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Abstract—Solving linear inverse problems plays a crucial role
in numerous applications. Algorithm unfolding based, model-
aware data-driven approaches have gained significant attention
for effectively addressing these problems. Learned iterative
soft-thresholding algorithm (LISTA) and alternating direction
method of multipliers compressive sensing network (ADMM-
CSNet) are two widely used such approaches, based on ISTA
and ADMM algorithms, respectively. In this work, we study
optimization guarantees, i.e., achieving near-zero training loss
with the increase in the number of learning epochs, for finite-
layer unfolded networks such as LISTA and ADMM-CSNet
with smooth soft-thresholding in an over-parameterized (OP)
regime. We achieve this by leveraging a modified version of the
Polyak-Łojasiewicz, denoted PL∗, condition. Satisfying the PL∗

condition within a specific region of the loss landscape ensures
the existence of a global minimum and exponential convergence
from initialization using gradient descent based methods. Hence,
we provide conditions, in terms of the network width and the
number of training samples, on these unfolded networks for
the PL∗ condition to hold, by deriving the Hessian spectral
norm. Additionally, we show that the threshold on the number of
training samples increases with the increase in the network width.
Furthermore, we compare the threshold on training samples
of unfolded networks with that of a standard fully-connected
feed-forward network (FFNN) with smooth soft-thresholding
non-linearity. We prove that unfolded networks have a higher
threshold value than FFNN. Consequently, one can expect a
better expected error for unfolded networks than FFNN.

Index Terms—Optimization Guarantees, Algorithm Unfolding,
LISTA, ADMM-CSNet, Polyak-Łojasiewicz condition

I. Introduction

L INEAR inverse problems are fundamental in many en-
gineering and science applications [1], [2], where the

aim is to recover a vector of interest or target vector from
an observation vector. Existing approaches to address these
problems can be categorized into two types; model-based and
data-driven. Model-based approaches use mathematical for-
mulations that represent knowledge of the underlying model,
which connects observation and target information. These
approaches are computationally efficient and require accurate
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model knowledge for good performance [3], [4]. In data-driven
approaches, a machine learning (ML) model, e.g., a neural
network, with a training dataset, i.e., a supervised setting,
is generally considered. Initially, the model is trained by
minimizing a certain loss function. Then, the trained model is
used on unseen test data. Unlike model-based methods, data-
driven approaches do not require underlying model knowledge.
However, they require a large amount of data and computa-
tional resources while training [3], [4].

By utilizing both domains’ knowledge, i.e., the mathemati-
cal formulation of the model and ML ability, a new approach,
called model-aware data-driven, has been introduced [5], [6].
This approach involves the construction of a neural network
architecture based on an iterative algorithm, which solves
the optimization problem associated with the given model.
This process is called algorithm unrolling or unfolding [6],
[7]. It has been observed that the performance, in terms
of accurate recovery of the target vector and training data
requirements, of model-aware data-driven networks is better
when compared with existing techniques [5], [8]. Recently,
algorithm unrolling has been used in many applications [8]–
[17]. Specifically, learned iterative soft-thresholding algorithm
(LISTA) and alternating direction method of multipliers com-
pressive sensing network (ADMM-CSNet) are two popular
unfolded networks that have been used in many applications
such as image compressive sensing [8], image deblurring [13],
image super-resolution [14], super-resolution microscopy [15],
clutter suppression in ultrasound [16], power system state
estimation [17], and many more.

Nevertheless, theoretical studies supporting these unfolded
networks remain to be established. There exist a few theoreti-
cal studies that address the challenges of generalization [18]–
[20] and convergence rate [21]–[23] in unfolded networks.
For instance, in [18], the authors showed that unfolded net-
works exhibit higher generalization capability compared with
standard ReLU networks by deriving an upper bound on the
generalization and estimation errors. In [21]–[23] the authors
examined the LISTA network convergence to the ground truth
as the number of layers increases i.e., layer-wise convergence
(which is analogous to iteration-wise convergence in the ISTA
algorithm). However, in [21]–[23], the network weights are not
learned but are calculated analytically by solving a data-free
optimization problem. In this work, we study guarantees to
achieve near-zero training loss with an increase in the number
of learning epochs, i.e., optimization guarantees, by using
gradient descent (GD) for both LISTA and ADMM-CSNet
with smooth activation in an over-parameterized regime. Note
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Fig. 1: Double descent risk curve.

that, our work differs from [21]–[23], as we focus on the
convergence of training loss with the increase in the number
of epochs by fixing the number of layers in the network.

In classical ML theory, we aim to minimize the expected/test
risk by finding a balance between under-fitting and over-fitting,
i.e., achieving the bottom of the classical U-shaped test risk
curve [24]. Modern ML results establish that large models that
try to fit train data exactly, i.e., interpolate, often show high
test accuracy even in the presence of noise [25]–[30]. Recently,
ML practitioners proposed a way to numerically justify the
relationship between classical and modern ML practices. They
achieved this by proposing a performance curve called the
double-descent test risk curve [25], [26], [28], [29], which
is depicted in Fig. 1. This curve shows that increasing the
model capacity (e.g., model parameters) until interpolation
results in the classical U-shaped risk curve; further increasing
it beyond the interpolation point reduces the test risk. Thus,
understanding the conditions – as a function of the training
data – that allow perfect data fitting is crucial.

Neural networks can be generally categorized into under-
parameterized (UP) and over-parameterized (OP), based on the
number of trainable parameters and the number of training data
samples. If the number of trainable parameters is less than the
number of training samples, then the network is referred to as
an UP model, otherwise, it is referred to as an OP model. The
loss landscape of both UP and OP models is generally non-
convex. However, OP networks satisfy essential non-convexity
[31]. Particularly, the loss landscape of an OP model has a non-
isolated manifold of global minima with non-convexity around
any small neighborhood of a global minimum. Despite being
highly non-convex, GD based methods work well for training
OP networks [32]–[35]. Recently, in [31], [36], the authors
provided a theoretical justification for this. Specifically, they
proved that the loss landscape, corresponding to the squared
loss function, of a typical smooth OP model satisfies a
modified version of the Polyak-Łojasiewicz condition, denoted
PL∗, on most of the parameter space. Indeed, a necessary
(but not sufficient) condition to satisfy PL∗ is that the model
should be in the OP regime. Satisfying PL∗ on a region
in the parameter space guarantees the existence of a global
minimum in that region, and exponential convergence to the
global minimum from a Gaussian initialization using simple
GD, with an increase in the number of learning epochs.

