
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/305683282

Non-Convex	Phase	Retrieval	from	STFT
Measurements

Article	·	July	2016

CITATIONS

5

READS

18

2	authors,	including:

Tamir	Bendory

Technion	-	Israel	Institute	of	Technology

14	PUBLICATIONS			79	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Tamir	Bendory	on	06	March	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.	All	in-text	references	underlined	in	blue	are	added	to	the	original	document

and	are	linked	to	publications	on	ResearchGate,	letting	you	access	and	read	them	immediately.

https://www.researchgate.net/publication/305683282_Non-Convex_Phase_Retrieval_from_STFT_Measurements?enrichId=rgreq-71ef90c6aaaf8cabff8431b0644ce08c-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY4MzI4MjtBUzo0Njg3NDQ5MDk2NjAxNjBAMTQ4ODc2ODkwMzM0Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/305683282_Non-Convex_Phase_Retrieval_from_STFT_Measurements?enrichId=rgreq-71ef90c6aaaf8cabff8431b0644ce08c-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY4MzI4MjtBUzo0Njg3NDQ5MDk2NjAxNjBAMTQ4ODc2ODkwMzM0Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-71ef90c6aaaf8cabff8431b0644ce08c-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY4MzI4MjtBUzo0Njg3NDQ5MDk2NjAxNjBAMTQ4ODc2ODkwMzM0Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tamir_Bendory?enrichId=rgreq-71ef90c6aaaf8cabff8431b0644ce08c-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY4MzI4MjtBUzo0Njg3NDQ5MDk2NjAxNjBAMTQ4ODc2ODkwMzM0Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tamir_Bendory?enrichId=rgreq-71ef90c6aaaf8cabff8431b0644ce08c-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY4MzI4MjtBUzo0Njg3NDQ5MDk2NjAxNjBAMTQ4ODc2ODkwMzM0Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technion-Israel_Institute_of_Technology?enrichId=rgreq-71ef90c6aaaf8cabff8431b0644ce08c-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY4MzI4MjtBUzo0Njg3NDQ5MDk2NjAxNjBAMTQ4ODc2ODkwMzM0Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tamir_Bendory?enrichId=rgreq-71ef90c6aaaf8cabff8431b0644ce08c-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY4MzI4MjtBUzo0Njg3NDQ5MDk2NjAxNjBAMTQ4ODc2ODkwMzM0Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tamir_Bendory?enrichId=rgreq-71ef90c6aaaf8cabff8431b0644ce08c-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY4MzI4MjtBUzo0Njg3NDQ5MDk2NjAxNjBAMTQ4ODc2ODkwMzM0Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


1

Non-Convex Phase Retrieval from STFT
Measurements

Tamir Bendory and Yonina C. Eldar, Fellow IEEE

Abstract—The problem of recovering a one-dimensional signal
from its Fourier transform magnitude, called phase retrieval, is
ill-posed in most cases. We consider the closely-related problem
of recovering a signal from its phaseless short-time Fourier
transform (STFT) measurements. This problem arises naturally
in several applications, such as ultra-short pulse measurements
and ptychography. The redundancy offered by the STFT enables
unique recovery under mild conditions. We show that in some
cases the unique solution can be obtained by the principle
eigenvector of a matrix, constructed as the solution of a simple
least-squares problem. When these conditions are not met, we
suggest to use the principle eigenvector of this matrix as an
initialization of a gradient algorithm, minimizing a non-convex
loss function. We prove that under appropriate conditions, this
initialization is close to the underlying signal. We analyze the
geometry of the loss function and show empirically that the
gradient algorithm converges to the underlying signal even
with small redundancy in the measurements. Additionally, the
algorithm is robust to noise. In contrast to previous works, our
method is efficient and enjoys theoretical guarantees.

Index Terms—phase retrieval, short-time Fourier transform,
gradient descent, non-convex optimization, spectral initialization,
least-squares, ptychography

I. INTRODUCTION

The problem of recovering a signal from its Fourier trans-
form magnitude arises in many areas in engineering and
science, such as optics, X-ray crystallography, speech recogni-
tion, blind channel estimation and astronomy [20], [44], [29],
[25], [2], [14]. This problem is called phase retrieval and can
be viewed as a special case of a quadratic system of equations.
The later area received considerable attention recently, partly
due to its strong connections with the fields of compressed
sensing and matrix completion, see for instance [5], [9], [7],
[12], [6], [43]. We refer the reader to contemporary surveys
of the phase retrieval problem in [38], [22].

Phase retrieval for one-dimensional (1D) signals is an ill-
posed problem unless the signal has the minimum phase
property [21], [36]. In this special case, the signal can be
recovered by several tractable algorithms (see for instance
Section 2.6 of [11]). Particularly, in [21] it was shown that a
semi-definite program (SDP) relaxation achieves the optimal
solution in a maximum likelihood sense. For general signals,
two main approaches are followed. The first builds upon prior
knowledge on the signal’s support, such as sparsity or a portion
of the underlying signal [15], [39], [33], [24], [37], [46]. The
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335/14. TB was partially funded by the Andrew and Erna Finci Viterbi
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alternative strategy makes use of additional measurements.
Such measurements can be obtained by structured illumina-
tions and masks [7], [19] or by measuring the magnitude
of the short-time Fourier transform (STFT). In [13], it was
demonstrated that for the same number of measurements, the
STFT magnitude leads to better performance than an over-
sampled discrete Fourier transform (DFT).

This paper deals with the problem of recovering a 1D signal
from its STFT magnitude. The STFT of a 1D signal x ∈
CN can be interpreted as the Fourier transform of the signal
multiplied by a real sliding window g of length W . Then, the
STFT is defined as

X[m, k] :=

N−1∑
n=0

x[n]g[mL− n]e−2πjkn/N , (I.1)

where k = 0, . . . , N − 1, m = 0, . . . ,
⌈
N
L

⌉
− 1 and L

determines the separation in time between adjacent sections.
In the sequel, all indices should be considered as modulo the
signal’s length N . We assume that x and g are periodically
extended over the boundaries in (I.1) and that L divides N .

The problem of recovering a signal from its STFT magni-
tude |X[m, k]|2 arises in several applications in optics and
speech processing [30], [18]. Particularly, it serves as the
model for a popular variant of an ultra-short laser pulse
measurement technique called Frequency-Resolved Optical
Gating (referred to as X-FROG) [42]. Another application
is ptychography in which a moving probe is used to sense
multiple diffraction measurements [34], [28], [27].

Several algorithms were suggested to recover a signal from
the magnitude of its STFT. The classic method, called Griffin-
Lim algorithm (GLA) [18], is a modification of the alternating
projection (or reduction error) algorithms of Gerchberg and
Saxton [16] and Fineup [15]. The properties of this algorithm
are not well-understood (for analysis of alternating projection
algorithms in phase retrieval, see [28]). In [23], the authors
prove that a non-vanishing signal can be recovered by an SDP
with maximal overlapping between adjacent windows (L = 1).
They also demonstrate empirically that the algorithm works
well with less restrictive requirements on the window and is
robust to noise (if the noise level in each section is known).
Despite the appealing numerical performance, solving an SDP
requires high computational resources. In contrast, we aim at
developing a phase retrieval algorithm that reflects a practi-
cal setup, is computationally efficient and enjoys theoretical
guarantees.

