obtained only on the boundary of . There-
fore, by shrinking the parameter set, the worst-case error must
decrease: For any

(39)

However, since is a minimax MSE estimator for

(40)

Together with (39), this implies that for all
, which completes the proof.
As we have seen, using the MSE as an error function, the set

of minimax estimators equals the set of MPS estimators for a
given class of parameter sets. Thus, finding an MPS estimator
for a given maximum error becomes simply a matter of
finding a minimax estimator whose worst-case error is . In
particular, when a closed form is known for the set of minimax
estimators and their worst-case errors, one can find a closed
form for MPS estimators as well. This is the case for the class
of ellipsoidal parameter sets, as demonstrated by the following
theorem.

Theorem 4: Consider the MSE error function and define the
ellipsoidal parameter sets . Let
be the LS estimator (5), and let be the MSE of (6).

a) Suppose and have the same unitary eigen-
vector matrix so that , where

diag , and where
diag with . An
MPS estimator for a given maximum error is given by

(41)

where

(42)

(43)

and

(44)

b) Suppose , i.e., the parameter sets are spherical. In
this case, an MPS estimator is

(45)

The parameter robustness of this estimator is given by

(46)

Proof: To prove a), we seek an estimator that guarantees
an error not exceeding for as large a parameter set as pos-
sible. We begin with the case . In this case, the allowed
error is larger than : the MSE obtained by the LS estimator.
Since the LS estimator guarantees this error for any value of ,

its parameter robustness is infinite; thus, is an MPS esti-
mator for this trivial case. We now consider the case .
From Theorem 3, an MPS estimator is also a minimax estimator.
It is shown in [14] that the minimax MSE estimator for a given
parameter set is given by

(47)

where

(48)

and is defined in (44). The worst-case error for this estimator
is

(49)

We require a value of for which the worst-case error equals
. Equating (49) with , we arrive at (43).
To prove part b), note that the case is a special case

of a) in which is unitary, and . Substituting in
the MPS estimator obtained for a), we observe that , and
thus, . Furthermore

Tr Tr (50)

and thus

(51)

Substituting these results into (41) yields the required estimator
(45). We have already seen that the parameter robustness when

is infinite. To find the parameter robustness when
, notice that (48) is now

(52)

Combining this with (51) yields

(53)

which is the required result (46).
It is sometimes useful to find the actual MSE obtained by an

MPS estimator. The MSE can be calculated for the matching
minimax estimator. For example, it has been shown in (33) that
the MSE of the minimax estimator for a spherical parameter set

is given by

MSE (54)

Substituting the value of from (46), we have

MSE (55)

Thus, the MSE of the maximum spherical parameter set esti-
mator is a linear function of . This result is useful for com-
paring the performance of the MPS estimator with other estima-
tors, as we demonstrate in Section V.
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B. Linear Regret Estimators

We now present a different example of an MPS estimator: one
that guarantees a worst-case regret [15]. The regret is defined as
the difference between the MSE and the best MSE obtainable
using a linear estimator , which is a function of .
Because we are limiting the discussion to linear estimators, even
an estimator with knowledge of the value of cannot achieve
zero MSE. Minimizing the regret is intuitively appealing as it
attempts to disregard errors resulting from limitations of linear
estimators. It has been shown [15] that the regret is given by

Tr

(56)

In this section, we limit our discussion to parameter sets of the
form , where is a Hermitian posi-
tive definite weighting matrix. For analytical tractability, we fur-
ther restrict the discussion to the case where and
have the same eigenvectors. We show that under these assump-
tions, the linear MPS regret estimator is equivalent to the linear
minimax regret estimator. It follows that the MPS estimator
can be found as easily as the minimax estimator. In particular,
closed-form solutions are known for some values of and
[15].

Theorem 5: Suppose that the error function of interest is the
regret of (56). Let be the class of linear estimators, and let

be a class of parameter sets, where
is a Hermitian positive definite weighting matrix,

is a diagonal matrix with diagonal elements , and
is an eigenvector matrix of . An estimator is
a linear minimax regret estimator over if, and only if, it is
a linear MPS regret estimator with maximum error equal to
the worst-case error of (25).

Proof: By Theorem 2, it is sufficient to show that is
strictly increasing with . It has been shown in [15, Th. 1] that
under the conditions of Theorem 5, the linear minimax regret
estimator is given by

(57)

where is a diagonal matrix whose diagonal elements
are the solution to the optimization problem

(58)

s.t.
a
b

where

(59)

and are eigenvectors of such that
, with diag . In (58), the optimal value

of is the worst-case regret . (Our notation differs from
that of [15] in that we define .)