Motivated by the aforementioned PL∗-based mathematical
framework of OP networks, in this paper, we analyze opti-
mization guarantees of finite-layer OP based unfolded ISTA
and ADMM networks. As the analysis of PL∗ depends on the
double derivative of the model [31], we consider a smooth
version of the soft-thresholding as an activation function. The
major contributions of the paper are summarized as follows:

• As the linear inverse problem aims to recover a vector, we
initially extend the gradient-based optimization analysis
of the OP model with a scalar output, proposed in [31],
to a vector output. In the process, we prove that a
necessary condition to satisfy PL∗ is P ≫ mT , where
P denotes the number of parameters, m is the dimension
of the model output vector, and T denotes the number of
training samples.

• In [31], [36], the authors provided a condition on the
width of a fully-connected feed-forward neural network
(FFNN) with scalar output to satisfy the PL∗ condition
by utilizing the Hessian spectral norm of the network.
Motivated by this work, we derive the Hessian spectral
norm of finite-layer LISTA and ADMM-CSNet with
smoothed soft-thresholding non-linearity. We show that
the norm is on the order of Ω̃ (1/

√
m), where m denotes

the width of the network which is equal to the target
vector dimension.

• By employing the Hessian spectral norm, we derive
necessary conditions on both m and T to satisfy the PL∗

condition for both LISTA and ADMM-CSNet. Moreover,
we demonstrate that the threshold on T , which denotes
the maximum number of training samples that a network
can memorize, increases as the network width increases.

• We compare the threshold on the number of training sam-
ples of LISTA and ADMM-CSNet with that of FFNN,
solving a given linear inverse problem. Our findings show
that LISTA/ADMM-CSNet exhibits a higher threshold
value than FFNN. We demonstrate this by proving that the
upper bound on the minimum eigenvalue of the tangent
kernel matrix at initialization is high for LISTA/ADMM-
CSNet compared to FFNN. This implies that, with fixed
network parameters, the unfolded network is capable of
memorizing a larger number of training samples com-
pared to FFNN. Therefore, we expect to obtain a better
expected error (which is upper bounded by the sum
of generalization and training error [37]) for unfolded
networks than FFNN.

• We numerically evaluate the parameter efficiency of un-
folded networks in comparison to FFNNs. In particular,
we demonstrate that FFNNs require a higher number of
parameters to achieve near-zero empirical training loss
compared to LISTA/ADMM-CSNet for given T .

To be specific, the contributions in [38] are as follows: We
provided a closed-form expression for the Hessian spectral
norm of unfolded networks with its mathematical derivation
omitted. Additionally, we provided the bounds on the number
of training samples for both LISTA and ADMM-CSNet to
achieve near-zero training loss using the gradient descent (GD)
approach in an over-parameterized (OP) regime. Furthermore,
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we justified the same with a few simulation results.
The paper is organized as follows. Section II reviews LISTA

and ADMM-CSNet, and formulates the problem. Section III
extends the PL∗-based optimization guarantees of an OP
model with scalar output to a model with multiple outputs.
Section IV begins by deriving the Hessian spectral norm of
the unfolded networks. Then, it provides conditions on the
network width and on the number of training samples to satisfy
the PL∗ condition. It also establishes a comparative analysis
of the threshold for the number of training samples among
LISTA, ADMM-CSNet, and FFNN. Section V introduces
experimental results and Section VI concludes the paper.

The following notations are used throughout the paper. The
set of real numbers is denoted by R. We use bold lowercase
letters, e.g., y, for vectors, capital letters, e.g., W , for matrices,
and bold capital letters, e.g., H, for tensors. Symbols ||z||1,
||z||, and ||z||∞ denote the l1-norm, l2-norm, and l∞-norm of
vector z, respectively. The spectral norm and Frobenius norm
of a matrix W are written as ||W || and ||W ||F , respectively.
We use [L] to denote the set {1, 2, . . . , L}, where L is a natural
number. The first-order derivative or gradient of a function
L(w) w.r.t. w is written as ∇wL(w). The asymptotic upper
bound and lower bound on a quantity are described using O(·)
and Ω(·), respectively. Notations Õ(·) and Ω̃(·) are used to
suppress the logarithmic terms in O(·) and Ω(·), respectively.
For example, O

(
1
m ln(m)

)
is written as Õ

(
1
m

)
. Symbols ≫

and ≪ mean “much greater than” and “much lesser than”,
respectively. Consider a matrix G with Gi,j =

∑
k Ai,j,kvk,

where Ai,j,k is a component in tensor A ∈ Rm1×m2×m3 . The
spectral norm of G is bounded as

∥G∥ ≤ ∥A∥2,2,1∥v∥∞. (1)

Here ∥A∥2,2,1 is the (2, 2, 1)-norm of the tensor A, defined
as

∥A∥2,2,1 = sup
∥r∥=∥s∥=1

m3∑
k=1

∣∣∣∣∣∣
m1∑
i=1

m2∑
j=1

Ai,j,krisj

∣∣∣∣∣∣ , (2)

where r ∈ Rm1×1 and s ∈ Rm2×1.

II. Problem Formulation

A. LISTA and ADMM-CSNet

Consider the following linear inverse problem

y = Ax+ e. (3)

Here y ∈ Rn×1 is the observation vector, x ∈ Rm×1 is the
target vector, A ∈ Rn×m is the forward linear operator matrix
with m > n, and e is noise with ∥e∥2 < ϵ, where the constant
ϵ > 0. Our aim is to recover x from a given y.

In model-based approaches, an optimization problem is
formulated using prior knowledge about the target vector and
is usually solved using an iterative algorithm. For instance, by
assuming x is a k-sparse vector [39], the least absolute shrink-
age and selection operator (LASSO) problem is formulated as

min
x

1

2
∥y −Ax∥2 + γ∥x∥1, (4)

where γ is a regularization parameter. We consider k as a
constant value throughout our analysis. Iterative algorithms,

Fig. 2: lth layer of the unfolded ISTA network.

such as ISTA and ADMM [40], are generally used to solve
the LASSO problem. The update of x at the lth iteration in
ISTA is [41]

xl = Sγτ

{(
I− τATA

)
xl−1 + τATy

}
, (5)

where x0 is a bounded input initialization, τ controls the
iteration step size, and Sλ(·) is the soft-thresholding oper-
ator applied element-wise on a vector argument Sλ(x) =
sign(x)max (|x| − λ, 0) . The lth iteration in ADMM is [42]

xl =
(
ATA+ ρI

)−1 (
ATy + ρ

(
zl−1 − ul−1

))
,

zl = S γ
ρ

(
xl + ul−1

)
,

ul = ul−1 +
(
xl − zl

)
,

(6)

where x0, z0, and u0, are bounded input initializations to
the network and ρ > 0 is a penalty parameter. Model-based
approaches are in general sensitive to inaccurate knowledge of
the underlying model [3], [4]. In turn, data-driven approaches
use an ML model to recover the target vector. These ap-
proaches generally necessitate a substantial volume of data
and computational resources for training [3], [4].