We begin by taking the 1D DFT of the acquired information
with respect to the frequency variable (the second variable
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of the STFT). This transformation reveals the underlying
structure of the data and greatly simplifies the analysis. As
a direct consequence, we show that for L = 1 and sufficiently
long windows W ≥

⌈
N+1

2

⌉
(and some mild additional

conditions), one can recover the signal by extracting the
principle eigenvector of a designed matrix, constructed as the
solution of a simple least-squares (LS) problem. We refer to
this matrix as the approximation matrix since it approximates
the correlation matrix X := xx∗. When the conditions for a
closed-form solution are not met, we propose using the prin-
ciple eigenvector of the approximation matrix to initialize a
gradient descent (GD) algorithm that minimizes a non-convex
loss function. Our approach deviates in two important aspects
from the recent line of work in non-convex phase retrieval
[8], [10], [31], [47], [45]. First, all these papers focus their
attention on the setup of phase retrieval with random sensing
vectors and rely heavily on statistical considerations, while
we consider a deterministic framework. Second, we construct
our approximation matrix by the solution of a LS problem,
whereas the aforementioned papers take a superposition of the
measurements to approximate X.

The properties of a GD algorithm depend heavily on the
initialization method and the geometry of the loss function.
For L = 1, we estimate the distance between the proposed
initialization and the global minimum, which decays to zero
as W tends to N+1

2 . If the signal has unit module entries,
then a slight modification of our initialization recovers the
signal exactly for W ≥ 2. In the later case, we also prove the
existence of a basin of attraction around the global minimum
of the loss function and estimate its size. In the basin of
attraction, the GD algorithm is guaranteed to converge to a
global minimum at a geometrical rate. We show empirically
that a basin of attraction also exists for general (not necessarily
unit module entries) signals. We note that while the theoretical
guarantees of the algorithm are limited, the experimental
performance is significantly better. Particularly, the algorithm
performs well for general signals and is robust in the presence
of noise.

The paper is organized as follows. We begin in Section II
by formulating mathematically the problem of phase retrieval
from STFT magnitude measurements. In Section III we discuss
the uniqueness of the problem and present conditions under
which it has a closed-form LS solution. Additionally, we
present an algorithm that recovers signals with unit module
entries under mild conditions. Section IV presents the GD
algorithm with the proposed initialization. Section V shows
numerical results and Section VI presents our theoretical
findings. Related proofs are provided in Sections VII. Section
VIII concludes the paper, discusses its main implications and
draws potential future research directions.

Throughout the paper we use the following notation. Bold-
face small and capital letters denote vectors and matrices, re-
spectively. We use ZT and Z∗ for the transpose and Hermitian
of a matrix Z; similar notation is used for vectors. We further
use Z† and tr(Z) for the Moore–Penrose pseudo-inverse and
the trace of the matrix Z, respectively. The `th circular
diagonal of a matrix Z is denoted by diag(Z, `). Namely,
diag(Z, `) is a column vector with entries Z [i, (i+ `) modN ]

for i = 0, . . . , N−1. We define the sign of a complex number
a as sign (a) := a

|a| and use ′◦′ and ′∗′ for the Hadamard
(point-wise) product and convolution, respectively. The set of
all complex (real) signals of length N whose entries have
module a > 0 are denoted by CNa (RNa ). Namely, z ∈ CNa
implies that |z[n]| = a for all n.

II. PROBLEM FORMULATION

We aim at recovering the underlying signal x from the
magnitude of its STFT, i.e. from measurements

Z[m, k] = |X[m, k]|2 . (II.1)

Note that the signals x and xejφ yield the same measurements
for any global phase φ ∈ R and therefore the phase φ cannot
be recovered by any method. This global phase ambiguity
leads naturally to the following definition:

Definition II.1. The distance between two vectors is defined
as

d (z,x) = min
φ∈[0,2π)

∥∥z− xejφ
∥∥

2
.

If d (z,x) = 0 then we say that x and z are equal up to
global phase. The phase φ ∈ [0, 2π) attaining the minimum is
denoted by φ(z), i.e.

φ(z) = arg min
φ∈[0,2π)

∥∥z− xejφ
∥∥

2
.

Instead of treating the measurements (II.1) directly, we
consider the acquired data in a transformed domain by taking
its 1D DFT with respect to the frequency variable (normalized
by 1

N ). Then, our measurement model reads

Y[m, `] =
1

N

N−1∑
k=0

Z[m, k]e−2πjk`/N

=

N−1∑
n=0

x[n]x∗[n+ `]g[mL− n]g[mL− n− `].

(II.2)

When W ≤ ` ≤ (N − W ), we have Y[m, `] = 0 for
all m. In this sense, Y[m, `] can be interpreted as a "W
- bandlimited" function. The transformation (II.2) simplifies
the quadratic system of equations and reveals its underlying
structure. Observe that for fixed m, Y[m, `] is simply the auto-
correlation of x ◦ gmL, where gmL := {g[mL− n]}N−1

n=0 .
We will make repetitive use of two representations of (II.2).

The first is based on a matrix formulation. Let DmL ∈ RN×N
be a diagonal matrix composed of the entries of gmL. Let P`

be a matrix that shifts (circularly) the entries of a vector by `
locations, namely, (P`x) [n] = x [n+ `]. Then, the correlation
matrix X := xx∗ is mapped linearly to Y[m, `] as follows:

Y[m, `] = (DmL−`DmLP`x)
∗
x

= x∗Hm,`x

= tr (XHm,`) , (II.3)

where
Hm,` := P−`DmLDmL−`. (II.4)

Observe that PT
` = P−` and Hm,` = 0 for W ≤ ` ≤ (N −

W ).
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An alternative useful representation of (II.2) is as mul-
tiple systems of linear equations. For fixed ` ∈ [−(W −
1), . . . , (W − 1)] we can write

y` = G`x`, (II.5)

where y` := {Y[m, `]}
N
L−1
m=0 and x` := diag (X, `). The

(m,n)th entry of the matrix G` ∈ RN
L×N is given by

g[mL−n]g[mL−n−`]. For L = 1, G` is a circulant matrix.
We recall that a circulant matrix is diagonalized by the DFT
matrix, namely, it can be factored as G` = F∗Σ`F, where F is
the DFT matrix and Σ` is a diagonal matrix, whose entries are
given by the DFT of the first column of G`. In this case, the
first column is given by g ◦ (P−`g), where g := {g[n]}N−1

n=0 .
Therefore the matrix G` is invertible if and only if the DFT
of g ◦ (P−`g) is non-vanishing.

Our problem of recovering x from the measurements (II.1)
can therefore be equivalently posed as a constrained LS
problem, i.e.

min
x̃∈CN

W−1∑
`=−(W−1)

∥∥∥y` −G`diag
(
X̃, `

)∥∥∥2

2

subject to X̃ = x̃x̃∗. (II.6)

This problem is non-convex due to the quadratic constraint
and is equivalent to

min
X̃∈HN

W−1∑
`=−(W−1)

∥∥∥y` −G`diag
(
X̃, `

)∥∥∥2

2

subject to X̃ � 0, rank
(
X̃
)

= 1,

whereHN is the set of all Hermitian matrices of size N×N . In
the spirit of [17], [43], [5], [39], STFT phase retrieval can then
be relaxed to a tractable SDP by dropping the rank constraint.
While an SDP relaxation approach [23] (with a different
formulation) has shown good results for the recovery from
phaseless STFT measurements, it requires solving the problem
in a lifted domain with N2 variables. We take a different route
to reduce the computational load. In the next section, we show
that (II.6) admits a unique solution under moderate conditions.
We further show that it has a closed-form LS solution when
the window g is sufficiently long. If the conditions for the LS
solution are not met, then we suggest applying a GD algorithm.
To initialize the GD, we approximate (II.6) in two stages by
first solving the LS objective function and then extracting its
principal eigenvector. The GD algorithm is the main interest
of this paper.