We first show that (58b) is an active constraint in the optimiza-
tion problem. Assume by contradiction that (58b) is inactive.
Then, by the Karush–Kuhn–Tucker conditions for optimality
[20, Sec. 5.5.3], (58) is equivalent to

s.t. (60)

for which the optimal solution is . However, for
any

(61)

contradicting the fact that (58b) is inactive. Thus, for the optimal
value of and , there exists at least one active for which

.
Next, define

(62)

Let us study the behavior of when is changed.
Observe that

(63)

Thus, is strictly increasing with . Therefore, if is
decreased, then is decreased
for all active , and the constraint (58b) is relaxed, which implies
that the optimal value of is also decreased. Since this value
equals , we conclude that is strictly monotonic in ,
which completes the proof.

In the following section, we make use of the estimators de-
veloped above in the context of a channel estimation problem.

V. APPLICATION: CHANNEL ESTIMATION

As an application of the MPS estimator, we now consider the
problem of preamble-based channel estimation. Specifically,
we seek to estimate the impulse response of an unknown
channel using a training sequence (also called a preamble),
which is transmitted along with payload data. The received
symbols are compared to the known preamble sequence, and
this information is used to obtain an estimate of the channel
response. Knowledge of the channel response is required in
many detection algorithms, for example, in maximum likeli-
hood sequence estimation (MLSE) [22].

Let denote the unknown channel im-
pulse response of known length , and let

(64)

denote the known vector of preamble symbols of length . The
corresponding received symbols are given by

(65)
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where is additive white noise with
variance . Defining

...
...

. . .
...

(66)

we have

(67)

The classical approach to channel estimation using a pre-
amble is least-squares estimation of the unknown, determin-
istic vector from the measurements [22]–[24]. The estimated
channel in this case is

(68)

This estimator minimizes the measurement error .
However, we are interested in minimizing the estimation error

, as the channel estimate is used for further pro-
cessing (e.g., detection of payload data). For example, in [23],
an increase in channel estimation error is assumed to be equiv-
alent to an increase in noise level.

Unfortunately, the channel estimation error is a function of
the unknown channel ; therefore, direct minimization of is not
possible. Were we to know that lies within some bounded set

, a minimax MSE approach would allow us to minimize the
worst-case error among all possible channels within . How-
ever, we generally only have a vague understanding that channel
dispersion is limited and that most of the energy in lies in the
first few components.

On the other hand, the desired channel estimation error is
a parameter with known implications for the system designer.
In particular, the maximum channel estimation error may be
treated as an added noise source [23]. In this case, the estima-
tion error requirement is a design parameter; it is to be chosen
together with other system properties such as receiver signal to
interference plus noise ratio (SINR) requirements. We can use
the MPS estimator to maximize the set of channels for which
a required estimation error is achieved, assuming that the
given maximum estimation error is critical for system opera-
tion, and should be guaranteed for as wide a range of channels
as possible.

Let be a perfect (nondispersive) channel,
and let . We construct a simple class of parameter
sets by defining

(69)

This model assumes that most of the channel energy is con-
centrated in the first tap and that deviations from this nominal
value are fairly uniform among the channel taps. More elaborate
models may be constructed if additional information about the
channel properties is known.

We seek an estimator guaranteeing estimation error of or
less for as large a parameter set as possible. From (67), we have

(70)

Fig. 1. Worst-case error of various minimax MSE channel estimators.

By Theorem 4, the maximum error must first be compared
with Tr , which is the MSE of the LS estimator.
If , then an error of is allowable. Such an error is
guaranteed by the LS estimator for any value of so that the LS
estimator has infinite parameter robustness in this case. How-
ever, if , then an MPS estimator is given by

(71)

and thus

(72)

To compare the performance of the LS and MPS channel
estimators, we consider the problem of estimating a seven-tap
channel using the optimal 14-symbol binary phase shift keying
(BPSK) preamble suggested in [23]. We assume that the noise
variance is . The worst-case error of various minimax
MSE estimators is given by (33) and plotted in Fig. 1. By The-
orem 4, all of these estimators are also MPS estimators. An en-
gineer constructing a channel estimation system should use such
a plot as a design tool, as it demonstrates the tradeoff between
channel estimation error and the range of channels for which the
error can be achieved.