A model-aware data-driven approach can be developed
using algorithm unfolding or unrolling [6]. In unfolding, a
neural network is constructed by mapping each iteration in
the iterative algorithm (such as (5) or (6)) to a network layer.
Hence, an iterative algorithm with L-iterations leads to an
L-layer cascaded deep neural network. The network is then
trained by using the available dataset containing a series of
pairs {yi,xi}, i ∈ [T ]. For example, the update of x at the lth

iteration in ISTA, given in (5), is rewritten as

xl = Sλ

{
W l

2x
l−1 +W l

1y
}
, (7)

where λ = γτ , W l
1 = τAT , and W l

2 = I − τATA. By
considering W l

1, W l
2, and λ as network learnable parameters,

one can map the above lth iteration to an lth layer in the
network as shown in Fig. 2. The corresponding unfolded
network is called learned ISTA (LISTA) [5].

Similarly, by considering W l
1 =

(
ATA+ ρI

)−1
AT , W l

2 =(
ATA+ ρI

)−1
ρ, and λ = γ

ρ as learnable parameters, (6) is
rewritten as

xl = W l
1y +W l

2

(
zl−1 − ul−1

)
,

zl = Sλ

(
xl + ul−1

)
,

ul = ul−1 +
(
xl − zl

)
.

(8)

The above lth iteration in ADMM can be mapped to an lth

layer in a network as shown in Fig. 3, leading to ADMM-
CSNet [8]. From a network point of view, the inputs of lth
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Fig. 3: lth layer of the unfolded ADMM network.

layer are xl−1 and y for LISTA, and zl−1, ul−1 and y for
ADMM-CSNet.

It has been observed that the performance of LISTA and
ADMM-CSNet is better in comparison with ISTA, ADMM,
and traditional networks, in many applications [5], [8]. For
instance, to achieve good performance the number of layers
required in an unrolled network is generally much smaller than
the number of iterations required by the iterative solver [5].
In addition, an unrolled network works effectively even if the
linear operator matrix, A, is not known exactly. An unrolled
network typically requires less data for training compared to
standard deep neural networks [3] to achieve a certain level of
performance on unseen data. Due to these advantages, LISTA
and ADMM-CSNet have been used in many applications [8],
[13]–[17]. That said, the theoretical foundations supporting
these networks remain to be established. While there have
been some studies focusing on the generalization [18]–[20]
and convergence rate [21]–[23] of unfolded networks, a com-
prehensive study of the optimization guarantees is lacking.
Here, we analyze the conditions on finite L-layer LISTA and
ADMM-CSNet to achieve near-zero training loss with the
increase in the number of epochs.

B. Problem Formulation

We consider the following questions: Under what conditions
does the training loss in LISTA and ADMM-CSNet converge
to zero as the number of epochs tends to infinity using GD?
Additionally, how do these conditions differ for FFNNs?

For the analysis, we consider the following training setting:
Let x = F (w, λ;y) be an L-layer unfolded model, where
y ∈ Rn×1 is the model input vector, x ∈ Rm×1 is the
model output, and w ∈ RP×1 and λ are the learnable param-
eters. To simplify the analysis, λ is assumed to be constant,
henceforth, we write F (w, λ;y) as F (w;y). This implies that
wP×1 = Vec

(
[W]L×m×(m+n)

)
is the only learnable (untied)

parameter vector, where

W =
[
W 1 W 2 . . . WL

]
, (9)

and
[
W l
]
m×(m+n)

=
[
W l

1 W l
2

]
is the parameter matrix

corresponding to the lth-layer. Alternatively, we can write

W =
[
[W1]L×m×n [W2]L×m×m

]
, (10)

W1 =
[
W 1

1 . . . WL
1

]
and W2 =

[
W 1

2 . . . WL
2

]
.

Consider the training dataset {yi,xi}Ti=1. An optimal pa-
rameter vector w∗, such that F (w∗;yi) ≈ xi, ∀i ∈ [T ], is
found by minimizing an empirical loss function L(w), defined
as

L(w) =

T∑
i=1

l(fi,xi), (11)

where l(·) is the loss function, fi = (F(w))i = F (w,yi),
F(·) : RP×1 −→ Rm×T , and (F(w))i is the ith column in
F(w). We consider the squared loss, hence

L(w) =
1

2

T∑
i=1

∥fi − xi∥2 =
1

2
∥F(w)−X∥2F , (12)

where X = [x1, . . . ,xT ]. We choose GD as the optimization
algorithm for minimizing L(w), so that, the updating rule is

wt+1 = wt − η∇wL(w)

where η is the learning rate. In this study, the training
data {yi,xi}Ti=1 is generated with model priors k and A
following standard compressed sensing (CS) theory. Post-
data generation, the proposed theoretical or numerical analysis
remains independent of both prior values. This is because
unrolled models, as described in equations (13) and (14),
remain independent of both A and k.

Our aim is to derive conditions on LISTA and ADMM-
CSNet such that L(w) converges to zero with an increase in
the number of epochs using GD, i.e., limt→∞ L(wt) = 0. In
addition, we compare these conditions with those of FFNN,
where we obtain the conditions for FFNN by extending the
analysis given in [31]. Specifically, in Section IV-C, we derive
a bound on the number of training samples to achieve near
zero training loss for unfolded networks. We show that this
threshold is lower for FFNN compared to unfolded networks.

III. Revisiting PL∗-Based Optimization Guarantees

In [31] the authors proposed PL∗-based optimization theory
for a model with a scalar output. Motivated by this, in this
section, we extend this theory to a multi-output model, as we
aim to recover a vector in a linear inverse problem.