III. UNIQUENESS AND BASIC ALGORITHMS

A fundamental question in phase retrieval problems is
whether the quadratic measurement operator of (II.1), or
equivalently the non-convex problem (II.6), determines the un-
derlying signal x uniquely (up to global phase, see Definition
II.1). In other words, under what conditions on the window g
is the non-linear transformation that maps x to Z is injective.
Before treating this question, we introduce some basic window
definitions:

Definition III.1. A window g is called a rectangular window
of length W if g[n] = 1 for all n = 0, . . . ,W − 1 and zero
elsewhere. It is a non-vanishing window of length W if g[n] 6=
0 for all n = 0, . . . ,W − 1 and zero elsewhere.

According to (II.6), the injectivity of the measurement oper-
ator is related to the window’s length W and the invertibility of
the matrices G` for |`| < W . For that reason, we give special
attention to windows for which the associated matrices are
invertible.

Definition III.2. A window g is called an admissible window
of length W if for all ` = −(W−1), . . . , (W−1) the following
two equivalent properties hold:

1) The DFT of the vector g ◦ (P−`g) is non-vanishing.
2) The associated circulant matrices G` as given in (II.5)

are invertible.

The family of admissible windows is quite large. For in-
stance, if α and N are coprime numbers for all α = 2, . . . ,W ,
then a rectangular window of length W is an admissible
window as well:

Claim III.3. A rectangular window g of length 2 ≤W ≤ N/2
is an admissible window of length W if α and N are co-prime
numbers for all α = 2, . . . ,W . This holds trivially if N is a
prime number.

Proof: Observe that g ◦ (P−`g) is a rectangular window
of length (W −|`|) for ` = −(W −1) . . . , (W −1). The DFT
of a rectangular window of size (W −|`|) is a Dirichlet kernel
which is non-vanishing if (W − |`|) and N are co-prime.

Equipped with the aforementioned definitions, we are ready
to analyze the uniqueness of the measurement operator for the
case1 L = 1 . Our results are constructive in the sense that
their proofs provide an explicit scheme to recover the signal.

Our first uniqueness result concerns non-vanishing signals.
We say that a signal z is non-vanishing if z[n] 6= 0 for
all n. In this case, the magnitude of the STFT determines
the underlying signal uniquely under mild conditions. This
result was already derived in [3] based on different considera-
tions. Nevertheless, our result comes with an explicit recovery
scheme (see Appendix A).

Proposition III.4. Let L = 1. Suppose that x is non-vanishing
and that the DFT of g ◦ (P−`g) is non-vanishing for ` = 0, 1.
Then, |X[m, k]|2 determines x uniquely (up to global phase).

Proof: See Appendix A.
A similar uniqueness result was derived in [13]. There, it is

required that the DFT of |g[n]|2 is non-vanishing, N ≥ 2W−1
and N and W − 1 are co-prime numbers.

In the special case in which the signal is known to have unit
module entries, the signal can be recovered as the principle
eigenvector of a designed matrix as follows:

Proposition III.5. Let L = 1. Suppose that x ∈ CN
1/
√
N

and
that g is an admissible window of length W ≥ 2. Fix M ∈

1 For uniqueness results for the cases of L > 1, see [30], [23].
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[1, . . . ,W − 1] and let X0 be a matrix obeying

diag (X0, `) =

{
G−1
` y`, ` = 0,M,

0, otherwise,
(III.1)

where G` and y` are defined in (II.5). Then, x (up to global
phase) is a principle eigenvector of X0.

Proof: See Appendix B.
For general signals (not necessarily non-vanishing) and

L = 1, we next derive a LS algorithm that stably recovers any
complex signal if the window is sufficiently long. In the ab-
sence of noise, the recovery is exact (up to global phase). The
method, summarized in Algorithm 1, is based on constructing
an approximation matrix X0 that approximates the correlation
matrix X := xx∗. The `th diagonal of X0 is chosen as the
solution of the LS problem minx̃∈CN ‖y`−G`x̃‖2 (see (II.5)).
If the matrix G` is invertible, then

diag (X0, `) = G−1
` y` = diag (X, `) .

Therefore, when all matrices G` are invertible, X0 = X. In
order to estimate x, the (unit-norm) principle eigenvector of
X0 is normalized by

α =

√∑
n∈P

(
G†0y0

)
[n], (III.2)

where P := {n : (G†0y0)[n] > 0}. If G0 is invertible then
N−1∑
n=0

(
G−1

0 y0

)
[n] =

N−1∑
n=0

(diag (X, 0)) [n] = ‖x‖22 = λ0,

where λ0 is the top eigenvector of X. If G0 is not invertible or
in the presence of noise, some terms of the vector G†0y0 might
be negative. In this case, we estimate ‖x‖2 by summing only
the positive terms (the set P in (III.2)). Note that all matrix
inversions can be performed efficiently using the FFT due to
the circular structure of G`.

The following proposition shows that for L = 1 Algorithm
1 recovers the underlying signal if the window is sufficiently
long and satisfies some additional technical conditions. In
[3], an equivalent uniqueness result was derived but without
providing an algorithm. Algorithm 1 is equivalent to the dis-
cretized version of Wigner deconvolution that was suggested
previously without theoretical analysis in [35], [48].

Proposition III.6. Let L = 1 and suppose that g is an
admissible window of length W ≥

⌈
N+1

2

⌉
(see Definition

III.2). Then, Algorithm 1 recovers any complex signal uniquely
(up to global phase) and efficiently.

Proof: See Appendix C.
In many cases, the window is shorter than

⌈
N+1

2

⌉
so that

(II.6) does not have a closed-form LS solution. In these cases,
we suggest to recover the signal by minimizing a non-convex
loss function using a gradient algorithm. In order to initialize
the gradient algorithm, we use the same LS-based algorithm.
However, for short windows we cannot estimate diag(X, `)
for ` = W, . . . , (N − W ) as the matrices G` are simply
zero. Nonetheless, we will show by both theoretical results
and numerical experiments that under appropriate conditions,

Algorithm 1 Least-squares algorithm for L = 1

Input: The measurements Z[m, k] as given in (II.1).
Output: x0: estimation of x.

1) Compute Y [m, `], the 1D DFT with respect to the
second variable of Z[m, k] as given in (II.2).

2) Construct a matrix X0 such that

diag (X0, `) =

{
G†`y` ` = − (W − 1) , · · · , (W − 1) ,

0 otherwise,

where G` ∈ RN×N are defined in (II.5).
3) Let xp be the principle (unit-norm) eigenvector of X0.

Then,

x0 =

√∑
n∈P

(
G†0y0

)
[n]xp,

where P :=
{
n :

(
G†0y0

)
[n] > 0

}
.

the principle eigenvector of the approximation matrix X0, with
appropriate normalization, is a good estimate of x.

