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ABSTRACT An analog-to-digital converter (ADC) ’s dynamic range is critical during sampling analog
signals. A modulo operation prior to sampling can be used to enhance the effective dynamic range of the
ADC. Further, the sampling rate of ADC also plays a crucial role, and it is desirable to reduce it. The finite-
rate-of-innovation (FRI) signal model, ubiquitous in many applications, can be used to reduce the sampling
rate. In the context of modulo folding for FRI sampling, existing works operate at a very high sampling rate
compared to the rate of innovation (RoI) and require a large number of samples compared to the degrees of
freedom (DoF) of the FRI signal. Moreover, these approaches use infinite-length filters that are practically
infeasible. We consider the FRI sampling problem with a compactly supported kernel under the modulo
framework. We derive theoretical guarantees and show that sampling above the RoI could uniquely identify
FRI signals. The number of samples for identifiability is equal to the DoF. We propose a practical algorithm
to estimate the FRI parameters from the modulo samples.We show that the proposed approach has the lowest
error in estimating the FRI parameters while operating with the lowest number of samples and sampling rates
compared to existing techniques. The results help design cost-effective, high-dynamic-range ADCs for FRI
signals.

INDEX TERMS Finite-rate-of-innovation (FRI) signals, sub-Nyquist sampling, modulo sampling, high-
dynamic range ADCs, unlimited sampling.

I. INTRODUCTION
Finite-rate-of-innovation (FRI) signals have few degrees of
freedom, which aids in sub-Nyquist sampling [1]. A popular
FRI signal model is one where the signal consists of a linear
combination of delayed copies of a known pulse. Such a
model is ubiquitous in several time-of-flight applications
such as radar and ultrasound imaging [2], [3], [4], [5], [6],
[7], [8]. A typical sampling and reconstruction framework
for such signals consists of a tailor-made sampling kernel
followed by a sampler or analog-to-digital converter (ADC)
and a parameter estimation block. The sampling kernels
are designed to spread the FRI signal information such
that by using a low-rate, finite number of samples, the
parameter-estimation block estimates the time-delays and
amplitudes [7], [9], [10], [11], [12]. The key focus of prior
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works on FRI was to reduce the sampling rate of the ADCs
and, consequently, their cost and power consumption.

Apart from the sampling rate, another critical parameter
of an ADC is its dynamic range. The signal’s dynamic
range should be well within the ADC’s dynamic range.
Otherwise, the signal will be clipped, and perfect recovery
is not guaranteed from the samples. In the FRI framework,
the dynamic range of the signals may vary significantly due
to a large variation in the amplitudes of the targets in time-of-
flight imaging applications. Hence, the problem of designing
an ADC that can sample a wide range of FRI signals without
clipping and simultaneously operating at the lowest possible
rate is of great importance. This problem is the focus of this
paper.

Amodulo preprocessing step can be used prior to sampling
to address the dynamic range issue. The modulo operation
folds or wraps the signal to keep it within the ADC’s
dynamic range prior to sampling. In this way, the ADC can
sample signals with a very high dynamic range. Due to the
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non-linearity of the modulo operation, perfect reconstruction
of the original signal from the modulo or wrapped signal
samples may not be possible, and additional steps may be
required.

Bhandari et al. [13] showed that theoretically, it is possible
to reconstruct a bandlimited signal from its modulo samples
perfectly, provided that the sampling rate is higher than
the Nyquist rate. The authors also proposed an algorithm
based on the higher-order differences (HoD) to unwrap the
modulo samples up to a constant factor. In this algorithm,
the oversampling factor (OF) is (2πe) ≈ 17, where e is the
Euler’s constant. Romonov and Ordentlich [14] proposed an
alternativemethodwhere the folded samples can be estimated
from the unfolded ones by using a linear prediction (LP)
approach provided that OF > 1. Bhandari et al. [15] pre-
sented results for periodic bandlimited (PBL) signals. They
showed that the folding instants of the modulo signal could
be determined by using the out-of-band Fourier coefficients
of the modulo signal. The sampling rate is proportional to
the number of Fourier coefficients to be determined, which
depends on the number of folding instants. Although an upper
bound on the number of folding instants is not provided,
it increases as the dynamic range of the ADC decreases [15].
Recently, we proposed a robust and sampling-efficient
unfolding algorithm for bandlimited signals [16], [17]. The
algorithm is shown to operate close to the Nyquist rate
compared to existing algorithms for bandlimited signals.

There are several extensions of modulo sampling for
different signal models and tasks such as wavelets [18],
a mixture of sinusoids [19], multi-dimensional signals [20],
sparse vector recovery [21], [22], the direction of arrival esti-
mation problem [23], [24], [25], computed tomography [26],
graph signals [27], neural recording [28], spike covariance
estimation [29], modulo hysteresis [30], [31], [32], denoising
modulo samples [33], [34], [35], [36], bandpass signals [37],
multiple-input multiple-output systems [38], array signal
processing [39], and more. Extensions were also proposed
for FRI signals [40], [41]. In [40] and [41], the authors used
a periodic lowpass filter (LPF) as a sampling kernel, because
of which the filtered signal can be written as a PBL signal.
The signals are then folded and sampled. For reconstruction,
in [40], the HoD-based approach [13] is first applied for
unfolding, and then the annihilating filter (AF) method is
used for FRI parameter estimation [42]. In [41], authors used
a Fourier-Prony (FP) method proposed in [15] where the
residual signal (difference between folded samples and the
true/unfolded samples) is first estimated and then used AF
to determine FRI parameters. This approach requires knowl-
edge of the number of foldings of the signal. In [41], authors
proposed to use a model-order estimation approach to deter-
mine the number of folds. Recently, a two-channel approach
was proposed to sample FRI signals where the sampling can
be done at the rate of innovation at each channel [43].
The unfolding results discussed for bandlimited sig-

nals [13], [14] and for PBL [15] can be extended to FRI

signals by using an LPF and a periodic-LPF, respectively.
For example, the LPF output of an FRI signal is bandlimited.
Hence, unwrapping algorithms of [13] or [14] can be used
in the unfolding step of the two-stage reconstruction process
discussed above. However, due to the infinite support of
the LPF and the filtered output, countably infinite unfolded
samples are required to determine the Fourier samples for
FRI recovery. Similarly, one can use a periodic LPF as
in [40] or a sum-of-sincs (SoS) kernel [7], [12] to convert
an FRI signal to an equivalent PBL signal. Then, the
algorithm in [15] can be used for unfolding. However,
theoretical identifiability results for PBL signals are not
derived in [15]. The identifiability results for bandlimited
signals from modulo-folded samples cannot be extended to
the PBL signal model. This is because of the discrete nature of
the spectrum in the periodic case as opposed to the continuous
spectra of convention bandlimited signals.

From the above survey, we summarize the shortcomings of
existing approaches:

• The sampling kernel is a critical component in an FRI
sampling framework. Typically, it is desirable to have
compactly supported sampling kernels from a practical
implementation aspect. However, existing approaches
for modulo recovery are based on infinite support
sampling kernels.

• Theoretical guarantees for uniquely identifying FRI
signals from modulo samples are missing for compactly
supported kernels. Since identifiability results are inde-
pendent of any algorithm, they can act as a benchmark
to evaluate the efficiency of any algorithm.

• Existing algorithms for modulo sampling of FRI
signals operate at a much higher sampling rate than
the RoI. High sampling rates lead to expensive and
power-consuming ADCs and require higher storage and
computational costs. In addition, these methods require
a higher number of measurements than the degrees of
freedom of the FRI signals.

• Existing algorithms determine the true samples from
their modulo ones up to a constant factor. This unknown
factor is neglected in [40] during reconstruction.
An approach to determine annihilating filter coefficients
in the presence of the unknown factor was discussed
in [41]. However, the approach will not generally work
and require additional constraints, as discussed in this
paper.

In this paper, we address these shortcomings. We consider
the problem of modulo sampling of FRI signals by using
a compactly supported SoS kernel. Our first objective is
to derive identifiability results independent of any recovery
algorithm and then develop an efficient algorithm in terms
of sampling rate and the number of measurements. In this
context, our main contributions are summarized as follows.