Suppose we choose to design our system such that a channel
estimation error of is to be tolerated; this choice
covers a reasonably sized parameter set while substantially re-
ducing the estimation error. We note that the choice of is
accompanied by appropriate design steps, which will allow the
receiver to handle the resulting estimation errors (for example,
error correction capabilities suitable for such noise levels). The
MSE (55) of the resulting MPS estimator is compared with the
MSE of the LS estimator in Fig. 2.

To verify that the reduced estimation error resulting in im-
proved detection performance, a BPSK detection scenario was
simulated [25]. A signal containing the 14 preamble symbols
and 100 random data symbols was generated. Channels were
simulated by choosing each tap to be an indepen-
dent Rayleigh-distributed variate with parameter , where
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Fig. 2. Channel estimation error of MPS and LS estimators for various
channels.

Fig. 3. BER for various channels with the LS and MPS channel estimators.

is the channel dispersion factor, and is chosen
so that . Thus, results in a nondispersive
channel, whereas indicates a channel for which the taps
are identically distributed (maximum channel dispersion). The
channel was estimated using both the LS and MPS estimators
described above, and the resulting channel estimate was used
for MLSE detection of the data symbols. The simulation was
repeated to obtain an estimate of the bit error rate (BER). The re-
sults are presented in Fig. 3. For comparison, a null estimator is
also plotted; this “estimator” assumes a nondispersive channel,
i.e., .

The MPS estimator is a compromise between the LS esti-
mator and the null estimator: The LS estimator has modest esti-
mation error requirements but achieves them for all values of ;
the null estimator can be viewed as an estimator requiring zero
estimation error and achieves this requirement only for the nom-
inal channel . MPS estimators provide a continuum of choices
between these two extremes, allowing the designer to choose a
point in the tradeoff between the estimation error requirement

and the size of the parameter set for which the requirement is
achieved. An appropriate choice of leads to an estimator that
considerably outperforms the LS estimator for low- and mod-
erate-dispersion channels and fails only when channel taps are
nearly identically distributed.

VI. MAXIMUM NOISE LEVEL ESTIMATION

Throughout the paper, we have assumed that the noise co-
variance is known. In practice, this is rarely the case,
and the covariance must itself often be estimated from measure-
ments. In this section, we consider the case

(73)

for some unknown deterministic noise level and some known
covariance matrix [26]. For example, when the noise is
i.i.d., , and is the noise variance. The estimation
techniques used so far require complete knowledge of the noise
covariance. Thus, minimax or MPS approaches cannot be di-
rectly applied to this problem unless the noise parameters are
estimated from the measurements; this increases computational
complexity and may be unreliable in some situations.

As an alternative approach, we propose to estimate from the
observations while guaranteeing maximum error
requirements for as large a range of noise levels as possible. To
this end, we assume that for a known parameter set
and require a maximum error level . We seek the estimator
that guarantees an error not exceeding for all , and
for as large a noise level as possible; this will be referred to
as the maximum noise level (MNL) estimator. As we will show,
the MNL estimator is related to the minimax estimator, allowing
us to efficiently find the MNL estimator whenever the minimax
estimator is known.

Formally, we define an error function , such as the
MSE or the regret, and require some level of performance

to be satisfied over the entire range .
We can now define a new type of maximum set estimator in a
manner analogous to the definition of the MPS in Section III-A,
as follows.

Definition 5: The noise robustness of an estimator is
defined as the maximum for which the performance require-
ment is satisfied:

(74)

Definition 6: The MNL estimator (among a class of es-
timators ) is the estimator maximizing the noise robustness
among all estimators in , for given , and

(75)

We now show that if the error function is continuous in
, then the MNL estimator is a minimax estimator. The error

function is indeed continuous for many cases of interest, such
as the MSE and the regret.

Theorem 6: Suppose the error function of interest is con-
tinuous in . Then, the MNL estimator is a minimax esti-
mator for the parameter set , with noise level .
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Proof: Assume by contradiction that is not a minimax
estimator. Then, there exists such that

(76)

However, since is continuous in , a sufficiently small
change in causes an arbitrarily small change in . Thus,
there exists such that

(77)

Hence, , contradicting the fact
that is an MNL estimator.