Consider an ML model, not necessarily an unfolded net-
work, x = F (w;y), with the training setup mentioned in
Section II-B, where y ∈ Rn×1, x ∈ Rm×1, and w ∈ RP×1.
Furthermore, assume that the model is LF -Lipschitz contin-
uous and βF -smooth. A function F(·) : RP −→ Rm×T is
LF -Lipschitz continuous if

∥F(w1)−F(w2)∥F ≤ LF∥w1 −w2∥, ∀w1,w2 ∈ RP ,

and is βF -smooth if the gradient of the function is βF -
Lipschitz, i.e.,

∥∇wF(w1)−∇wF(w2)∥F ≤ βF∥w1 −w2∥,

for all w1, w2 ∈ RP . The Hessian spectral norm of F(·) is
defined as

∥HF (w)∥ = max
i∈[T ]

∥HFi
(w)∥,

where HF ∈ RT×m×P×P is a tensor with (HF )i,j,k,l =
∂2(F(w))j,i

∂wk∂wl
and HFi

= ∂2(F(w))i
∂w2 . As stated earlier, the loss
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landscape of the OP model typically satisfies PL∗ on most of
the parameter space. Formally, the PL∗ condition is defined as
follows [43], [44]:

Definition 1. Consider a set C ⊂ RP×1 and µ > 0. Then, a
non-negative function L(w) satisfies µ-PL∗ condition on C if
∥∇wL(w)∥2 ≥ µL(w), ∀w ∈ C.

Definition 2. The tangent kernel matrix, [K(w)]mT×mT , of
the function F(w), is a block matrix with (i, j)th block defined
as

(K(w))i,j = [∇wfi]m×P [∇wfj ]
T
P×m , i ∈ [T ] and j ∈ [T ],

where F(·) : RP×1 −→ Rm×T , fi = (F(w))i, and (F(w))i is
the ith column in F(w).

From the above definitions, we have the following lemma,
which is called µ-uniform conditioning [31] of a multi-output
model F(w):

Lemma 1. F(w) satisfies µ-PL∗ on set C if the minimum
eigenvalue of the tangent kernel matrix, K(w), is greater than
or equal to µ, i.e., λmin(K(w)) ≥ µ, ∀w ∈ C.
Proof. From (12), we have

∥∇wL(w)∥2 =
[
f̂ − x̂

]T [
∇w f̂

]
mT×P

[
∇w f̂

]T
P×mT

[
f̂ − x̂

]
=
[
f̂ − x̂

]T
[K(w)]mT×mT

[
f̂ − x̂

]
,

where f̂ = Vec (F(w)) and x̂ = Vec (X). The above equation
can be lower-bounded as

∥∇wL(w)∥2 ≥ λmin (K(w)) ∥f̂ − x̂∥22 ≥ µL(w),

completing the proof.

Observe that K(w) is a positive semi-definite matrix. Thus,
a necessary condition to satisfy the PL∗ condition (that is, a
necessary condition to obtain a full rank K(w)), for a multi-
output model is P ≫ mT . For a scalar output model, the
equivalent condition is P ≫ T [31]. Note that if P ≪ T ,
i.e., an UP model with a scalar output, then λmin(K(w)) = 0,
implies that an UP model does not satisfy the PL∗ condition.

Practically, computing λmin(K(w)) for every w ∈ C,
to verify the PL∗ condition, is not feasible. One can over-
come this by using the Hessian spectral norm of the model
∥HF (w)∥ [31]:

Theorem 1. Let w0 ∈ RP×1 be the parameter initial-
ization of an LF -Lipschitz and βF -smooth model F(w),
and B(w0, R) = {w| ∥w − w0∥ ≤ R} be a ball with
radius R > 0. Assume that K(w0) is well conditioned, i.e.,
λmin(K(w0)) = λ0 for some λ0 > 0. If ∥HF (w)∥ ≤ λ0−µ

2LF
√
TR

for all w ∈ B(w0, R), then the model satisfies µ-uniform
conditioning in B(w0, R); this also implies that L(w) satisfies
µ-PL∗ in the ball B(w0, R).

The intuition behind the above theorem is that small
∥HF (w)∥ leads to a small change in the tangent kernel.
Precisely, if the tangent kernel is well conditioned at the initial-
ization, then a small ∥HF (w)∥ in B(w0, R) guarantees that
the tangent kernel is well conditioned within B(w0, R). The
following theorem states that satisfying PL∗ guarantees the

existence of a global minimum and exponential convergence
to the global minimum from w0 using GD:

Theorem 2. Consider a model F(w) that is LF -Lipschitz
continuous and βF -smooth. If the square loss function
L(w) satisfies the µ-PL∗ condition in B(w0, R) with R =
2LF∥F(w0)−X∥F

µ = O
(

1
µ

)
, then we have the following:

• There exist a global minimum, w∗, in B(w0, R) such that
F(w∗) = X .

• GD with step size η ≤ 1
L2

F+βF∥F(w0)−X∥F
converges to

a global minimum at an exponential convergence rate,
specifically, L(wt) ≤ (1− ηµ)tL(w0).

The proofs of Theorems 1 and 2 are similar to the proofs
of Theorems 2 and 6, respectively, in [31]. However, as linear
inverse problems deal with vector recovery, the proofs rely on
Frobenius norms instead of Euclidean norms.

IV. Optimization Guarantees

We now analyze the optimization guarantees of both LISTA
and ADMM-CSNet by considering them in the OP regime.
Hence, the aim is further simplified to study under what con-
ditions LISTA and ADMM-CSNet satisfy the PL∗ condition.
As mentioned in Theorem 1, one can verify the PL∗ condition
using the Hessian spectral norm of the network. Thus, in
this section, we first compute the Hessian spectral norm of
both LISTA and ADMM-CSNet. The mathematical analysis
performed here is motivated by [36], where the authors derived
the Hessian spectral norm of an FFNN with a scalar output.
Then, we provide conditions on both the network width and
the number of training samples to satisfy the PL∗ condition.
Subsequently, we compare among unfolded networks and
FFNN to evaluate the threshold on the number of training
samples.

A. Assumptions

For the analysis, we consider certain assumptions on the
unfolded ISTA and ADMM networks. The inputs of the
networks are bounded, i.e., there exist some constants Cx,
Cu, Cz , and Cy such that |x0

i | ≤ Cx, |u0
i | ≤ Cu, |z0i | ≤ Cz ,

∀i ∈ [m], and |yi| ≤ Cy, ∀i ∈ [n]. As the computation of the
Hessian spectral norm involves a second-order derivative, we
approximate the soft-thresholding activation function, Sλ(·),
in the unfolded network with the double-differentiable/smooth
soft-thresholding activation function, σλ(·), formulated using
soft-plus, where σλ(x) = log

(
1 + ex−λ

)
− log

(
1 + e−x−λ

)
.