• We consider modulo sampling with a compactly sup-
ported SoS kernel for FRI signals. It is shown that the
output of an SoS kernel is a PBL signal [7], [12]. The
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PBL signal is folded by using a modulo operator and
then sampled. We show that an L-order PBL signal can
be uniquely identifiable up to a constant factor from their
modulo samples if the number of samples per interval is
greater than or equal to 2L + 1 and is prime. We also
show that 2L + 1 samples are necessary. Due to the
discrete nature of the Fourier spectra of PBL signals,
the identifiability results of [13], which are derived for
continuous spectra, are not applicable.

• To derive the FRI parameters from PBL samples
(samples of the output of the SoS kernel), AF can
be used. However, the samples are identifiable up to
a constant factor, and AF cannot be directly applied.
To address this issue, we consider three solutions.
The first is oversampling, where 4L + 1 samples are
considered in the first approach. In the second approach,
only 2L + 1 samples are used by assuming that the time
delays are on a grid. The third approach requires the
amplitudes to be positive. This approach does not need
oversampling or an on-grid assumption.

• We propose a sampling-efficient algorithm to estimate
the FRI parameters from modulo samples. We use Itoh’s
approach [44] or the first-order difference approach [13]
for unfolding the samples of the SoS kernel. For
unfolding, we derive constraints on the SoS filter
coefficients. We then establish bounds on the minimum
sampling rate and the number of measurements for
unfolding and FRI parameter estimation. In particular,
we show that 2L + 1 modulo samples are sufficient for
estimating the FRI parameters.

• We present simulation results where the proposed
algorithm is compared with existing approaches [13],
[15], [40]. We show that our method requires the lowest
sampling rate and number of samples compared to [13],
[15], and [40].

The paper is organized as follows. The next section
presents the signal model and an explicit problem for-
mulation. In Section III, we discuss the FRI sampling
framework in the absence of modulo operation, which will
be helpful in understanding the later sections. In Section IV,
we present theoretical guarantees for the modulo-FRI frame-
work. A practical algorithm is presented in Section V. The
proposed algorithm is compared with existing results in
Section VI, followed by conclusions.

II. PROBLEM STATEMENT
Consider a class of real-valued FRI signals C(h,L, amax,Td )
where each f ∈ C(h,L, amax,Td ) can be written as

f (t) =

L∑
ℓ=1

aℓh(t − tℓ), (1)

where the FRI pulse h(t) and the FRI parameters {aℓ, tℓ}Lℓ=1
satisfy the following assumptions.
A1 The pulse h(t) is known, real-valued, and time-limited

to an interval [0,Th].

A2 The number of pulses L is known.
A3 For ℓ = 1, 2, · · · ,L, tℓ ∈ (0,Td ] ⊂ R for known Td .
A4 The amplitudes are bounded by amax: |aℓ| ≤ amax, ℓ =

1, · · · ,L.

The objective is to devise a reconstruction framework to
recover {aℓ, tℓ}Lℓ=1 from low-rate or sub-Nyquist samples.
This is achieved by designing a sampling kernel g(t) such
that from a finite number of sub-Nyquist samples y(nTs) of
the filtered FRI signal y(t) = (f ∗ g)(t), the FRI parameters
{aℓ, tℓ}Lℓ=1 are computed uniquely. We discuss the standard
sampling and reconstruction approach in the next section.
In practice, the analog-to-digital converter (ADC) has a

finite dynamic range, [−λ, λ], and, typically, signals beyond
this range are clipped before being sampled. Clipping results
in loss of information. One way to overcome clipping is to
map the signal to the dynamic range of the ADC. In this
work, we consider a modulo operation on the analog signal to
restrict to [−λ, λ] before sampling (cf. Fig. 1). For any a ∈ R
and λ ∈ R+, we define a modulo operationMλ(·) as

Mλ(a) = (a+ λ) mod 2λ − λ. (2)

The modulo samples are denoted by yλ(nTs) =

Mλ (y(nTs)). The objective is to design a sampling kernel
and parameter estimation technique such that {aℓ, tℓ}Lℓ=1 are
determined from modulo samples yλ(nTs) measured at a sub-
Nyquist rate. In addition, it is desirable that the number
of samples is close to the number of degrees of freedom
(DoF) given by 2L. In our formulation, we assume that
the time-domain signals are real-valued. The framework
could be extended to complex-valued signals by modifying
the modulo-operator to fold both real and imaginary parts
independently. In the next section, we discuss sampling
and recovery in the absence of the modulo operation. The
discussion will aid in deriving and comparing the results in
the presence of modulo.

III. FRI SAMPLING AND RECOVERY WITHOUT MODULO
The FRI sampling and reconstruction problem is posed as a
problem of designing a sampling kernel g(t) such that from a
finite number of filtered samples of y(t) = (f ∗ g)(t) one can
determine the FRI parameters {aℓ, tℓ}Lℓ=1. In particular, the
goal is to recover the 2L unknowns from samples {y(nTs)}Nn=1
such that N is close to 2L and the sampling interval, Ts, is as
large as possible.

The design of the sampling kernel is tightly coupled
to the reconstruction strategy. Next, we discuss a widely
used Fourier-domain recovery method and then examine the
sampling kernel that enables this reconstruction [1], [7], [12].

A. FOURIER-DOMAIN RECONSTRUCTION
The Fourier transform of f (t) is given as

F(ω) =

∫
f (t)e−jωtdt = H (ω)

L∑
ℓ=1

aℓ e−jωtℓ , (3)
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FIGURE 1. Kernel-based FRI sampling and reconstruction approach: g(t) denotes the sampling kernel; the
modulo-ADC consists of a modulo folding operator followed by a conventional ADC with dynamic-range
[−λ, λ]; Ts denotes the sampling rate.

where H (ω) is the Fourier transform of h(t). Next, consider
the following samples

S(kω0) =
F(kω0)
H (kω0)

=

L∑
ℓ=1

aℓ e−jkω0tℓ , k ∈ K, (4)

whereK is a set integers andω0 is the sampling interval in the
frequency domain. We assume1 that H (kω0) ̸= 0 for k ∈ K.
It can be shown that 2L consecutive samples of S(kω0) are
sufficient to uniquely identify {aℓ, tℓ}Lℓ=1 if ω0 =

2π
Td

[1].
In practice, AFmethod can be used to determine {aℓ, tℓ}Lℓ=1

from {S(kω0)}k∈K provided that |K| ≥ 2L. As the AFmethod
plays a crucial role in designing an algorithm in the presence
of modulo operation, we discuss the AF method at the end of
this section.

Given that 2L Fourier samples are sufficient to identify
the FRI parameters, the next question is how to compute
the Fourier samples {F(kω0)}k∈K as {H (kω0)}k∈K are
pre-computed from known h(t). In the following, we discuss
a sampling kernel-based approach to determine {F(kω0)}k∈K
from sub-Nyquist samples of the filtered signal.

B. SAMPLING KERNEL AND SAMPLING
Let us consider a sum-of-sincs kernel [7] with impulse
response

g(t) = rect
(
t
Tg

)∑
k∈K

ckejkω0t , (5)

where rect
(
t
Tg

)
= 1 for t ∈ [0,Tg] or zero otherwise.