IV. GRADIENT DESCENT ALGORITHM

In this section we present our main algorithmic approach
to recover a signal from its STFT magnitude (II.1). Recall
that by taking the DFT with respect to the frequency variable,
the measurement model reads Y[m, `] = x∗Hm,`x, where
Hm,` is defined in (II.4). It is therefore natural to minimize
the following non-convex loss function (frequently called non-
convex least-squares or empirical risk):

f(z) =
1

2

N/L−1∑
m=0

W−1∑
`=−(W−1)

(z∗Hm,`z−Y[m, `])
2
. (IV.1)

Figure IV.1 presents the two-dimensional (first two vari-
ables) plane of the loss function (IV.1) for the signal x =
[0.2, 0.2, 0, 0, 0] (i.e. N = 5) with L = 1 and a rectangular
window of length W = 2. The function has no sharp transi-
tions and contains two saddle points and two global minima
(as a result of the global phase ambiguity). Accordingly, in
this specific case it seems that a gradient descent algorithm
will converge to a global minimum from almost any arbitrary
initialization (see also [26]). While this phenomenon does
not occur for any arbitrary parameter selection, this example
motivates applying a gradient algorithm directly on the non-
convex loss function (for a similar demonstration of the loss
function with random sensing vectors, see [41]). To keep
the framework simple, we focus here on real signals. If the
signal is complex, we replace the inner term of (IV.1) by
|z∗Hm,`z−Y[m, `]|2.

We suggest minimizing (IV.1) by employing a gradient
algorithm, where the kth iteration takes on the form

xk = xk−1 − µ∇f (xk−1) ,

for step size µ. Direct computation of the gradient gives

∇f(z) =

N/L−1∑
m=0

W−1∑
`=−(W−1)

(h(z)−Y[m, `])∇h(z), (IV.2)
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(a) Side view

(b) View from above

Figure IV.1: The two-dimensional (first two variables) plane
of the loss function (IV.1) of the signal x = [0.2, 0.2, 0, 0, 0]
(i.e. N = 5) with L = 1 and a rectangular window of length
W = 2.

Algorithm 2 Gradient descent algorithm
Input: The measurements Z[m, k] as given in (II.1) and
(optional) thresholding parameter B > 0.
Output: Estimation of x.

1) Initialization by Algorithm 1 (for L = 1) or Algorithm
3 (for L > 1).

2) Apply the update rule until convergence:
a) (gradient step)

x̃k = xk−1 − µ∇f (xk−1) ,

for step size µ and ∇f given in (IV.2).
b) (optional thresholding)

xk[n] =

{
x̃k[n] if |x̃k[n]| ≤ B,
B · sign (x̃k[n]) if |x̃k[n]| > B.

where

h(z) := zTHm,`z,

∇h(z) =
(
Hm,` + HT

m,`

)
z.

The gradient step is followed by an optional thresholding
that can be used when the signal is known to be bounded.
The algorithm is summarized in Algorithm 2. The code is
publicly available on

http://webee.technion.ac.il/Sites/People/YoninaEldar

A. Initialization for L = 1

While the GD method suggests a simple minimization
procedure, the function (IV.1) is non-convex and therefore it is
not clear whether an arbitrary initialization will converge to a
global minimum. When L = 1, we propose initializing the GD
algorithm by using Algorithm 1. As explained in Section III,
for W ≥

⌈
N+1

2

⌉
the algorithm returns x exactly. However,

when W <
⌈
N+1

2

⌉
, G` = 0 for ` = W, . . . , (N − W ) so

that the output is not necessarily x. Nevertheless, in Section
VI we provide theoretical guarantees establishing that under
appropriate conditions, this initialization results in a good
approximation of the underlying signal x.

B. Initialization for L > 1

Until now we focused on maximal overlapping between
adjacent windows L = 1. When L > 1, (II.5) results
in an underdetermined system of equations as y` ∈ RN

L ,
G` ∈ RN

L×N and x` ∈ RN . The LS solution G†`y` is
the vector with minimal `2 norm among the set of feasible
solutions. This approximation is quite poor in general.

We notice that the measurements y` are a downsampled
version by a factor L of the case of maximal overlapping
(L = 1). Therefore, we suggest upsampling y` to approximate
the case of maximal overlap based on the averaging nature of
the window g. In order to motivate our approach, we start by
considering an ideal situation. Suppose that for some `, the

http://webee.technion.ac.il/Sites/People/YoninaEldar
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DFT of the first column of G`, denoted by ĝ`, is an ideal
low-pass with bandwidth N/LBW . Namely,

ĝ`[k] =

{
1, k = 0, . . . N/LBW − 1,

0, otherwise.

The following lemma states that in this case, no information is
lost by taking L = LBW compared to taking maximal overlap
L = 1. Moreover, it suggests to upsample the measurement
vector by expansion and low-pass interpolation. Our technique
resembles standard upsampling arguments in digital signal
processing (DSP) (see for instance Section 4.6 of [32]).

Lemma IV.1. Let g̃ := {g[(−n)modN ]}N−1
n=0 . Suppose that

g̃ ∈ RN is an ideal low-pass with bandwidth N/L and y =
g∗x for some x ∈ CN (or equivalently, y = Gx, where G is
a circualnt matrix whose first column is g̃). Let yL ∈ CN/L
be its L-downsampled version, i.e.

yL[n] = y[nL], n = 0, . . . , N/L− 1.

Then, y =
(
F∗pFp

)
ỹL, where

ỹL[n] =

{
yL[m], n = mL,

0, otherwise,
(IV.3)

and Fp is a partial Fourier matrix consisting of the first N/L
rows of the DFT matrix F.

Proof: See Appendix D.
While Lemma IV.1 shows that no information is lost for

an ideal low-pass window with bandwidth N/L, in practice
we do not use these windows. Figure IV.2 presents the DFT
magnitude of two typical choices of windows. In the spirit
of standard DSP practice (see Section 4.6.1 of [32]) we ap-
proximate the low-pass interpolation of

(
F∗pFp

)
as suggested

in Lemma IV.1 by a simple smooth interpolation. This gives
us better numerical results and reduces the computational
complexity. In Section V we show some results with both
linear and cubic interpolations. The figure also indicates the
well-known fact that the wider the window is in the time
domain, the smaller the bandwidth in the frequency domain.
Hence, Lemma IV.1 implies that larger L requires longer
window (larger W ). This conclusion is supported by the
numerical experiments of Section V and by previous results
in the literature (see for instance [23]).

Following the upsampling stage, the algorithm proceeds as
for L = 1 by extracting the principle eigenvector (with the
appropriate normalization) of an approximation matrix. This
initialization is summarized in Algorithm 3.

V. NUMERICAL RESULTS

This section is devoted to numerical experiments examining
the GD algorithm. In all experiments, the underlying signal
was drawn from x ∼ N (0, I), where I is the identity matrix.
The measurements were contaminated with additive noise that
was drawn from the same distribution with the appropriate
standard deviation according to the desired signal to noise
(SNR) ratio. The recovery error is computed by d(x.x̂)

‖x‖2
, where

x̂ is the estimated signal and the distance function d (·, ·) is
defined in Definition II.1.

Algorithm 3 Least-squares initialization for L > 1

Input: The measurements Z[m, k] as given in (II.1) and a
smooth interpolation filter hL ∈ RN that approximates a low-
pass filter with bandwidth N/L.
Output: x0: estimation of x.

1) Compute Y [m, `], the 1D DFT with respect to the
second variable of Z[m, k] as given in (II.2).

2) (upsampling) For each ` ∈ [−(W − 1), . . . , (W − 1)]:

a) Let y`[m] := {Y [m, `]}
N
L−1
m=0 for fixed `.

b) (expansion)

ỹ`[n] :=

{
y`[m], n = mL,

0, otherwise.

c) (interpolation)

ȳ` = ỹ` ∗ hL.