Fig. 4 depicts Sλ(x) and σλ(x) for λ = 5. Observe that
σλ(x) approximates well the shape of Sλ(x). There are several
works in the literature that approximate the soft-thresholding
function with a smooth version of it [45]–[51]. The analysis
proposed in this work can be extended as is to other smooth
approximations. Since λ is assumed to be a constant (refer to
Section II-B), henceforth, we write σλ(·) as σ(·). It is well
known that σ(·) is Lσ-Lipschitz continuous and βσ-smooth.

Let W0,W10,W20,W
l
10 and W l

20 denote the initialization
of W,W1,W2, W l

1 and W l
2, respectively. We use identical

independent random Gaussian initialization for each parameter
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Fig. 4: Soft-threshold function, Sλ(x), and its smooth approx-
imation, σλ(x) (formulated using the soft-plus function), with
λ = 5.

with mean 0 and variance 1, i.e.,
(
W l

10

)
i,j

∼ N (0, 1) and(
W l

20

)
i,j

∼ N (0, 1), for all i, j, and l ∈ [L]. This guarantees
well conditioning of the tangent kernel at initialization [31],
[32]. The Gaussian initialization imposes certain bounds, with
high probability, on the spectral norm of the weight matrices.
In particular, we have the following:

Lemma 2. If
(
W l

10

)
i,j

∼ N (0, 1) and
(
W l

20

)
i,j

∼ N (0, 1),
∀l ∈ [L], i.e., independent and identical (i.i.d.) Gaussian
initialized, then with probability at least 1 − 2 exp

(
−m

2

)
we

have
∥∥W l

10

∥∥ ≤ c10
√
n = O(

√
n) and

∥∥W l
20

∥∥ ≤ c20
√
m =

O(
√
m), ∀l ∈ [L], where c10 = 1 + 2

√
m/

√
n and c20 = 3.

Proof. Any matrix U ∈ Rm1×m2 with i.i.d. Gaussian initial-
ized satisfies the following inequality with probability at least
1−2 exp

(
− t2

2

)
, where t ≥ 0, [52]: ∥U∥ ≤ √

m1+
√
m2+ t.

Using this fact and considering t =
√
m, we get ∥W l

10∥ =
O(

√
n) and ∥W l

20∥ = O(
√
m).

The following lemma shows that the spectral norm of the
weight matrices within a finite radius ball is of the same order
as at initialization.

Lemma 3. If W10 and W20 are initialized as stated in
Lemma 2, then for any W1 ∈ B(W10, R1) and W2 ∈
B(W20, R2), where R1 and R2 are positive scalars, we have∥∥W l

1

∥∥ = O(
√
n) and

∥∥W l
2

∥∥ = O(
√
m), ∀l ∈ [L].

Proof. From triangular inequality, we have∥∥∥W l
1

∥∥∥ ≤
∥∥∥W l

10

∥∥∥+ ∥∥∥W l
1 −W l

10

∥∥∥
F

≤ c10
√
n+R1 = O(

√
n),∥∥∥W l

2

∥∥∥ ≤
∥∥∥W l

20

∥∥∥+ ∥∥∥W l
2 −W l

20

∥∥∥
F

≤ c20
√
m+R2 = O(

√
m),

completing the proof.

As the width of the network can be very high (dimension of
the target vector), to obtain the constant asymptotic behavior,
the learnable parameters W l

1 and W l
2 are normalized by

1√
n

and 1√
m

, respectively, and the output of the model is
normalized by 1√

m
. This way of normalization is called neural

tangent kernel (NTK) parameterization [53], [54]. With these
assumptions, the output of a finite L-layer LISTA network is

f =
1√
m
xL, (13)

where

xl = σ(x̃l) = σ

(
W l

1√
n
y +

W l
2√
m
xl−1

)
∈ Rm×1, l ∈ [L].

Likewise, the output of a finite L-layer ADMM-CSNet is

f =
1√
m
zL, (14)

where

zl = σ
(
z̃l
)
= σ

(
xl + ul−1

)
,

xl =
1√
n
W l

1y +
1√
m
W l

2

(
zl−1 − ul−1

)
,

ul = ul−1 +
(
xl − zl

)
, l ∈ [L].

To maintain uniformity in notation, hereafter, we denote the
output of the network as f = 1√

m
gL, where gl = xl for

LISTA and gl = zl for ADMM-CSNet.

B. Hessian Spectral Norm

For better understanding, we first compute the Hessian
spectral norm of one layer, i.e., L = 1, unfolded network.

1) Analysis of 1-Layer Unfolded Network: The Hessian
matrix of a 1-layer LISTA or ADMM-CSNet for a given
training sample i is1

[HFi ] = [H]m×P×P =
[
H1 H2 · · · Hm

]
, (15)

where [Hs]P×P = ∂2fs
∂w2 , w = Vec(W 1) = Vec

(
[W 1

1 ,W
1
2 ]
)
,

fs denotes the sth component in the network output vector f ,
i.e., fs = 1√

m
vT
s g

1, and vs is a vector with sth element set
to be 1 and others to be 0. The Hessian spectral norm given
in (15) can be bounded as max

s∈[m]
{∥Hs∥} ≤ ∥H∥ ≤

∑
s ∥Hs∥.

By leveraging the chain rule, we have

Hs =
∂fs
∂g1

∂2g1

∂w2
. (16)

We bound Hs, as given below, by using the inequality given
in (1),

∥Hs∥ ≤
∥∥∥∥ ∂fs∂g1

∥∥∥∥
∞

∥∥∥∥∂2g1

∂w2

∥∥∥∥
2,2,1

. (17)

From (13) or (14), we get∥∥∥∥ ∂fs∂g1

∥∥∥∥
∞

=

∥∥∥∥ 1√
m
vT
s

∥∥∥∥
∞

= O

(
1√
m

)
. (18)

In addition,∥∥∥∥∥ ∂2g1

(∂w)
2

∥∥∥∥∥
2,2,1

=

∥∥∥∥∥
[

∂2g1/
(
∂W 1

1

)2
∂2g1/∂W 1

1 ∂W
1
2

∂2g1/∂W 1
2 ∂W

1
1 ∂2g1/

(
∂W 1

2

)2
]∥∥∥∥∥

2,2,1

≤

∥∥∥∥∥ ∂2g1

(∂W 1
1 )

2

∥∥∥∥∥
2,2,1

+ 2

∥∥∥∥ ∂2g1

∂W 1
1 ∂W

1
2

∥∥∥∥
2,2,1

+

∥∥∥∥∥ ∂2g1

(∂W 1
2 )

2

∥∥∥∥∥
2,2,1

.