To keep the filter response and its output real-valued,
we choose K as

K = {−K , · · · ,K }, where K ≥ L, (6)

and ck = c∗
−k . The choice of the set K implies that |K| ≥

2L + 1, that is, one sample more than the DoF 2L. For Tg >

Th+Td , it can be shown that (cf. [12], [45]) the filtered signal
y(t) = (f ∗ g)(t) is given as

y(t) =

∑
k∈K

ckejkω0t F(kω0) for t ∈ Tobs, (7)

where Tobs = [Th + Td ,Tg].
The filtered signal in Tobs is a linear combination of

K Fourier samples of the input signal f (t). Upon uniform

1The assumption that the spectral samples of the pulse h(t) are non-
vanishing is, typically, satisfied by many practically applied pulses due to
their small time-support and large bandwidth.

sampling of y(t) within the interval Tobs we have

y(nTs) =

∑
k∈K

ckejkω0nTs F(kω0), n ∈ N , (8)

where Ts is sampling interval and the set of sampling indices
N is given by

N = {Nmin, · · · ,Nmax},

where Nmin =

⌈
Th + Td
Ts

⌉
, Nmax =

⌊
Tg
Ts

⌋
. (9)

The relation in (8) denotes a set of |N | linear equations
with |K| unknowns. To compute |K| Fourier samples it
is necessary to have |N | ≥ |K| time-domain samples
which can be ensured by setting Tg ≥ Th + Td + |N |Ts.
In addition, to uniquely determine {F(kω0)}k∈K from the
samples {y(nTs)}n∈N , it is necessary to ensure the elements of
the set {ejkω0Ts}k∈K are distinct. This condition is satisfied if
we have |K|ω0Ts ≤ 2π , that is, Ts ≤

Td
|K|

. To summarize,
the FRI parameters can be computed from the samples
{y(nTs)}

Nmax
Nmin

provided that Tg ≥ Th + Td + |N |Ts and

Ts ≤
Td
|K|

. (10)

Since |K| ≥ 2L, the above result implies that the optimal
sampling interval is Ts,opt =

Td
2L and RoI is 2L

Td
. The

minimum number of time samples required to identify the
FRI parameters is 2L, which is equal to the FRI signal’s DoF.
The results are summarized in the following theorem [7],
[12].
Theorem 1 (Sampling and Reconstruction of FRI Signals):

Consider FRI signals in (1) that satisfy assumptions (A1)-
(A3). The FRI parameters can be uniquely recovered from
the filtered samples {y(nTs) = (f ∗ g)(nTs)}n∈N where the
impulse response of the filters g(t) is given as in (5) and the
sampling setN as in (9), provided that |N | ≥ |K| ≥ 2L and
Ts ≤

Td
|K|
.

The FRI signals have finite support and finite degrees of
freedom over the support. Hence, the conditions for perfect
recovery are stated both in terms of the sampling rate and the
number of samples. This fact plays an important role in the
recovery algorithm of the modulo-based sampling scheme.

C. ANNIHILATING FILTER (AF) APPROACH
Define a discrete sequence as

s[k] = S(kω0) =
F(kω0)
H (kω0)

=

L∑
ℓ=1

aℓ e−jkω0τℓ , k ∈ K.

(11)
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Consider a L+ 1-length sequence {x[0], x[1], · · · , x[L]} and
let the convolution (s ∗ x)[k] for L − K ≤ k ≤ K be

(s ∗ x)[k] =

L∑
ℓ=1

aℓX (ejω0τℓ )e−jkω0τℓ , (12)

where X (z) is the z-transform of the sequence x[k].
Consider determining the sequence x[k] such that (s∗x)[k] =

0,L − K ≤ k ≤ K , that is, a filter that annihilates
the sequence s[k]. From (12), we rewrite the annihilation
problem as Vx̃ = 0 where V is a Vandermonde matrix of
size (2K − L + 1) × L given by

e−jω0(L−K )τ1 e−jω0(L−K )τ2 . . . e−jω0(L−K )τL

e−jω0(L−K+1)τ1 e−jω0(L−K+1)τ2 . . . e−jω0(L−K+1)τL

...
...

. . .
...

e−jω0Kτ1 e−jω0Kτ2 . . . e−jω0KτL


(13)

and x̃ = [a1X (ejω0τ1 ) a2X (ejω0τ2 ) · · · aLX (ejω0τL )]T. Since
τℓs are distinct, for K ≥ L, the matrix V has full column
rank. Hence (13) holds if and only if X (ejω0τℓ) = 0 for
ℓ = 1, 2, · · · ,L, that is, if the zeros of Fourier transform
of x[k] are located at {ejω0τℓ}

L
ℓ=1. Since x[k] is a sequence

of length L + 1, it has L zeros, and there exists a unique
sequence x[k] that annihilates s[k]. Once the annihilating
filter is determined, {tℓ}Lℓ=1 are estimated from its zeros.
The annihilating filter x[k] is determined from the sequence
s[k] by rewriting (s ∗ x)[k],L − K ≤ k ≤ K as a set of
homogeneous equations ST x = 0 where

ST =



s[L − K ] s[L − K − 1] . . . s[−K ]
...

...
. . .

...

s[0] s[−1] . . . s[−L]
...

...
. . .

...

s[K ] s[K − 1] . . . s[K − L]


(14)

and x = [x[0] x[1] · · · x[L]]T. The Toeplitz matrix ST ∈

C(2K−L+1)×(L+1) is rank deficient, specifically, for K ≥ L,
it can be shown that Rank(ST ) = L for a sequence s[k] that
consists of linear combinations of L complex exponentials as
shown in (11) [1, Proposition15.2]. Hence, ST has a unique
non-zero null space vector x. Once {τℓ}

L
ℓ=1 are determined,

{aℓ}
L
ℓ=1 are found by solving set of linear equations (11).

IV. IDENTIFIABILITY RESULTS WITH MODULO
We now present identifiability results for modulo sampling of
FRI signals. In the presence of amodulo operation (cf. Fig. 1),
the samples are decomposed as

yλ(nTs) = y(nTs) + z(nTs), (15)

where the values of the sequence z(nTs) are integer multiples
of 2λ. The sequence z(nTs) is a function of y(t), the input to
the modulo block, and ensure that |yλ(nTs)| ≤ λ. The samples
yλ(nTs) are functions of the FRI parameters. The question we

FIGURE 2. Number of excessive samples required above the optimum
2L + 1 with the prime condition.

would like to answer is whether the FRI parameters can be
uniquely identifiable from yλ(nTs).

As earlier, we use the SoS kernel (cf. (5)). Hence, y(t)
is a trigonometric polynomial as in (7). From Theorem 1
we note that |N | ≥ |K| ≥ 2L samples of y(t) are
sufficient to uniquely identify the FRI signal provided that
Ts ≤

Td
|K|

. Hence, we first present the identifiability results of
the samples of a trigonometric polynomial from its modulo
samples and then extend the results to the FRI case.

A. UNIQUENESS OF TRIGONOMETRIC POLYNOMIAL
UNDER MODULO OPERATION
We first present results for a generic trigonometric polyno-
mial and then show how it can be related to the FRI signal
model. Consider a K -th order real-valued trigonometric
polynomial as in (7). Let the polynomial be sampled at a rate
Ts =

Td
2K ′+1 where K ′

≥ K . For simplicity, we assume that
ck = 1 for k ∈ K. The samples are given as

y(nTs) =

K∑
k=−K

F(kω0)ejkω0nTs , (16)

where ω0 =
2π
Td
. Consider the problem of uniquely

identifying y(nTs) from its modulo samples yλ(nTs). In this
case, our identifiability results are presented in the following
theorem.
Theorem 2 (Identifiability of Trigonometric Polynomial

From Modulo Samples): Consider the modulo samples
yλ(nTs) of the trigonometric polynomial (16), where Ts =
Td

2K ′+1 with K
′
≥ K.

1) If K ′
≤ K then y(nTs) is not identifiable from yλ(nTs).

2) If K ′ > K and 2K ′
+ 1 is prime then y(nTs) is uniquely

identifiable up to a constant multiple of 2λ from its
modulo samples yλ(nTs).

The proof is given in Appendix A.
In the FRI framework, Theorem 1 shows that from the

filtered samples y(nTs) (as in (8)), the FRI signal can be
uniquely recovered without modulo provided that Ts ≤

Td
|K|

where |K| ≥ 2L + 1. With modulo operation prior to
sampling, we conclude that y(nTs) in (8) can be uniquely
identifiable from its modulo samples up to a constant factor
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provided that Ts ≤
Td
|K|

, K ≥ L, and the number of Fourier
samples is prime, that is, 2K+1 is prime. The prime condition
on the number of Fourier samples, which is also equal to the
number of time samples of y(t) within an interval of length
Td , results in oversampling. For example, for L = 4, the
optimumnumber of Fourier samples in the absence ofmodulo
operation is 9, whereas, with modulo operation, it is 11,
two samples more than the minimum. In Fig. 2, we plot the
difference between the desired number of Fourier samples for
unique identifiability and the optimum number of samples
2L + 1 for 2 ≥ L ≥ 200. We observe that for L ≤ 56, one
is required to measure a maximum of 6 more samples than
the optimal. For 57 ≤ L ≤ 200, a maximum of 12 addition
samples are required for certain values of L. In addition, for
several values of L, no additional samples are required. For
very large L, the next prime number could be far, as shown
in the prime density theorem. However, in practice, the value
of L is not very high. For example, in [46], L = 80 is used
to model practical ultrasound signals. With this observation,
we infer that the prime condition does not warrant high
oversampling.