3) Construct a matrix X0 such that

diag (X0, `) =

{
G†`ȳ` ` = − (W − 1) , · · · , (W − 1) ,

0 otherwise,

where G` ∈ RN×N are defined as in (II.5) for L = 1.
4) Let xp be the principle (unit-norm) eigenvector of X0.

Then,

x0 =

√∑
n∈P

(
G†0y0

)
[n]xp,

where P :=
{
n :

(
G†0y0

)
[n] > 0

}
.

The first experiment examines the estimation quality of the
initialization described in Algorithm 3. Figure V.1 presents
the initialization error as a function of the window’s length.
We considered a Gaussian window defined by g[n] = e

−n2

2σ2

and cubic and linear interpolations. For n > 3σ, we set the
entries of the window to be zero so that W = 3σ. The results
demonstrate the effectiveness of the smooth interpolation
technique. For low values of L, it seems that the two interpo-
lations achieve similar performance. For larger L, namely, less
measurements, the cubic interpolation outperforms the linear
interpolation.

The next experiment aims to estimate the basin of attraction
of the GD algorithm in the absence of noise. That is to
say, the area in which the GD algorithm will converge to a
global minimum. To do that, we set the initialization point
of Algorithm 2 to be x0 = x + z, where x ∼ N (0, I) is
the underlying signal. The perturbation vector z takes the
values of ±σ (with random signs) for some σ > 0 so that
d(x0,x) =

√
Nσ. Then, we applied the GD algorithm and

checked whether the algorithm converges to x. As can be
seen in Figure V.2, the GD converges to the global minimum
as long as σ ≤ 0.3 for L = 1, 2 (the case of L = 1 is not
presented in the figure) and σ ≤ 0.25 for L = 4. A similar
experiment showed that the size of the basin of attraction is
independent of the value of W . These experimental results
indicate that the actual basin of attraction is larger than our

https://www.researchgate.net/publication/230554866_Discrete-Time_Signal_Processing?el=1_x_8&enrichId=rgreq-71ef90c6aaaf8cabff8431b0644ce08c-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY4MzI4MjtBUzo0Njg3NDQ5MDk2NjAxNjBAMTQ4ODc2ODkwMzM0Nw==
https://www.researchgate.net/publication/230554866_Discrete-Time_Signal_Processing?el=1_x_8&enrichId=rgreq-71ef90c6aaaf8cabff8431b0644ce08c-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY4MzI4MjtBUzo0Njg3NDQ5MDk2NjAxNjBAMTQ4ODc2ODkwMzM0Nw==
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(a) DFT of rectangular windows with different lengths W . (b) DFT of Gaussian windows with different standard deviations σ.

Figure IV.2: The absolute value of the DFT of rectangular and Gaussian windows with N = 1000. We illustrate only N/2
entries due to symmetry considerations.

(a) Initialization with linear interpolation (b) Initialization with cubic interpolation

Figure V.1: The average error (over 50 experiments) of the initialization of Algorithm 3 as a function of W and L. The
experiments were conducted on signal of length N = 101 with a Gaussian window e−

n2

2σ2 and linear or cubic interpolation.
The window length was set to be W = 3σ.

theoretical estimation in Section VI and Theorem VI.4.
Figure V.3 shows a representative example of the perfor-

mance of Algorithm 2. The experiment was conducted on a
signal of length N = 23 with a rectangular window in a noisy
environment of SNR= 20 db. The step size was set to be
µ = 5× 10−3. Figure V.4 presents the average recovery error
as a function of the SNR level. We worked with signals of
length N = 53, rectangular window of length W = 19 and
L = 2, 4. We compared the algorithm’s performance with the
classical iterative Griffin-Lim Algorithm (GLA) [18]. As can
be seen, the GD algorithm outperforms the GLA especially in
high noise levels.

VI. THEORY

This section presents the theoretical contribution of this
work, focusing on the case of maximum overlap between ad-
jacent windows (L = 1). In Theorem VI.1 we first analyze the
initialization algorithm presented in Algorithm 1 and estimate

the distance between the initialization point and the global
minimum. Next, we study the geometry of the loss function
(IV.1), which controls the behavior of the GD algorithm.
Particularly, we show in Theorem VI.4 the existence of a basin
of attraction of size 1

8
√
NW 2

around the global minimum for
signals with unit module entries. In the basin of attraction, a
GD algorithm is guaranteed to converge to a global minimum
at a geometric rate.

A crucial condition for the success of gradient algorithms
is that its initialization will be sufficiently close to the global
minimum. The following result quantifies the estimation error
of the proposed initialization presented in Algorithm 1 for
bounded signals and L = 1. The error reduces to zero as W
approaches N+1

2 . The case of L > 1 is discussed briefly in
Section IV.

Theorem VI.1. Suppose that L = 1, g is an admissible
window of length W ≥ 2 and that ‖x‖∞ ≤

√
B
N for some
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(a) Initialization with W = 7 and L = 1 (b) Initialization with W = 11 and L = 3

(c) Recovery by Algorithm 2 with W = 7 and L = 1 (d) Recovery by Algorithm 2 with W = 11 and L = 3

(e) The normalized objective function value and the error curves as a
function of iterations for W = 7 and L = 1

(f) The normalized objective function value and the error curves as a
function of iterations for W = 11 and L = 3

Figure V.3: Recovery of a signal of length N = 23 with a rectangular window in a noisy environment of SNR= 20 db. The
step size was set to be µ = 5 × 10−3. The experiments were conducted with W = 7 and L = 1 and W = 11 and L = 3 in
the left and the right columns, respectively.
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(a) Recovery error with L = 2 (b) Recovery error with L = 4

Figure V.4: The average recovery error (over 20 experiments) of the GD and GLA algorithms in the presence of noise. The
experiments were conducted on signal of length N = 53 with a rectangular window of length W = 19, step size µ = 5×10−3

and L = 2, 4.

Figure V.2: The experiment was conducted on signal of length
N = 43, L = 1 and step size of µ = 0.1. The initialization
point of the GD algorithm was set to be x0 = x + z, where
x ∼ N (0, I) is the underlying signal and the perturbation
vector z takes the values of ±σ for some σ > 0 where the sign
is randomly drawn. The figure presents the average recovery
error over 100 experiments for each value of σ and L.

0 < B ≤ N
2(N−2W+1) . Then under the measurement model of

(II.1), the initialization point as given in Algorithm 1 satisfies

d2 (x0,x) ≤ ‖x‖22

(
1−

√
1− 2B

N − 2W + 1

N

)
.

Proof: See Section VII-A.
The properties of the gradient algorithm rely on the geom-

etry of the loss function (IV.1) near the global minimum. We
begin the geometry analysis by two lemmas for signals with
unit module entries that pave the way for the main result in
Theorem VI.4. This result estimates the size of the basin of
attraction of the loss function (IV.1).

The first result shows that the gradient of the loss function
(IV.1), given explicitly in (IV.2), is bounded near its global

minimum. This implies that the loss function is smooth. We
consider here only the case of a rectangular window g of
length W . The extension to non-vanishing windows of length
W is straightforward (see Remark VII.1):

Lemma VI.2. Suppose that x ∈ RN
1/
√
N

, ‖z‖∞ ≤
1√
N

and
d (x, z) ≤ 1√

N
. Let g be a rectangular window of length W .