(19)

1Note that, to simplify the notation, we denoted HFi
as H.
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We now compute the (2, 2, 1)-norms in the above equation
for both LISTA and ADMM-CSNet. To begin with, for LISTA,
we have the following second-order partial derivatives of layer-
wise output, g1, w.r.t. parameters:(

∂2g1

(∂W 1
1 )

2

)
i,jj′,kk′

=
∂2x1

i

∂(W 1
1 )jj′∂(W

1
1 )kk′

=
1

n
σ′′ (x̃1

i

)
yj′yk′Ii=k=j ,(

∂2g1

(∂W 1
2 )

2

)
i,jj′,kk′

=
1

m
σ′′ (x̃1

i

)
x0
j′x

0
k′Ii=k=j ,

(
∂2g1

∂W 1
2 ∂W

1
1

)
i,jj′,kk′

=
1√
mn

σ′′ (x̃1
i

)
x0
j′yk′Ii=k=j ,

where I{} denotes the indicator function. By utilizing the
definition of (2, 2, 1)-norm given in (2), bounds on inputs of
the network, and smoothness of the activation function, the
(2, 2, 1)-norms of the above quantities are obtained as shown
below:∥∥∥∥∥ ∂2g1(

∂W 1
1

)2
∥∥∥∥∥
2,2,1

= sup
∥V1∥F=∥V2∥F=1

1

n

m∑
i=1

∣∣σ′′ (x̃1
i

)
(V1y)i (V2y)i

∣∣
≤ sup

∥V1∥F=∥V2∥F=1

1

2n
βσ

(
∥V1y∥2 + ∥V2y∥2

)
≤

1

2n
βσ
(
∥y∥2 + ∥y∥2

)
≤ βσC

2
y = O(1)∥∥∥∥∥ ∂2g1(

∂W 1
2

)2
∥∥∥∥∥
2,2,1

= sup
∥V1∥F=∥V2∥F=1

1

m

m∑
i=1

∣∣σ′′ (x̃1
i

) (
V1x

0
)
i

(
V2x

0
)
i

∣∣
≤

1

2m
βσ

(∥∥x0
∥∥2 +

∥∥x0
∥∥2) ≤ βσCx

2 = O(1)∥∥∥∥ ∂2g1

∂W 1
2 ∂W

1
1

∥∥∥∥
2,2,1

= sup
∥V1∥F=∥V2∥F=1

1
√
mn

m∑
i=1

∣∣∣σ′′
(
x̃l
i

) (
V1x

0
i

)
i
(V2y)i

∣∣∣
≤

1

2
√
mn

βσ

(∥∥x0
∥∥2 + ∥y∥2

)
≤
√

m

4n
βσC

2
x +

√
n

4m
βσC

2
y = O(1).

Substituting the above bounds in (19) implies
∥∥∥ ∂2g1

(∂W 1)2

∥∥∥
2,2,1

=

O(1).
Similarly, for ADMM-CSNet, the equivalent second-order

partial derivatives are(
∂2g1(
∂W 1

1

)2
)

i,jj′,kk′

=
1

n
σ′′ (z̃1i )yj′yk′ Ii=k=j ,(

∂2g1(
∂W 1

2

)2
)

i,jj′,kk′

=
1

m
σ′′ (z̃1i ) (z0 − u0)j′ (z

0 − u0)k′ Ii=k=j ,(
∂2g1

∂W 1
2 ∂W

1
1

)
i,jj′,kk′

=
1

√
mn

σ′′ (z̃1i ) (z0 − u0)j′yk′ Ii=k=j .

The corresponding (2, 2, 1)-norm bounds are∥∥∥∥∥ ∂2g1

(∂W 1
1 )

2

∥∥∥∥∥
2,2,1

≤ 1

2n
βσ

(
∥y∥2 + ∥y∥2

)
≤ βσC

2
y = O(1),

∥∥∥∥∥ ∂2g1

(∂W 1
2 )

2

∥∥∥∥∥
2,2,1

≤ 1

2m
βσ

(
2mC2

z + 2mC2
u

)
= O(1),

∥∥∥∥ ∂2g1

∂W 1
1 ∂W

1
2

∥∥∥∥
2,2,1

≤ βσ

√
m

4n

(
C2

y + (Cz + Cu)
2
)
= O(1).

Using these bounds, we get
∥∥∥ ∂2g1

(∂W 1)2

∥∥∥
2,2,1

= O(1). From

the above analysis, we conclude that the (2, 2, 1)-norm of the
tensor, ∂2g1

(∂W 1)2
, is of the order of O(1) and the ∞-norm of

the vector, ∂fs
∂g1 , is of the order of O

(
1√
m

)
. This implies,

∥Hs∥ = O

(
1√
m

)
and ∥H∥ = Ω

(
1√
m

)
= O

(√
m
)
.

(20)
Therefore, the Hessian spectral norm of a 1-layer LISTA or
ADMM-CSNet depends on the width (dimension of the target
vector) of the network. We now generalize the above analysis
for an L-layer unfolded network.

2) Analysis of L-Layer Unfolded Network: The Hessian
matrix of an L-layer unfolded ISTA or ADMM network for a
given ith training sample is written as

[H]m×P×P =
[
H1 H2 · · · Hm

]
, (21)

where Hs for s ∈ [m] is

[Hs]P×P =


H1,1

s H1,2
s . . . H1,L

s

H2,1
s H2,2

s · · · H2,L
s

...
...

. . .
...

HL,1
s HL,2

s · · · HL,L
s

 , (22)

[
H l1,l2

s

]
P1×P1

= ∂2fs
∂wl1∂wl2

, where P1 = m2 + mn, l1 ∈
[L], l2 ∈ [L], wl = Vec(W l) = Vec

(
[W l

1 W l
2]
)

denotes the
weights of lth-layer, and fs =

1√
m
vT
s g

L. From (21) and (22),
the spectral norm of H, ∥H∥, is bounded by its block-wise
spectral norm, ∥Hs∥, as stated in the following theorem:

Theorem 3. The Hessian spectral norm, ∥H∥, of an L-layer
unfolded ISTA (ADMM) network, defined as in (13) ((14)), is
bounded as max

s∈[m]
{∥Hs∥} ≤ ∥H∥ ≤

∑
s∈[m] ∥Hs∥ , where

∥Hs∥ ≤
∑
l1,l2

∥∥H l1,l2
s

∥∥ ≤
∑
l1,l2

C1Q2,2,1 (fs)Q∞ (fs)

≤ CQ2,2,1 (fs)Q∞ (fs) .