An alternative identifiability proof was recently derived
in [47]. In the proof, the authors claimed that an oversampling
factor of 3

(
1 +

1
K

)
is sufficient to uniquely recover the true

samples of the trigonometric polynomial in (16) from the
folded samples and 2K ′

+ 1 need not be prime. Comparing
these results with ours for FRI signals, we note that the result
in [47] requires at least 3L more number of measurements,
which is much higher than the current results.

Note that the identifiability results in Theorem 2 are
different compared to that in [13] in terms of the class of the
signal. In [13], the folded signal is a bandlimited signal with
dense spectra. On the other hand, in Theorem 2, the signal is a
periodic bandlimited signal with discrete spectra. Due to the
discrete nature, one cannot use the line of proof in [13] here.

B. UNIQUENESS OF FRI SIGNAL UNDER MODULO
OPERATION
In the previous section, we showed that trigonometric
polynomials of the form (8) or (16) can be uniquely recovered
from their modulo samples yλ(nTs) up to a constant factor.
In this section, we derive identifiability results for FRI signals
from the recovered samples

ȳ(nTs) = y(nTs) + β, n = Nmin, · · · ,Nmax − 1, (18)

where β ∈ 2λZ is an unknown constant parameter.
By substituting y(nTs) from (8) into (18) we have

ȳ(nTs) =

∑
k∈K

ckejkω0nTs F(kω0) + β. (19)

From the known {ck}k∈K and the above set of linear
equations, we compute the Fourier samples {F̄(kω0)}k∈K
where

F̄(kω0) =

{
F(kω0), k ∈ K\{0},
F(0) + β, k = 0.

(20)

Here we assumed that there are a sufficient number of
samples, that is, Nmax −Nmin ≥ |K|. As in (11), we construct
a sequence s̄[k] defined as

s̄[k] ≜
F̄(kω0)
H (kω0)

= s[k] + β̄ δ[k]

=

L∑
ℓ=1

aℓ e−jkω0τℓ + β̄ δ[k], k ∈ K, (21)

where δ[k] is the Kronecker impulse and β̄ =
β

H (0) . When
β is zero, one can uniquely identify the FRI parameters
{aℓ, τℓ}

L
ℓ=1 from 2L consecutive samples of s̄[k] (see

Section III-C). However, for a nonzero β, uniqueness is not
clear.

To have a unique solution, a possible approach is to neglect
the sample at k = 0 and determine the FRI parameters
from the remaining samples of s̄[k]. With the missing zeroth
sample, in general, uniqueness is not guaranteed when one
considers an optimum number of Fourier measurements
(K = L). See Appendix B for details. To address this issue,
oversampling or constraints on the FRI parameters can be
used, as discussed in the following.

1) OVERSAMPLING FOR UNIQUE IDENTIFIABILITY WITH
MISSING SAMPLE
The FRI parameters can be uniquely determined from any
2L consecutive samples of s̄[k] that does not include the
zeroth sample. This condition holds for K ≥ 2L, and as
a consequence annihilating filter can be applied to either
the sequence {s̄[k] : 1 ≤ k ≤ K } or to the sequence
{s̄[k] : −K ≤ k ≤ −1} to uniquely determine the time delays
{τℓ}

L
ℓ=1. However, this approach requires twice the number of

samples compared to the case when β = 0.
Next, we discuss approaches where oversampling is not

required and constraints on the FRI parameters are used for
identifiability. In this context, we first consider an existing
approach (with the zeroth sample missing) where the time
delays are assumed to be on a grid and then propose a method
where the amplitudes are assumed to be positive, and the
zeroth sample is taken into consideration.

2) ON-GRID TIME DELAYS WITH MISSING SAMPLE
In [48], the problem of recovering FRI parameters from
Fourier measurements is considered where the zeroth
frequency sample is not measured. For recovery of the param-
eters, the authors considered either K ≥ 2L measurements
with double the sampling rate as discussed in the previous
paragraph or assumed that the time delays are on a grid.
In the latter case, with on-grid time delays, K ≥ L Fourier
measurements, with missing zeroth Fourier measurement, are
shown to be sufficient for recovering the FRI parameters.

3) POSITIVE AMPLITUDES CONSTRAINT WITHOUT A
MISSING SAMPLE
While on-grid time delays are a strong assumption in a
practical scenario, an alternative approach was presented in
the early 1900s. In this approach, Carathéodory showed that
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a positive (aℓ > 0, ℓ = 1, · · · ,L) linear combination
of L complex exponentials is uniquely determined from
its zeroth sample and any other 2L samples [49]. The
Carathéodory’s result requires to have the zeroth sample,
whereas we have ambiguity in this sample. In what follows
we show that with the assumption aℓ > 0, ℓ = 1, · · · ,L
one can uniquely recover parameters {aℓ, τℓ}

L
ℓ=1 even with

an unknown ambiguity.
For K = L, the Toeplitz matrix S̄ (as in (14)) constructed

from the sequence s̄[k] is related to true samples as in (17),
as shown at the bottom of the page. It can be shown
that Rank(S) = L, and hence, the time delays can be
determined uniquely from its null-space vector x. However,
the annihilating filter x is not necessarily in the null space of
S̄. Despite that, we show that x can be uniquely determined
from S̄ by using the fact that the amplitudes are positive.
To this end, we rely on the following lemma.
Lemma 1: Let σ (S̄), E(S̄) and σ (S), E(S) denote pair of

sets of eigenvalues and eigenvectors of matrices S̄ and S,
respectively. Then we have the same eigenvectors, that is,
E(S̄) = E(S), and σ (S̄) = β̄ + σ (S).
The proof is deferred to Appendix C

Lemma 1 suggests that the annihilating filter x, which is
in E(S), is also an eigenvector of S̄. Specifically, we have
S̄x = β̄x. The question is how to uniquely identify x from
the eigenvectors of S̄. To this end, we use the condition
that the amplitudes of the FRI signal are positive. By using
Carathéodory-Toeplitz theorem (see [1, Sec. 15.2.3],
[50, Sec. 4.9.2]) it can be shown that S is positive semidefinite
if aℓ > 0. Hence, we have that 0 ∈ σ (S) as Sx = 0 and the
remaining eigenvalues are positive. Combining these results
with those in Lemma 1, we conclude that β̄ is the minimum
eigenvalue of S̄. Hence, the eigenvector of S̄ associated with
its minimum eigenvalue is the desired annihilating filter x.
Since the annihilating filter x is unique for a given set of FRI
parameters, the FRI parameters can be uniquely determined
from s̄[k].
A similar eigenvector-based approach was suggested

in [41]. However, the approach does not assume that the
amplitudes are positive, a condition without which we can
distinguish the annihilating filter from the eigenvectors of
matrix S̄.

We call this approach the ambiguous sample annihilating
filter (ASAF) method. Note that the ambiguous sample
need not be the zeroth one. Lemma 1 holds for any sum-
of-exponential sequence consisting of L frequencies with
positive amplitudes provided that the sample index set K
has at least 2L + 1 consecutive integers and (L + 1)-th

FIGURE 3. Reconstruction of sum-of-complex-exponential signal s(t)
from its uniform samples with a missing sample. We observe perfect
reconstruction by using the ASAF algorithm.

sample is either missing or has measurement uncertainty.
To verify our theory we consider 2L + 1 uniform samples

of sum-of-complex-exponential signal s(t) =

L∑
ℓ=1

aℓ ejωℓt

where aℓ > 0. In this particular example, we set L = 3,
aℓ = 1, and frequencies as 2π[0.2, 0.4, 0.6]. We consider
the problem of recovering the frequencies and amplitudes
from s(nTs), n ∈ {−L, · · · , −1, 1, · · · ,L} where Ts = 1.
The real and imaginary values of the original signal s(t) and
estimated signal ŝ(t) are shown in Fig. 3. We observe perfect
reconstruction using the ASAF method.