Then, ∇f(z) as given in (IV.2) satisfies

‖∇f(z)‖2 ≤
8

L
W 2
√
Nd(x, z).

Proof: See Section VII-B.
The second lemma shows that the inner product between the

gradient and the vector z − xejφ(z) is positive if d (x, z) ≤
1

8
√
NW 2

. This result implies that −∇f(z) points approx-
imately towards x. As in Lemma VI.2, we consider for
simplicity rectangular windows of length W . Yet, the analysis
can be extended to non-vanishing windows of length W . In
this case, the bounds are dependent on the dynamic range of
g (for details, see Remark VII.2).

Lemma VI.3. Suppose that L = 1 and g is a rectangular
window of length W . For any x ∈ RN

1/
√
N

and ‖z‖∞ ≤
1√
N

,
if d (x, z) ≤ 1

8
√
NW 2

, then〈
∇f(z), z− xejφ(z)

〉
≥ Wd2 (x, z)

2N
,

where ∇f(z) is given in (IV.2).

Proof: See section VII-C.
The last result quantifies the basin of attraction of the loss

function (IV.1), namely, the area in which a gradient algorithm
is guaranteed to converge to a global minimum at a geometric
rate. As demonstrated in Figure V.2, in practice the basin of
attraction is quite large and exists for a broad family of signals.

Theorem VI.4. Let L = 1 and suppose that x ∈ RN
1/
√
N

and
g is a rectangular window of length W . Additionally, suppose
that d (x0,x) ≤ 1

8
√
NW 2

, where x0 obeys ‖x0‖∞ ≤
1√
N

.
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Then, under the measurement model (II.1), Algorithm 2 with
thresholding parameter B = 1√

N
and step size 0 < µ ≤ 2/β

achieves the following geometrical convergence

d2 (xk,x) ≤
(

1− 2µ

α

)k
d2 (xk−1,x) ,

where α ≥ 4N
W and β ≥ 256N2W 3.

Proof: See Section VII-D.
Combining Theorems VI.1 and VI.4 leads to the following

corollary:

Corollary VI.5. Suppose that L = 1, x ∈ RN
1/
√
N

, N is a
prime number and g is a rectangular window of length

2W − 1 +
1

128W 4
≥ N.

Then, under the measurement model of (II.1), Algorithm 2, ini-
tialized by Algorithm 1, with thresholding parameter B = 1√

N
and step size 0 < µ ≤ 2/β achieves the following geometrical
convergence

d2 (xk,x) ≤
(

1− 2µ

α

)k
d2 (xk−1,x) ,

where α ≥ 4N
W and β ≥ 256N2W 3.

Proof: See Section VII-E.
We mention that the result of Corollary VI.5 is good merely

for long windows. However, in practice we observe that the
algorithm works well also for short windows. As we discuss
in Section VIII, bridging this theoretical gap is an important
direction for future research.

VII. PROOFS

A. Proof of Theorem VI.1

The initialization is based on extracting the principle eigen-
vector of the matrix X0 defined in Algorithm 1. By assump-
tion, G` are invertible matrices for ` = −(W −1), . . . ,W −1
for some W ≥ 2 and hence we can compute (see (II.5))

diag (X0, `) = G−1
` y` = diag (X, `) .

For ` = W, . . . , (N −W ) we have diag (X0, `) = 0. Let us
take a look at the matrix E := X − X0. Clearly, E is not
zero at most on N − 2W + 1 diagonals. In other words, in
each row and column, there are at most N−2W +1 non-zero
values. Let Ωi be the set of non-zero values of the ith row of
E with cardinality |Ωi| ≤ N − 2W + 1. Using the fact that
‖x‖∞ =

√
B
N we can estimate

‖E‖∞ := max
i

∑
j

|X [i, j]−X0 [i, j]|

= max
i

∑
j∈Ωi

|X [i, j]|

= max
i

∑
j∈Ωi

|x [i] x [j]|

≤ B (N − 2W + 1)

N
.

The same bound holds for ‖E‖1 := maxj
∑
i |E[i, j]| and

therefore by Hölder inequality we get

‖E‖2 ≤
√
‖E‖∞ ‖E‖1 =

B (N − 2W + 1)

N
.

In order to complete the proof, we still need to show
that if ‖X−X0‖2 is small, then d (x,x0) is small as well,
where x0 be the principle eigenvector X0 with appropriate
normalization. To show that, we follow the outline of Section
7.8 in [8]. Observe that as G0 is invertible by assumption, the
norm of x is known by

‖x‖22 =

N−1∑
n=0

(diag (X, 0)[n] =

N−1∑
n=0

(
G−1

0 y0

)
[n].

Accordingly, we assume hereinafter without loss of generality
that x and x0 have unit norm. Let λ0 be the top eigenvalue
of X0, associated with x0. We observe that∣∣∣λ0 − |x∗0x|2

∣∣∣ = |x∗0X0x0 − x∗0xx∗x0|
≤ ‖X0 − xx∗‖2 .

Furthermore, as ‖x‖2 = 1 we also have

λ0 ≥ x∗X0x = x∗ (X0 − xx∗) x + 1

≥ 1− ‖X0 − xx∗‖2 .

Combining the last two inequalities we get

|x∗0x|2 ≥ 1− 2 ‖X0 − xx∗‖2
≥ 1− 2B

N − 2W + 1

N
.

It then follows

d2 (x0,x) ≤ 2

(
1−

√
1− 2B

N − 2W + 1

N

)
,

where the term in the square root is positive by assumption.
This completes the proof.

B. Proof of Lemma VI.2

Recall that

∇f(z) =

N/L−1∑
m=0

W−1∑
`=−(W−1)

(
zTHm,`z−Y [m, `]

)
·
(
Hm,` + HT

m,`

)
z,

where
Hm,` := P−`DmLDmL−`,

DmL is a diagonal matrix whose entries are {g [mL− n]}N−1
n=0

for fixed m and P` is a matrix that shifts (circularly) the
entries of an arbitrary vector by ` entries. We observe that for
a rectangular window of length W and ‖z‖∞ ≤

1√
N

, we have
‖z‖2 ≤ 1 and

‖Hm,`z‖2 ≤ ‖Hm,`‖2 ‖z‖2 ≤ 1,

and hence

‖∇f(z)‖2 ≤ 2

N/L−1∑
m=0

W−1∑
`=−(W−1)

∣∣Y [m, `]− zTHm,`z
∣∣ .

(VII.1)

https://www.researchgate.net/publication/263699198_Phase_Retrieval_via_Wirtinger_Flow_Theory_and_Algorithms?el=1_x_8&enrichId=rgreq-71ef90c6aaaf8cabff8431b0644ce08c-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY4MzI4MjtBUzo0Njg3NDQ5MDk2NjAxNjBAMTQ4ODc2ODkwMzM0Nw==
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For convenience, let us denote d (x, z) = ε√
N

for some
ε ≤ 1 and therefore |z[n]| ≥ 1−ε√

N
for all n. Accordingly, for

any (n, k)

(1− ε)2

N
≤ |z[n]z[n+ k]| ≤ 1

N
.

Since |x[n] − z[n]| ≤ 1√
N

, we have sign (z [n] z [n+ k]) =

sign (x [n] x [n+ k]). Accordingly,

|x[n]x[n+ k]− z[n]z[n+ k]| ≤ 1

N

∣∣1− (1− ε)2
∣∣

≤ 2ε

N
,

and for all m, ` ≥ 0,∣∣Y [m, `]− zTHm,`z
∣∣

≤
m−∑̀

k=m−(W−1)

|x[n]x[n+ k]− z[n]z[n+ k]|

≤
m−∑̀

k=m−(W−1)

2ε

N
≤ 2Wd(x, z)√

N
.