(23)

The constant C1 depends on L and Lσ , C = L2C1,

Q∞ (fs) = max
1≤l≤L

{∥∥∥∥∂fs∂gl

∥∥∥∥
∞

}
, and (24)

Q2,2,1 (fs) = max
1≤l1≤l2<l3≤L

{∥∥∥∥∥ ∂2gl1

(∂wl1)
2

∥∥∥∥∥
2,2,1

,∥∥∥∥ ∂gl1

∂wl1

∥∥∥∥∥∥∥∥ ∂2gl2

∂g(l2−1)∂wl2

∥∥∥∥
2,2,1

,∥∥∥∥ ∂gl1

∂wl1

∥∥∥∥∥∥∥∥ ∂gl2

∂wl2

∥∥∥∥
∥∥∥∥∥ ∂2gl3

(∂gl3−1)
2

∥∥∥∥∥
2,2,1

}
.

(25)

Proof of the above theorem is given in the Appendix. Similar
to 1-layer case, the bound on ∥H∥ depends on the ∞-norms
of ∂fs

∂gl , l ∈ [L] and (2, 2, 1)-norms of layer-wise derivatives
(basically these are order 3 tensors). We now aim to derive
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the bounds on the quantities Q2,2,1 (fs) and Q∞ (fs) for both
unfolded ISTA and ADMM networks.

Similar to Lemma 2 and 3, the Gaussian initialization of the
weight matrices imposes a bound on the hidden layer output of
the unfolded network, which is stated in the following lemma:

Lemma 4. If
(
W l

10

)
i,j

∼ N (0, 1) and
(
W l

20

)
i,j

∼ N (0, 1),
∀l ∈ [L], then for any W1 ∈ B(W10, R1) and W2 ∈
B(W20, R2), we have

∥∥xl
∥∥ ≤ clISTA;x for LISTA, and∥∥zl∥∥ ≤ clADMM;z and

∥∥ul
∥∥ ≤ clADMM;u for ADMM-CSNet.

The updating rules are

clISTA;x = Lσ

(
c10 +

R1√
n

)√
nCy + Lσ

(
c20 +

R2√
m

)
cl−1
ISTA;x + σ(0)

= O
(√

m
)

clADMM;z = Lσ

(
c10 +

R1√
n

)√
nCy + Lσ

(
c20 +

R2√
m

)
cl−1
ADMM;z

+ Lσ

(
1 + c20 +

R2√
m

)
cl−1
ADMM;u + σ(0) = O

(√
m
)
,

clADMM;u =

(
c10 +

R1√
n

)√
nCy +

(
c20 +

R2√
m

)
cl−1
ADMM;z

+

(
c20 +

R2√
m

+ 1

)
cl−1
ADMM;u + clADMM;z = O

(√
m
)
,

where c0ISTA;x =
√
mCx, c0ADMM;z =

√
mCz , c0ADMM;u =√

mCu, |x0
i | ≤ Cx, |u0

i | ≤ Cu, and |z0i | ≤ Cz , ∀i ∈ [m].

Refer to the Appendix for proof of the above lemma. The
three updating rules in Lemma 4 are of the order of

√
m and√

n w.r.t. m and n, respectively. However, as the width of the
unfolded network is controlled by m, we consider the bounds
on Q2,2,1 (fs) and Q∞ (fs) w.r.t. m in this work.

The following theorem gives the bound on ∥H∥ by deriving
the bounds on the quantities Q2,2,1 (fs) and Q∞ (fs). The
proof of Theorem 4 basically uses the bounds on the weight
matrices (Lemma 2 and Lemma 3), bound on the hidden layer
output (Lemma 4), and properties of the activation function
(Lσ-Lipschitz continuous and βσ-smooth).

Theorem 4. Consider an L-layer unfolded ISTA or ADMM
network, F(W), with random i.i.d. Gaussian initialization
W0. Then, the quantities Q2,2,1 (fs) and Q∞ (fs) satisfy the
following equality w.r.t. m, over initialization, at any point
W ∈ B (W0, R), for some fixed R > 0:

Q2,2,1 (fs) = O(1) and Q∞ (fs) = Õ

(
1√
m

)
, (26)

with probabilities 1 and 1 − me−c ln2(m) for some constant
c > 0, respectively. This implies

∥Hs∥ ≤
∑
l1,l2

∥∥H l1,l2
s

∥∥ = Õ

(
1√
m

)
(27)

and the Hessian spectral norm satisfies

∥H∥ = Ω̃

(
1√
m

)
= Õ

(√
m
)
. (28)

The proof of Theorem 4 is motivated by [36]. Readers are
directed to the supplementary material [55], which provides
the complete proof.

In summary, from both 1-layer and L-layer analyses, we
claim that the Hessian spectral norm bound of an unfolded
network is proportional to the square root of the width of the
network.

Note that the aforementioned analysis assumed λ to be a
fixed constant value. Nonetheless, the analysis can be readily
extended to accommodate a learnable λ. It can be verified that
the Hessian spectral norm remains within the same order even
when λ is treated as a learnable parameter.

C. Conditions on Unfolded Networks to Satisfy PL∗

From Theorem 1, the Hessian spectral norm of a model
should hold the following condition to satisfy µ-uniform con-
ditioning in a ball B(w0, R): ∥HF (w)∥ ≤ λ0−µ

2LF
√
TR

, ∀w ∈
B(w0, R). Since ∥HF (w)∥ = max

i∈[T ]
∥HFi

(w)∥, the above

condition can be further simplified as

∥HFi(w)∥ ≤ λ0 − µ

2LF
√
TR

, ∀i ∈ [T ] and w ∈ B(w0, R).

(29)
Substituting the Hessian spectral norm bound of LISTA and
ADMM-CSNet, stated in Theorem 4, in (29) provides a
constraint on the network width such that the square loss
function satisfies the µ-PL∗ condition in B(w0, R):

m = Ω̃

(
TR2

(λ0 − µ)2

)
, where µ ∈ (0, λ0). (30)

Therefore, from Theorem 2, we claim that for a given fixed
T one should consider the width of the unfolded network as
given in (30) to achieve near-zero training loss. However, the
m (target vector dimension) value is generally fixed for a given
linear inverse problem. Hence, we provide the constraint on
T instead of m. Substituting the ∥HFi

(w)∥ bound in (29)
also provides a threshold on T , which is summarized in the
following theorem:

Theorem 5. Consider a finite L-layer unfolded network as
given in (13) or (14) with m as the network width. As-
sume that the model is well-conditioned at initialization, i.e.,
λmin(KUnfolded(w0)) = λ0,Unfolded, for some λ0,Unfolded > 0.
Then, the loss landscape corresponding to the square loss
function satisfies the µ-PL∗ condition in a ball B(w0, R),
if the number of training samples, TUnfolded, satisfies the
following condition:

TUnfolded = Õ

(
m(λ0,Unfolded − µ)2

R2

)
, µ ∈ (0, λ0,Unfolded).