We summarize identifiability results for FRI signals from
modulo samples in the following theorem.
Theorem 3: Consider an FRI signal f (t) as in (1) that

follows assumptions (A1) - (A3). Consider an SoS sampling
kernel g(t) as in (5) whose coefficients satisfy the inequality
in (32) where K = {−K , · · · ,K } and λ is a known non-zero
real number. Consider the modulo samples {yλ(nTs) =

Mλ((f ∗ g)(nTs))}n∈N , where Ts ≤
Td

2K ′+1 and K
′
≥ K ≥ L.

The sample index set N is defined in (9) for |N | ≥ 2K + 1.
Then
1) FRI signal cannot be uniquely identifiable from the

modulo samples if K ′
≤ K.

2) FRI signal is uniquely identifiable from the modulo
samples if K ′ > K and 2K ′

+ 1 is prime and one of
the following holds
a) K ≥ 2L.
b) The time delays are on a grid and K ≥ L.
c) The amplitudes are positive and K ≥ L.

To understand the results of Theorem 3 in comparison to
Theorem 1 (no modulo folding), we consider the process of
determining the FRI parameters from the modulo samples as
shown in Fig. 4. The process has three steps: (1) Unfolding,
(2) Determining the Fourier samples from the unfolded or
true samples, and (3) Estimating the FRI parameters from the

s̄[0] s̄[−1] . . . s̄[−L]
s̄[1] s̄[0] . . . s̄[−L + 1]
...

...
. . .

...

s̄[L] s̄[L − 1] . . . s̄[0]


︸ ︷︷ ︸

S̄

=


s[0] s[−1] . . . s[−L]
s[1] s[0] . . . s[−L + 1]
...

...
. . .

...

s[L] s[L − 1] . . . s[0]


︸ ︷︷ ︸

S

+β̄


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1


︸ ︷︷ ︸

IL+1

(17)
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FIGURE 4. Flow diagram of FRI parameter estimation from folded
samples: Sampling intervals and the number of samples for each step are
added. For sufficient condition we need K ′ ≥ L and 2K ′ + 1 should be
prime.

Fourier samples. In Section I, we combined steps 2 and 3 as
FRI recovery for ease of explanation, but here, we separated
them to have a better understanding. In the process shown in
Fig. 4, we assumed that the time delays are on a grid or the
amplitudes are positive. We added the maximum sampling
intervals and a minimum number of samples required at
each step. Note that the parameters, sampling interval, and
number of samples are crucial for unique recovery as we
deal with compactly supported signals with finite DoF. For
example, to uniquely determine the Fourier measurements
{F(kω0)}Kk=−K from the samples y(nTs) in (16), we need a
minimumof 2K+1 sampleswithmaximum sampling interval
Ts =

Td
(2K+1) .

Both without folding and with folding approaches require
a minimum of 2L + 1 Fourier measurements to determine
the FRI parameters uniquely. In both scenarios, the sampling
interval in the Fourier domain is ω0 =

2π
Td
. Next, to compute

the Fourier measurements from the unfolded or true time
samples, a minimum of 2L + 1 time samples are required
with sampling interval Ts =

Ts
2L+1 . Up to this point, both

approaches are identical in terms of the number of samples
and sampling rates. In case of modulo sampling, to unfold
2L + 1 samples, 2L + 1 folded samples are sufficient but the
sampling interval is Ts =

Ts
2K ′+1 where K

′
≥ L and 2K ′

+1 is
prime. In terms of the number of samples, all the steps require
2L+1 samples, which is optimum. The sampling intervals in
steps 2 and 3 in both approaches too are optimum. However,
in modulo sampling, unfolding may require oversampling for
some values of L. Specifically, oversampling is not required
for the values of L for which 2L + 1 is prime. In this case
K ′

= L.
The identifiability results in Theorem 3 show that without

any constraints on the FRI parameters, one requires twice
the number of samples. Whereas, with constraints either
on the amplitudes or time delays, identifiability is achieved
with the optimal number of samples. Unlike the identi-
fiability results for bandlimited signals [13] and periodic
bandlimited signals, FRI signals are uniquely identifiable
without any constant additive factor. Next, we discuss a
practical algorithm to recover FRI parameters from the
modulo samples.

V. FILTER DESIGN AND RECOVERY ALGORITHM
In this section, we propose an algorithm to estimate the FRI
parameters from the modulo samples. As discussed in the

previous section, we consider an SoS kernel-based modulo-
sampling framework. Our algorithm follows a two-stage
approach where, in the first stage, unfolding is performed,
and in the second stage, FRI parameters are estimated from
the unfolded samples. For unfolding, we apply a first-order
difference approach. The signal reconstruction step is based
on the ASAF algorithm. The unfolding step depends on the
variation of the filtered signal, and hence, it strongly depends
on the choice of the SoS filter coefficients. In the following,
we first discuss the unfolding and reconstruction and then
present an approach to design the SoS filter.

A. UNFOLDING AND SIGNAL RECONSTRUCTION
Our unfolding approach is based on the first-order differ-
ence [13], [44]. The key steps in this method are stated as
follows. The modulo samples can be decomposed as

yλ(nTs) = y(nTs) + z(nTs), (22)

where the values of the sequence z(nTs) ∈ 2λZ. If the true
samples satisfy the inequality

|y((n+ 1)Ts) − y(nTs)| ≤ λ (23)

then the following equality holds

d(nTs) ≜ Mλ (yλ((n+ 1)Ts) − yλ(nTs)) ,

= y((n+ 1)Ts) − y(nTs), (24)

for n = Nmin, · · · ,Nmax − 1. This implies that the difference
of true samples y((n + 1)Ts) − y(nTs) can be determined
from the modulo samples provided that (23) holds. From the
differences, the true samples, y(nTs), are determined up to an
unknown constant factor. We can use the annihilating filter
approach discussed in Section IV-B to determine the time
delays and amplitudes of the FRI signal. Hence, for unfolding
and FRI recovery, we must ensure that (24) is satisfied. Note
that y(t) is a function of the FRI signal and the sampling
kernel. Since one cannot modify the FRI signal, we discuss an
approach to design the sampling kernel such that (24) holds.

B. FILTER DESIGN
For the filter design problem, we consider modifying the
SoS filter given in (5). To this end, we first derive a general
condition on the filter’s impulse response and then discuss
the design of the SoS filter coefficients such that the resulting
filter satisfies the conditions.

Recall that

y(t) =

L∑
ℓ=1

aℓ (h ∗ g)(t − tℓ) (25)

and (h ∗ g)(t) =

∫
h(τ )g(t − τ )dτ . Therefore

|y((n+ 1)Ts) − y(nTs)|

=≤

L∑
ℓ=1

|aℓ| |(h ∗ g)((n+ 1)Ts − tℓ) − (h ∗ g)(nTs − tℓ)| ,
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≤

∫
|h(τ )| (|g((n+ 1)Ts − τ ) − g(nTs − τ )|) dτ

L∑
ℓ=1

|aℓ|,

≤ LamaxLg(Ts)
∫

|h(τ )|dτ, (26)

where |g((n+ 1)Ts − τ ) − g(nTs − τ )| ≤ Lg(Ts) and Lg(Ts)
is the Lipschitz constant for g(t). Since L, amax and αh =∫

|h(τ )|dτ are known a priori, if the filter g(t) is designed
such that for a desired Ts we have

Lg(Ts) ≤
λ

Lamaxαh
, (27)

then (23) holds and hence we can estimate y(nTs) from the
modulo samples up to a constant factor.

Next, consider an SoSfilter with impulse response as in (5).
The filter is parameterized by the coefficients {ck}k∈K with
a constraint that ck = c∗

−k . We derive the conditions on the
coefficients such that the resulting SoS filter follows (26). For
this, the Lipschitz constant Lg(Ts) is computed by using the
mean value theorem. For every t and t+Ts within the support
of g(t), that is, in the interval [0,Tg] we have that

|g(t + Ts) − g(t)| ≤ sup
τ∈[0,Tg]

g′(τ )Ts (28)

≤ 2ω0Ts
K∑
k=1

k|ck | = Lg(Ts). (29)

While deriving the previous inequality, we used the conjugate
symmetry constraint ck = c∗

−k .
Substituting (29) in (26), we note that (24) holds if the filter

coefficients and the sampling interval satisfy the following
condition:

2Lamaxαhω0Ts

(
K∑
k=1

k|ck |

)
≤ λ. (30)

Specifically, if the condition is satisfied, then the samples can
be perfectly unfolded up to a constant factor.