(VII.2)

The same bound holds for ` < 0. Combining (VII.1) and
(VII.2) we conclude that

‖∇f(z)‖2 ≤ 2

N/L−1∑
m=0

W−1∑
`=−(W−1)

2Wd(x, z)√
N

=
8

L
W 2
√
Nd(x, z).

Remark VII.1. In case of non-vanishing window of length W ,
one can easily bound the gradient using the same technique,
while taking into account maxn |g[n]| in the inequalities.

C. Proof of Lemma VI.3

Recall that (see (IV.2))〈
∇f(z), z− xejφ(z)

〉
=

N/L−1∑
m=0

W−1∑
`=−(W−1)

(
zTHm,`z− xTHm,`x

)
·

(
z− xejφ(z)

)T (
Hm,` + HT

m,`

)
z.

Since xTHT
m,`z = zTHm,`x we get for fixed (m, `) and

φ(z) = {0, π}:(
z− xejφ(z)

)T (
Hm,` + HT

m,`

)
z

=
(
z− xejφ(z)

)T
Hm,`

(
z− xejφ(z)

)
+
(
zTHm,`z− xTHm,`x

)
.

Therefore we get〈
∇f(z), z− xejφ(z)

〉
=

N−1∑
m=0

W−1∑
`=−(W−1)

(
zTHm,`z− xTHm,`x

)2
+

N−1∑
m=0

W−1∑
`=−(W−1)

(
zTHm,`z− xTHm,`x

)
·

(
z− xejφ(z)

)T
Hm,`

(
z− xejφ(z)

)
.

(VII.3)

Clearly, if z = xejφ(z) then
〈
∇f(z), z− xejφ(z)

〉
= 0.

Otherwise, the first term of (VII.3) is strictly positive. Hence,
in order to achieve a lower bound on (VII.3), we first derive
an upper bound on the second term and then bound the first
term from below.

By assumption d(x, z) ≤ 1√
N

and denote∣∣x[n]ejφ(z) − z[n]
∣∣ := εn√

N
for some εn ≤ 1. We observe

that
∑
n( εn√

N
)2 = d2 (x, z). For fixed ` ≥ 0, we can use the

Cauchy-Schwartz inequality to obtain:

N−1∑
m=0

(
z− xejφ(z)

)T
Hm,`

(
z− xejφ(z)

)
=

N−1∑
m=0

m−∑̀
n=m−(W−1)

(
z [n]− x [n] ejφ(z)

)(
z [n+ `]− x [n+ `] ejφ(z)

)

≤W

∣∣∣∣∣
N−1∑
m=0

(
z [m]− x [m] ejφ(z)

)(
z [m+ `]− x [m+ `] ejφ(z)

)∣∣∣∣∣
≤W

√√√√N−1∑
m=0

ε2
m

N

√√√√N−1∑
m=0

ε2
m+`

N
= Wd2(x, z).

The same bound holds for ` < 0. Combining the last result
with (VII.2) we get for the second term in (VII.3) that

N−1∑
m=0

W−1∑
`=−(W−1)

(
zTHm,`z− xTHm,`x

)
·

(
z− xejφ(z)

)T
Hm,`

(
z− xejφ(z)

)
≤ 4√

N
W 3d3(x, z).

(VII.4)

Next, we aim to bound the first term of (VII.3) from below
as follows:

N−1∑
m=0

W−1∑
`=−(W−1)

(
zTHm,`z− xTHm,`x

)2
≥
N−1∑
m=0

(
zTHm,0z− xTHm,0x

)2
=

N−1∑
m=0

 m∑
n=m−(W−1)

z2 [n]− x2 [n]

2

≥
N−1∑
m=0

m∑
n=m−(W−1)

(
z2 [n]− x2 [n]

)2
,

(VII.5)
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where the last inequality is true since x2[n] ≥ z2[n] and for
any positive (or negative) sequence {ai} we have (

∑
i ai)

2 ≥∑
i a

2
i . Furthermore, since |z[n]| = 1−εn√

N
we have

N−1∑
m=0

m∑
n=m−(W−1)

(
z2 [n]− x2 [n]

)2
=

1

N2

N−1∑
m=0

m∑
n=m−(W−1)

(
1− (1− εn)2

)2
=

W

N2

N−1∑
n=0

(
2εn − ε2

n

)2
.

Therefore, since εn ≤ 1 for all n we conclude that
N−1∑
m=0

W−1∑
`=−(W−1)

(
zTHm,`z− xTHm,`x

)2
≥ W

N2

N−1∑
n=0

ε2
n =

Wd2 (x, z)

N
.

(VII.6)

Remark VII.2. Observe that the analysis for non-vanishing
windows of length W requires only a small modification.
In this case, one should use the maximal and the minimal
values of the window in the above inequalities. For instance,
one would need to take gmin := minn=0,...,W−1 |g[n]| into
account in (VII.5).

Plugging (VII.4) and (VII.6) into (VII.3) yields

〈∇f(z), z− x〉 ≥ Wd2 (x, z)

N

(
1− 4

√
NW 2d(x, z)

)
≥ Wd2 (x, z)

2N
,

where the last inequality holds for d(x, z) ≤ 1
8
√
NW 2

. This
concludes the proof.

D. Proof of Theorem VI.4

For fixed x, let E be the set of vectors in RN satisfying
‖z‖∞ ≤ 1√

N
and d (x, z) ≤ 1

8
√
NW 2

. We first need the
following definition:

Definition VII.3. We say that a function f satisfies the
regularity condition in E if for all vectors z ∈ E we have〈

∇f(z), z− xejφ(z)
〉
≥ 1

α
d2 (z,x) +

1

β
‖∇f(z)‖22 ,

for some positive constants α, β.

The following lemma states that if the regularity condition
is met, then the gradient step converges to a global minimum
at a geometric rate.

Lemma VII.4. Assume that f satisfies the regularity condition
for all z ∈ E . Consider the following update rule

zk = zk−1 − µ∇f (zk−1) ,

for 0 < µ ≤ 2/β. Then,

d2 (zk,x) ≤
(

1− 2µ

α

)k
d2 (zk−1,x) .

Proof: See Section 7.4 in [8].
We notice that the thresholding stage of Algorithm 2 cannot

increase the error as the signal is assumed to be bounded.
Hence, we can directly leverage lemmas VI.2 and VI.3 and
see that Definition VII.3 holds in our case with the constants
α ≥ 4N

W and β ≥ 256N2W 3.

E. Proof of Corollary VI.5

As N is a prime number, g is an admissible window of
length W (see Claim III.3). According to Theorem VI.4, we
merely need to show that the initialization point is within the
basin of attraction, namely, d (x,x0) ≤ 1

8
√
NW 2

. From Lemma
VI.1, we know that the initialization point obeys

d2 (x0,x) ≤ 2

(
1−

√
1− 2

N − 2W + 1

N

)
.

Using the fact that a ≤
√
a for all 0 ≤ a ≤ 1 and

some standard algebraic calculations, we conclude that the
initialization of Algorithm 1 is within the basin of attraction
as long as

2W − 1 +
1

128W 4
≥ N.

This completes the proof.