A consequence of this theorem is that an MNL estimator can
be found if an algorithm for finding a minimax estimator is
known. This can be performed efficiently using a line search,
in which minimax estimators are calculated for various noise
levels, until a minimax estimator whose worst-case error equals

is found. Alternatively, as the following theorem demon-
strates, a closed form for a linear MNL estimator can be identi-
fied when a closed form for the minimax estimator is known.

Theorem 7: Let , and let be the
MSE. For a given maximum error , a linear MNL estimator
is given by

(78)

where is the LS estimator (5).
Proof: We first consider the case . In this case,

the performance requirements are extremely lax, and many es-
timators satisfy these requirements for any noise level. In par-
ticular, the estimator has an MSE of , for which the
worst case is ; this is true regardless of
the noise level. Thus, is an MNL estimator (with infinite
noise robustness) for the trivial case .

We now turn to the more interesting case . By The-
orem 6, is a minimax estimator for some noise level .
The minimax estimator for the parameter set and for a given
noise level is given by [14]

(79)

where Tr is the MSE of the LS estimator
with . As we have seen in (35) of Lemma 1, the worst-
case error for this estimator within the set is given by

(80)

The critical value of for which this value exactly equals
is given by

Tr
(81)

Substituting this value of into (79) yields the required esti-
mator (78).

It is instructive to compare the closed forms obtained for the
MPS estimator [Theorem 4(b)] and the MNL estimator (The-
orem 7) when spherical parameter sets are used. Both estimators
take the form of a linear minimax MSE estimator for a spherical
parameter set, and hence, they are shrunken least-squares esti-
mators [7]. They can thus be viewed as a compromise between
the least-squares estimator and the zero estimator. However, for
the MPS estimator, the shrinkage factor increases with the max-
imum allowed error , whereas for the MNL estimator, the
shrinkage factor decreases with . The reason for this is as fol-
lows. When the allowed error is increased, an increase in either
the parameter set or noise level is allowed. However, a larger
parameter set is achieved by an estimator closer to the LS esti-
mator (which provides constant error for all ), whereas a larger
noise level is achieved by an estimator closer to the zero esti-
mator (which provides zero error, regardless of noise level, for
the nominal value ). Thus, increasing the maximum al-
lowed error has opposite effects, depending on whether the goal
is to increase the robustness to uncertainty in the parameter set
or in the noise level.

VII. DISCUSSION

In this paper, we considered the problem of parameter estima-
tion given a maximum allowed estimation error. This is appro-
priate for systems designed to function with a known and toler-
able error margin, such as communication systems designed for
a certain SNR level. We have developed estimators that guar-
antee the required estimation error for as wide a range of op-
erating conditions as possible. The goal of this paper has been
to show that estimators that make use of given estimation error
requirements outperform classical approaches such as the LS
estimator.

The maximum set estimation concept was first applied to find
the largest parameter set such that performance is guaranteed
for any parameter in . This results in the MPS estimator.
Next, the MNL estimator was developed; this estimator maxi-
mizes the range of noise variances for which the required esti-
mation error is guaranteed.

As we have seen, in many cases, the maximum set estimator
is equivalent in form to a matching minimax estimator: The
maximum set estimator for a given error requirement equals
a minimax estimator whose worst-case error is . However,
while minimax estimators assume a given bound on the pa-
rameter set, maximum set estimators assume a requirement
on the obtained estimation error. Thus, these estimators are
used under different circumstances, and their similarity in form
merely serves as a mathematical tool for finding maximum set
estimators based on known results for minimax estimators.

The maximum allowed error is often a function of system
design parameters and can be influenced by design decisions. In
such cases, a plot of the worst-case error as a function of the size
of the parameter set (as in Fig. 1) can be used as a design tool.
Such a plot can be interpreted in two complementary ways. It
describes the worst-case error obtained if a minimax estimator is
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used with a given parameter set bound. However, it also defines
the size of the parameter set obtained if an MPS estimator is
used with a given maximum error. Thus, such a plot can be used
to select a meaningful value for the maximum error, based on
the tradeoff between estimation error and parameter set bound.

The choice of an appropriate estimator for a given problem
depends on the data available to the designer. Knowledge of
the second-order statistics of the parameters , for example,
leads to the well-known Wiener estimator, which is optimal in
an MSE sense. However, partial information can also be used to
improve estimation performance. The maximum allowed esti-
mation error is an example of added information, which may be
known to the designer and, as we have demonstrated, can often
result in improved performance.
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