Next, consider the optimal sampling interval that corre-
sponds to the minimum possible sampling rate in the absence
of modulo operation:

Topt =
Td

(2K + 1)
. (31)

If one wants to operate at the minimum possible sampling
rate, that is, Ts = Topt then the filter coefficients must satisfy
the inequality

K∑
k=1

k|ck | ≤
λ

2ω0TsLamaxαh
=

(2K + 1)λ
4πLamaxαh

. (32)

Alternatively, if the filter coefficients are designed to satisfy
a particular criterion, then one may have to sample above
the minimum sampling rate. For example, in the presence
of noise, the coefficients could be optimally designed to
minimize reconstruction accuracy as in [7].

Next, to complete the discussion on the filter design,
we consider a simple choice of filter coefficients. Consider

FIGURE 5. Reconstruction of FRI signal from modulo samples: (a) FRI
signal f (t) and its reconstruction f̂ (t) where f (t) consists of L = 6 pulses
with amax = 6 and Td = 1; (b) Filtered signal y (t) and its wrapped
counterpart yλ(t) where ck = 1 and λ = 0.2∥y (t)∥∞. The signal is
reconstructed by using ASAF where OF = 8 and 2L + 1 samples (shown in
black) are used for recovery.

an SoS filter with

ck = 1, k = −K , · · · ,K . (33)

The dynamic range of y(t) is a function of the coefficients.
The maximum value of the filtered output, ∥y(t)∥∞, in terms
of the filter coefficients and the FRI parameters, is derived in
the following.

Using Young’s inequality2

∥(h ∗ g)(t)∥∞ ≤ ∥h(t)∥1 ∥g(t)∥∞ ≤ αh

(
|c0| + 2

K∑
k=1

|ck |

)
.

(34)

Next, consider the following relations

|y(t)| =

∣∣∣∣∣
L∑

ℓ=1

aℓ (h ∗ g)(t − tℓ)

∣∣∣∣∣ ≤ Lamax |(h ∗ g)(t)|

≤ Lamaxαh

(
|c0| + 2

K∑
k=1

|ck |

)
= ∥y(t)∥∞, (35)

where the last inequality is derived by using (34). Hence for
ck = 1, we have that

∥y(t)∥∞ = Lamaxαh(2K + 1). (36)

Let the sampling interval with modulo be

Ts =
Topt
OF

, (37)

where OF is the oversampling factor. Substituting (33), (37),
and (36) in (30) we have

OF ≥ 2π
Lamaxαh

λ

K (K + 1)
(2K + 1)

≈
π

2
∥y(t)∥∞

λ
, (38)

for ∥y(t)∥∞ > λ. For ∥y(t)∥∞ < λ, we need not over sample,
that is, OF = 1.

To summarize, if all the SoS kernel coefficients are set to be
unity, then by oversampling by a factor computed using (38),
one can ensure that (23) is satisfied and subsequently, the

2Suppose f ∈ Lp(R) and g ∈ Lq(R), and p−1
+ q−1

= r−1
+ 1 with

1 ≤ p, q ≤ r ≤ ∞, then ∥f ∗ g∥r ≤ ∥f ∥p∥g∥q.
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FRI parameters can be estimated using ASAF. To illustrate
the accuracy of the algorithm we consider recovery of an
FRI signal consisting of L = 6 pulses with amax = 6 and
Td = 1. The pulses h(t) are third-order β-splines. The
signal is filtered by using the SoS filter with ck = 1. The
filtered signal is wrapped by using λ = 0.2∥y(t)∥∞ and then
sampled with an OF = 8 for K = L. The FRI parameters
are recovered by using the ASAF algorithm with 2L + 1
samples of yλ(t). In Fig. 5(a), we show that the FRI signal
is perfectly recovered. The filtered signal and its modulo
version are shown in Fig. 5(b) for visualization. In Fig. 6,
we showed perfect reconstruction for λ = 0.1∥y(t)∥∞ and
λ = 0.05∥y(t)∥∞.

VI. A COMPARISON OF ALGORITHMS
In this section, we compare the proposed algorithmwith those
in [13], [14], [15], and [40]. The algorithms in [13] and
[14] consider an ideal LPF as a sampling kernel. While the
unwrapping in [13] requires almost 17 times oversampling,
unwrapping in [14] needs to oversample above the RoI.
However, simulation results were not presented for the LP
approach in [14], and, as we show later, in practice, the
convergence of the algorithm requires a significantly higher
sampling rate. For the rest of the discussion, the algorithms
in [13], and [14] will be referred to as higher-order-difference
(HoD) and linear-prediction (LP), respectively.

In both the algorithms mentioned above, one is required to
use all the countably infinite unwrapped samples to determine
the Fourier samples of the FRI signals for subsequent
processing. In [40], Bhandari et al. considered sampling
and local reconstruction of FRI signals by using a periodic
lowpass filter instead of an ideal LPF. Due to the periodic
bandlimited nature of the signal, a finite number of samples
measured over a period are sufficient to determine the Fourier
samples. Specifically, in [40], the number of time samples
and the sampling rate are 2L + 1 +

∥y∥∞

λ
and 2πe(2K+1)

Td
,

respectively, where K ≥ L. The oversampling factor is
2πe, which is approximately 17 times higher than the RoI.
In [40], the number of samples is inversely proportional to λ,
and many measurements are required for low dynamic range
ADCs. In contrast, the sampling rate is independent of the
dynamic range of the ADC and always operates at 17 times
the RoI. In addition, the authors do not discuss the ambiguity
issue that arises while recovering the FRI signals from the
Fourier samples. As the method uses local reconstruction
together with HoD, we refer to it as local-HoD or (L-HoD).

In [15] and [41], the authors showed that the trigonometric
polynomial or periodic bandlimited (PBL) signals as in (16)
(or (8)) could be uniquely recovered (up to a constant factor)
from its modulo samples provided that Ts ≤

Td
2(K+M+1) where

M denotes the number of folding instants incurred in an
interval of length Td while wrapping y(t). All the samples
within the one-time interval, 2(K + M + 1), are used for
recovering y(nTs) from its modulo samples. The number of
folding instantsM is a function of ∥y(t)∥∞

λ
, however, an upper

bound on M is not derived in [15]. For a better comparison,

we derived an upper bound in the Appendix. In the following,
the approach in [15] is referred to as PBL.

The method proposed in [41], which we refer to as
Fourier-Prony or FP, is also based on the unfolding approach
in [15]. Unlike [15], which is focused on PBL signals, [41]
considers FRI signals which are lowpass filtered to have
PBL structure. Since unfolding operation results in ambiguity
at the zeroth frequency, the author in [41] suggested an
eigenvector-based approach, which is similar to that dis-
cussed in Section IV-B.3. However, the positive-amplitudes
assumption was not made in their approach which will not
lead to perfect recovery.

A comparison of the algorithms is summarized in Table 1.
In these comparisons, we consider the SoS filter with all
unit coefficients. We have specified the worst-case sampling
rates and the number of measurements for each method.
In practice, the algorithms may operate at a lower rate. For
example, in [41], the authors do not use the upper bound on
M and suggest an approach to estimate it from the samples.

We observe that our algorithm operates with the lowest
number of measurements, whereas, in the other approaches,
either all countably infinite measurements are required [13],
[14], or they are inversely proportional to the dynamic
range of the ADC [15], [40]. Comparing the sampling rates,
we observe that for recovering periodic BL signals as in [15]
and [41] and in our approach, the rate is inversely proportional
to λ, whereas, for BL signals, it is independent of λ. For
better comparison, sampling rates for different algorithms are
shown in Fig. 7 where we note that the LP approach [14] has
the lowest possible rate but requires an infinite number of
samples. On the other hand, the proposed approach is second
best in terms of sampling rate and requires the lowest number
of samples.