VIII. DISCUSSION

This paper aims at suggesting a practical, efficient phase
retrieval algorithm with theoretical guarantees. The proposed
algorithm minimizes a non-convex loss function. Similar ap-
proaches were taken recently for phase retrieval problems,
however, they are mainly focused on random setups and their
analysis is greatly based on statistical considerations. Here, we
pursue a different approach. The algorithm begins by taking
the DFT of the measurements (II.1). This step simplifies the
structure of the data and implies almost directly uniqueness
results. For sufficiently long windows, we show that a LS
algorithm recovers the signal efficiently. For general settings,
we apply a gradient descent algorithm. The algorithm is
initialized by the principle eigenvector of a designed matrix,
constructed as the solution of a LS problem. For L = 1, we
estimate the distance between the initialization and the global
minimum (see Theorem VI.1). The case of L > 1 raises some
interesting questions. As a heuristic, we have suggested to
smoothly interpolate the missing entries. This practice works
quite well since the window acts as an averaging operator.
Clearly, the interpolation method depends on the window
shape. A main challenge for future research is analyzing
the setting of L > 1. Additionally, a slight modification of
our initialization algorithm recovers exactly signals with unit
module entries (see Proposition III.5). This result implies a
potential applicability to angular synchronization [40], [1], [4].

The analysis of the non-convex algorithm relies on the
geometry of the loss function (IV.1). We prove in Theorem
VI.4 that for signals with unit module entries, there exists a
basin of attraction. We show numerically that the actual basin
of attraction is larger than the theoretical bound and exists
for a broader family of signals. The gap between the actual

https://www.researchgate.net/publication/268227160_Tightness_of_the_maximum_likelihood_semidefinite_relaxation_for_angular_synchronization?el=1_x_8&enrichId=rgreq-71ef90c6aaaf8cabff8431b0644ce08c-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY4MzI4MjtBUzo0Njg3NDQ5MDk2NjAxNjBAMTQ4ODc2ODkwMzM0Nw==
https://www.researchgate.net/publication/263699198_Phase_Retrieval_via_Wirtinger_Flow_Theory_and_Algorithms?el=1_x_8&enrichId=rgreq-71ef90c6aaaf8cabff8431b0644ce08c-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY4MzI4MjtBUzo0Njg3NDQ5MDk2NjAxNjBAMTQ4ODc2ODkwMzM0Nw==
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basin of attraction and the theoretical result is the bottleneck
that prevents a full theoretical understanding of the algorithm.
Specifically, improving Lemma VI.3 will lead directly to
tighter estimation of the basin of attraction. Bridging that gap
is an additional major goal of a future work.
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APPENDIX

A. Proof of Proposition III.4

By assumption, the DFT of g◦(P−`g) is non-vanishing for
` = 0, 1. Consequentially, the matrices G`, ` = 0, 1 as given
in (II.5) are invertible and we can compute

x` = G−1
` y`, ` = 0, 1,

where X = xx∗, x` = diag (X, `) and y` := {Y [m, `]}N−1
m=0.

Because of the fundamental ambiguity of phase retrieval, the
first entry can be set arbitrarily to be

√
x0 [0] = |x [0]|. Then,

as we assume non-vanishing signals, the rest of the entries can
be determined recursively for n = 1 . . . , N − 1 by

x1 [n− 1]

x [n− 1]
=

x [n− 1] x [n]

x [n− 1]
= x [n] .

This completes the proof.

B. Proof of Proposition III.5

By assumption, G` is an invertible matrix for |`| ≤W − 1
for some W ≥ 2 (see (II.5)). Hence, we can compute
diag(X, `) = G−1

` y` for ` = 0,M for any 1 ≤M ≤ W − 1.
The proof is a direct corollary of the following lemma:

Lemma. Let L = 1. Suppose that x ∈ CN
1/
√
N

and let X =

xx∗. Fix M ∈ [1, . . . , N − 1] and let X0 be a matrix obeying

diag (X0, `) =

{
diag (X, `) , ` = 0,M,

0, otherwise.

Then, x is a principle eigenvectors of X0 (up to global phase).

Proof: Based on the special structure of X0, the following
calculation shows that x is an eigenvector of X0 with 2

N as
the associated eigenvalue:

(X0x) [i] =

N∑
j=1

X0[i, j]x[j]

= X0[i, i]x[i] + X0[i, i+M ]x[i+M ]

= x[i] |x[i]|2 + x[i] |x[i+M ]|2

=
2

N
x[i].

We still need to show that x is a principle eigenvector of
X0. Since each column and row of X0 is composed of two
non-zero values, it is evident that

‖X0‖∞ := max
i

∑
j

|X0 [i, j]| = 2

N
.

In the same manner

‖X0‖1 := max
j

∑
i

|X0 [i, j]| = 2

N
.

Hence by Hölder inequality we get

‖X0‖2 ≤
√
‖X0‖1 ‖X0‖∞ =

2

N
.

This concludes the proof.

C. Proof of Proposition III.6

As the matrices G` are invertible by assumption for all
` = −(W − 1), . . . , (W − 1), we can compute

diag (X0, `) = G−1
` y` = diag (X, `) .

The assumption W ≥
⌈
N+1

2

⌉
implies that X0 = X. Specifi-

cally, observe that it is sufficient to consider only W =
⌈
N+1

2

⌉
since for any |`1| >

⌈
N+1

2

⌉
, the window g ◦ (P−`1) is equal

to another window g ◦ (P−`2) for some |`2| ≤
⌈
N+1

2

⌉
.

Let x̃ := x/‖x‖2. Then, x̃ is the principle eigenvector of
X and the normalization stage of Algorithm 1 gives√√√√N−1∑

n=0

(
G−1

0 y0

)
[n] = ‖x‖2.

This completes the proof.

D. Proof of Lemma IV.1

We identify the convolution g ∗ x by the matrix-vector
product Gx, where G ∈ RN×N is a circulant matrix whose
first column is given by g̃ := {g[(−n)modN ]}N−1

n=0 . For
L = 1, we can then write

y = Gx = F∗ΣFx,

where F is a DFT matrix and Σ is a diagonal matrix whose
entries are the DFT of g̃. By assumption, the first N/L entries
of Σ are ones and the rest are zeros. Hence, we may write

y = F∗pFpx, (D.1)

where Fp ∈ CN/L×N consists of the first N/L rows of F.
Let GL ∈ RN

L×N be a matrix consists of the
{jL : j = 0, . . . , N/L− 1} rows of G. For L > 1, we get
the downsampled system of equations

yL = GLx = F∗LΣFx,

where FL consists of the {jL : j = 0, . . . , N/L− 1}
columns of F (notice the difference between FL and Fp).
We aim at showing that expanding and interpolating yL as
explained in Lemma IV.1 results in y. Direct computation
shows that the expansion stage as described in (IV.3) is
equivalent to multiplying both sides by F∗FL:

ỹL = F∗FLyL = F∗ (FLF∗L) ΣFx.

Let us denote T := FLF∗L, which is a Toeplitz matrix with
L on the jN

L diagonals for j = 0, . . . , N/L − 1 and zero
otherwise. Because of the structure of Σ we can then write

ỹL = F∗TpFpx,

where Tp ∈ RN×N/L consists of the first N/L columns of
T. Direct calculation shows that FpF

∗Tp = I, where I is the
identity matrix. Therefore we conclude that(

F∗pFp
)
ỹL = F∗pFpx. (D.2)

Comparing (D.2) with (D.1) completes the proof.
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