Note that the approaches in [13], [14], and [15] are not
explicitly designed for FRI signal recovery, which is indicated
in the last row of the table. However, while applying these
methods for FRI signals, one can use the proposed ASAF
approach for recovery.

Next, we compare the algorithms in terms of their accuracy
in the estimation of the FRI parameters. Specifically,
we consider the mean-squared-error (MSE) in the estimation
of time delays which is computed as MSE =

∑L
ℓ=1 |τℓ − τ̂ℓ|

2

where τ̂ℓ is an estimate of τ . First, we compare the algorithms
for different values of λ without noise. In these simulations,
we consider L = 3, Td = 1, and h(t) to be the Dirac
impulse. The time delays are generated uniformly at random
over the interval (0, 1] and are kept constant throughout the
experiments. The amplitudes are set to be unity to ensure
maximum variation in the filtered signal. The filtered signals
are normalized to have a maximum unity amplitude prior to
the modulo operation. After unwrapping, we apply ASAF to
estimate the time delays. The MSEs in the estimations are
shown in Fig 8(a). We observe that the proposed algorithm
can estimate the time delays up to machine precision by using
seven samples compared to 239, 120, 43, and 109 samples
used by HoD, LP, L-HoD, and FP algorithms. Ideally, both
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FIGURE 6. FRI signal reconstruction from modulo samples for L = 5, Td = 1 sec., amax = 6, h(t) is third-order b-spline: For (a),
amplitudes are chosen randomly; For (b) and (c) amplitudes are equal to amax; time-delays are generated uniformly at random
between (0, Ts); The samples used for recovery are shown in black; We observe perfect reconstruction for ∥y (t)∥∞/λ = 10, 20, with
sufficient oversampling.

TABLE 1. A Comparison of the Proposed (With positive Amplitudes) Sampling and Reconstruction Method with that in [13], [14], [15], [40], and [41].

HoD and LP methods require an infinite number of samples.
However, in practice, one can use a finite number of samples
and the truncation results in a larger error in these algorithms.
Both HoD and L-HoD operate at 17 times the rate of
innovation while LP is operating with OF = 3. For the FP
method, we observe that the maximum number of firings was
M = 50, and hence we use OF = 15.5. The sampling rate
of the proposed algorithm varies with λ, and in this particular
example OF = 7.7 for λ = 0.2 and OF = 1.7 for λ = 0.9.
To evaluate the performance of the algorithms in the

presence of noise, we added a zero-mean Gaussian noise

to the modulo samples prior to unwrapping. In Fig. 8(b),
we show the MSEs, which are averaged over 1000 indepen-
dent realizations of noise samples for different signal-to-noise
ratios (SNRs) for λ = 0.2. Due to the unbounded nature
of the noise, the unwrapping algorithms required a higher
sampling rate for convergence. In these simulations, we use
OF = 7 for the proposed algorithm and OF = 17 for
the rest of the three methods. The number of samples used
in the proposed approach is 50, whereas 120 samples were
used in L-HoD. Both HoD and LP considered 239 samples.
As SNR increases, the errors in the proposed method and
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FIGURE 7. Sampling rate comparisons for different methods:
(a) ∥y (t)∥∞/λ = 2 and (b) ∥y (t)∥∞/λ = 10.

FIGURE 8. Comparison of different methods for L = 3: (a) MSEs in the
estimation of time-delays in the absence of noise; (b) MSEs in the
estimation of time-delays for different noise levels for λ = 0.3∥y (t)∥∞.
In the absence of noise, the proposed methods result in the lowest error.
In the presence of noise, the numbers of samples and OF for each
method are given as (i) HoD: 239 samples, OF = 17, (ii) LP: 120 samples,
OF = 3, (iii) L-HoD: 43 samples, OF = 17, (iV) FP: 109 samples, OF = 15.5,
and (V) Proposed: 7 samples, OF = 7.7.

L-HoD decrease, whereas they stagnate for HoD and LP at
higher SNRs due to truncation issues. The error in the FP
method is lower compared to the LP ad HoD approach, but
it is higher than MSEs in L-HoD and proposed methods. For
SNRs between 10 to 30 dB, the L-HoD method has a lower
error than the proposed algorithm but at the cost of a higher
sampling rate and the number of samples.

For time-delay estimation, we are unable to attain a
reasonable MSE while using the algorithm presented in [15],
and hence the corresponding results were not included.

VII. MODULO-FRI ON A HARDWARE PROTOTYPE
In this section, we show that we can estimate FRI
parameters by using the proposed annihilating filter with
a missing Fourier sample. There are several works that
discussed hardware prototypes for modulo sampling and their

FIGURE 9. Reconstruction of FRI signal from the samples of
modulo-hardware prototype demonstrated in [51]: (a) True (in blue) and
reconstructed (in red) FRI signal for L = 2; (b) Lowpass filtered FRI signal
(in blue) and its folded version (in red) with λ = 1.25. The FRI pulse h(t) is
a short pulse of bandwidth 30 kHz (Nyquist rate = 60 kHz). The folded
signal is sampled six times below the Nyquist rate. The FRI parameters
are nearly perfectly estimated from 10 samples by unfolding using
first-order difference method and then by using the proposed
annihilating filter approach.

non-idealities [51], [52], [53], [54]. In our work [51],
we presented a modulo-ADC prototype that can operate
at higher frequencies compared to the existing hardware
prototypes and fold signals which are eight times larger
than the ADC’s dynamic range. We showed that the FRI
signals consisting of a stream of Dirac impulses could be
reconstructed perfectly from its lowpass, folded samples by
using the unfolding algorithm presented in [16] and [17].

In this work, we consider lowpass filtered, modulo-folded
samples from the hardware prototype and apply the first-order
difference method for unfolding and the ASAF method for
parameter estimation. The FRI signal and its reconstructed
version are shown in Fig 9(a). The lowpass filtered signal,
and its folded version are shown in Fig 9(a). We observe a
near-perfect reconstruction of the FRI signal by sampling the
signal at 10 kHz, which is six times below the Nyquist rate.
For reconstruction, we used ten unfolded samples.

VIII. CONCLUSION
We consider the problem of sampling FRI signals under a
modulo framework. We present theoretical guarantees and a
practical algorithm for recovering FRI parameters from the
modulo samples using an SoS kernel. Theoretical guarantees
show that for unique recovery, one needs to sample above
the RoI and consider as many samples as the number
of unknowns of the FRI signal. The proposed practical
algorithms operate at a lower sampling rate and require fewer
samples than existing ones. The results enable the design
of low-cost and high-dynamic-range ADCs with compactly
supported kernels.

The unfolding algorithm is based on the first-order
difference, which requires a high sampling rate compared
to the RoI. As a future direction, we would like to use
generalized FRI approaches to unfold and estimate FRI
parameters jointly at lower sampling rates.

APPENDIX A
PROOF OF THEOREM 2

Proof: We first consider the necessary conditions and
then prove sufficiency.
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A. NECESSARY CONDITIONS
We show that for K ′

≤ K there exist another trigonometric
polynomial of order K whose modulo samples coincide
with yλ(nTs). We first consider the case when K ′ < K .
Note that to uniquely determine {F(kω0)}Kk=−K from the
samples y(nTs) in (16) there should be more than or equal
to 2K + 1 samples within a time interval of length Td .
To this end, the sampling interval should satisfy the inequality
Ts ≤

2π
Td
. Otherwise, there exists an alternative real-valued

trigonometric polynomial

ŷ(t) =

K∑
k=−K

F̂(kω0)ejkω0t (39)

such that y(nTs) = ŷ(nTs). Hence, we have yλ(nTs) =

ŷλ(nTs). This proves that for K ′ < K one cannot uniquely
recovery y(nTs) from yλ(nTs).
ForK ′

= K , although one can recover {F(kω0)}Kk=−K from
y(nTs), but we cannot uniquely recover y(nTs) from yλ(nTs).
To show this, we construct an alternative polynomial ŷ(t) as

ŷ(t) = y(t) + 2pλ =

K∑
k=−K

F̂(kω0)ejkω0t , (40)

where p ∈ Z. The coefficients of the alternative polynomial
are related to those of y(t) as

F̂(kω0) = F(kω0) + 2pλ δK (k), (41)

where δK is the Kronecker impulse. The samples of the
alternative polynomial are given as ŷ(nTs) = y(nTs) = 2pλ
and hence we have that ŷλ(nTs) = yλ(nTs).

B. SUFFICIENT CONDITION
For K ′ > K let there exist an alternate solution as in (39) Let
us assume that there exists an alternate solution as in (39) such
that yλ(nTs) = ŷλ(nTs). This implies that there exist samples
d(nTs) ∈ Z such that y(nTs) − ŷ(nTs) = 2λd(nTs) or

K∑
k=−K

(F(kω0) − F̂(kω0))ejkω0nTs = 2λd(nTs). (42)

Since Ts =
Td

2K ′+1 there are 2K ′
+ 1 samples within an

interval Td . Without loss of generality let n = 0, 1, · · · , 2K ′

in (42). Then, by using the inverse discrete Fourier transform,
we have
2K ′∑
n=0

d(nTs)e−jkω0nTs

=


2K ′

+ 1
2λ

(F(kω0) − F̂(kω0)),

for − K ≤ k ≤ K ,

0, for − K ′
≤ k < −K and K < k ≤ K ′.

(43)

This implies that the polynomial D(z) =
∑2K ′

n=0 d(nTs)z
n

has roots on the unit circle at {e−jkω0Ts}−K ′≤k<−K and

{e−jkω0Ts}K<k≤K ′ . Note that the coefficients of the poly-
nomials are integer-valued. Next, we use properties of
integer valued polynomials [55, pp. 308-311] and show that
{e−jkω0Ts}k∈{−K ,··· ,K }\{0} too are zeros of D(z). This implies
F(kω0) = F̂(kω0), k ∈ {−K , · · · ,K }\{0} and uniqueness is
established.

To this end, we first analyze the characteristics of the zeros
of D(z). In particular, consider the root zK ′ = e−jK ′ω0Ts .
By substituting ω0 =

2π
Td

and Ts =
Ts

2K ′+1 , we have that

zK ′ = e−jKω0Ts = e−j K
2K ′+1 . This implies that zK ′ is a

(2K ′
+ 1)-th root of unity. Moreover, since 2K ′

+ 1 is prime,
zK ′ is (2K ′

+ 1)-th primitive root of unity. For any primitive
root of unity, there exists a Cyclotomic polynomial Q(z) such
that Q(zK ′ ) = 0 where a Cyclotomic polynomial is a monic
polynomial with integer coefficients. Importantly, it is the
minimal polynomial over the field of rational numbers of
any primitive nth-root of unity. Hence, the degree of Q(z) is
less than or equal to D(z). From the polynomial remainder
theorem, we have that

D(z) = A(z)Q(z) + R(z), (44)

where A(z) and R(z) are polynomials with integer coeffi-
cients and the degree of R is less than that of Q. Since
D(zK ′ ) = Q(zK ′ ) = 0 from (44) we have that R(zK ′ ) =

0. However, since Q(z) is the minimal polynomial with
integer coefficient with the root at zK ′ , this implies that
R(z) = 0. Since all the primitive roots of unity are zeros of
the corresponding Cyclotomic polynomial, Q(z) has zeros
{e−j k

2K ′+1 }
−1
k=−K ′ . This implies that F(kω0) = F̂(kω0) for

k = −K , · · · , −1, 1, · · · ,K . In addition, we have that
F(0) ̸= F̂(0). In particular from (42) we conclude that
F(0) − F̂(0) ∈ 2λZ. This implies that the trigonometric
polynomials y(nTs) and ŷ(nTs) are identical up to a constant
factor which is a multiple of 2λ.

APPENDIX B
NON-IDENTIFIABILITY WITH MISSING SAMPLE
FOR K = L
Here we show that for K = L one cannot uniquely
identify {aℓ, τℓ}

L
ℓ=1 from {s̄[k]}k=K\{0} (cf. (21)) for β ̸= 0.

Specifically, there exist an alternative set of FRI parameters
{âℓ, τ̂ℓ}

L
ℓ=1 such that

L∑
ℓ=1

aℓ e−jkω0τℓ =

L∑
ℓ=1

âℓ e−jkω0 τ̂ℓ , k = K\{0}, (45)

whereK = L.We show that (45) holds for a specific example.
Let

τℓ =
Td
2L

ℓ, and τ̂ℓ =
Td
2L

(ℓ + L), ℓ = 1, · · · ,L,

(46)

and

aℓ = 1, and âℓ = −1, ℓ = 1, · · · ,L. (47)
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Then by substituting these time delays and amplitudes in

L∑
ℓ=1

aℓ e−jkω0τℓ −

L∑
ℓ=1

âℓ e−jkω0 τ̂ℓ , (48)

we have
L∑

ℓ=1

aℓ e−jkω0τℓ −

L∑
ℓ=1

âℓ e−jkω0 τ̂ℓ =

2L∑
ℓ=1

e−jk 2π
2L . (49)

The above right-hand-side sum is zero for −L ≤ k ≤ L
except for k = 0. This implies that (45) holds true for this
set of FRI parameters. Hence, for K = L, identifiability is
not achieved with ambiguity at k = 0.

APPENDIX C
PROOF OF LEMMA 1

Proof: Consider any eigenvalue γ ∈ σ (S) with
corresponding eigenvector c ∈ E(S) such that S c = γ c.
By using the equality S = S̄− β̄IL+1 (cf. (17)), we have that
S̄c = (β̄ + γ )c. This implies that if c ∈ E(S) then c ∈ E(S̄).
In addition, if γ ∈ σ (S) then γ + β̄ ∈ σ (S̄).
By applying a similar approach, it can be verified that if

c̄ ∈ E(S̄) then c̄ ∈ E(S) and hence E(S̄) = E(S). Further,
if S̄c̄ = γ̄ c̄ for any γ̄ ∈ σ (S̄) then Sc̄ = (γ̄ − β̄)c̄ which
implies that for every γ̄ ∈ σ (S̄) we have γ̄ − β̄ ∈ σ (S) and
hence σ (S̄) = β̄ + σ (S).

APPENDIX D
UPPER BOUND ON M
We derive an upper bound on the number of level crossings
of a trigonometric polynomial. Consider a K -th order
trigonometric polynomial

y(t) =

K∑
k=−K

ck F(kω0)e−jkω0t (50)

which is the same as the filtered FRI signal over an interval
of length Td . We are interested in finding the maximum
number of times y(t) crosses level sets 2λZ. In the following,
we denote the upper bound asM . To this end, let us consider
the following lemma.
Lemma 2 (Level-Crossings of Trigonometric Polynomial):

Consider a trigonometric polynomial y(t) of order K and time
period Td as in (50). Consider an amplitude level l such that
|l| ≤ ∥y(t)∥∞. Then y(t) has a maximum of 2K crossings with
level l within one time-period Td .

Proof: The lemma is a direct consequence of the fact
that a trigonometric polynomial of order K has a maximum
2K zeros within one time-period [56, p. 150]. Determining
the level crossings is equivalent to solving for values of t ∈

(0,Td ] such that y(t) = l or, equivalently, y(t)− l = 0. Since
y(t)− l is another trigonometric polynomial of order K , it has
a maximum of 2K zeros within one time period.
The result implies that if 2λn1 < ∥y(t)∥∞ for any integer n1,
then there will be at max 2K foldings corresponding to the
level 2λn1. Now the maximum number of level-sets y(t) can

cross is given by
⌊
2∥y(t)∥∞

λ

⌋
. Hence, M is upper-bounded

as

M ≤

⌊
2∥y(t)∥∞

λ

⌋
2K (51)

The results indicate that the sampling rate and the number
of samples required for perfect recovery, are inversely
proportional to λ.

Using (50), we have that

|y(t)| ≤ (2K + 1) max
k∈K

|ck ||F(kω0)|. (52)

From (3), we note that

|F(ω)| ≤ ∥H (ω)∥∞Lamax = ∥h∥1Lamax. (53)

Hence

∥y(t)∥∞ = (2K + 1)cmax∥h∥1Lamax, (54)

where cmax = maxk∈K |ck |. From (54) and (51), the sampling
rate and the number of samples required for uniquely
identifying the FRI signal is on the order ofK 2 whereK ≥ L.
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