(31)

Thus, while addressing a linear inverse problem using
unfolded networks, one should consider the number of training
samples as given in (31), to obtain zero training loss as the
number of GD epochs increases to infinity. Observe that the
threshold on T increases with the increase in the network
width. We attribute this to the fact that a high network
width is associated with more trainable parameters in the
network, which provides the ability to handle/memorize more
training samples. Conversely, a smaller network width leads
to fewer trainable parameters, thereby impacting the network’s
performance in handling training samples.
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Comparison with FFNN: In [31], the authors computed the
Hessian spectral norm of an FFNN with a scalar output, which
is of the order of Õ

(
1√
m

)
. Following the analysis procedure

of an m-output model given in Section IV-B, one can obtain
the Hessian spectral norm of an FFNN with m-output and
smoothed soft-thresholding non-linearity as given below:

∥H∥ = Ω̃

(
1√
m

)
= Õ

(√
m
)
. (32)

This implies that the bound on the number of training samples,
TFFNN, for an m-output FFNN to satisfy the µ-PL∗ is

TFFNN = Õ

(
m(λ0,FFNN − µ)2

R2

)
, µ ∈ (0, λ0,FFNN) (33)

Note that m is a fixed value in both (31) and (33), R is of
the order of O

(
1
µ

)
(refer to Theorem 2), and µ depends

on λ0 = λmin (K (w0)). Therefore, from (31) and (33), the
parameter that governs the number of training samples of
a network is the minimum eigenvalue of the tangent kernel
matrix at initialization. Hence, we compare both TUnfolded and
TFFNN by deriving the upper bounds on λ0,Unfolded and λ0,FFNN.
Specifically, in the following theorem, we show that the upper
bound of λ0,Unfolded is higher compared to λ0,FFNN.

Theorem 6. Consider an L-layered FFNN, defined as

fFFNN =
1√
m
xL,xl = σ

(
W l

√
m
xl−1

)
∈ Rm, l ∈ [L],

(34)
with x0 =

√
m
n y ∈ Rn, W 1 ∈ Rm×n, and W l ∈

Rm×m ∀l ∈ [L] − {1}. Also, consider the unfolded network
defined in (13) or (14). Then, the upper bound on the minimum
eigenvalue of the tangent kernel matrix at initialization for un-
folded network, UBUnfolded (either UBLISTA or UBADMM-CSNet), is
greater than that of FFNN, UBFFNN, i.e., UBUnfolded > UBFFNN.

Proof of the above theorem is given in the Appendix. To
better understand Theorem 6, substitute L = 2 in equations
(38), (39), and (40). This leads to

UBFFNN = L̂4ŷ
[
∥W 1

0 ∥2 + ∥vT
s W

2
0 ∥2
]
,

UBLISTA = L̂4ŷ
[
∥W 1

10∥2 + ∥vT
s W

2
20∥2

]
+ L̂2ŷ+

L̂4x̂
[
∥W 1

20∥2 + ∥vT
s W

2
20∥2

]
+ 2L̂4

√
x̂ŷ∥W 1

10∥∥W 1
20∥,

and

UBADMM-CSNet = L̂4ŷ
[
∥W 1

10∥2 + ∥vT
s W 2

20∥2
]
+ L̂2ŷ +

∥u(1)∥2

m
+

L̂4â(0)
[
∥W 1

20∥2 + ∥vT
s W 2

20∥2
]
+ 2L̂∥z̃(l)∥∥u(1)∥+ L̂4∥u(0)∥2 + L̂4[

2

√
ŷâ(0)∥W 1

10∥∥W 1
20∥+ 2

√
â(0)∥W 1

20∥∥u(0)∥+ 2
√

ŷ∥W 1
10∥∥u(0)∥

]
.

Since the dimension of W 1
1 (W 2

2 ) of unfolded networks is the
same as W 1 (W 2) of FFNN, we conclude that UBUnfolded >
UBFFNN for L = 2. One can verify that this relation holds for
any L value using the generalized expressions given in (38),
(39), and (40).

Figures 5 (a) and 5 (b) depict the variation of
10 log10 (λmin (K(w0))) w.r.t. L (here we considered T = 10,

100 200 300 400 500 600
-100

-50

0

LISTA ADMM-CSNet FFNN

6 7 8 9 10 11 12 13 14

-100

-50

0

Fig. 5: Variation of the minimum eigenvalue of tangent kernel
matrix at initialization: (a) With respect to the number of
layers. (b) With respect to the network learnable parameters.

m = 100, n = 20, and k = 2) and P (here we vary m, n, and
k values by fixing T = 10, L = 6 for unfolded, and L = 8
for FFNN), respectively, for LISTA, ADMM-CSNet, and
FFNN. From these figures, we see that λ0,Unfolded > λ0,FFNN.
Consequently, from Theorem 6, (31), and (33), we also claim
that the upper bound of TUnfolded is higher compared to TFFNN.
As a result, TUnfolded > TFFNN whenever λ0,Unfolded > λ0,FFNN.
Moreover, from the aforementioned equations, it is evident that
UBADMM-CSNet exceeds UBLISTA. Consequently, it is reasonable
to anticipate that λ0,ADMM-CSNet will surpass λ0,LISTA. This
inference is substantiated by the data depicted in figures 5 (a)
and 5 (b). This implies that the upper bound on TADMM-CSNet
exceeds the upper bound on TLISTA. Through simulations, we
show that TADMM-CSNet > TLISTA > TFFNN in the following
section. Since the threshold on T — guaranteeing memo-
rization — is higher for unfolded networks than FFNN, we
should obtain a better expected error, which is upper bounded
by the sum of generalization and training error [37], for
unfolded networks than FFNN for a given T value such that
TFFNN < T ≤ TUnfolded; in such scenarios, unfolded networks
exhibit zero training error and a smaller generalization error
[18].

V. Numerical Experiments

We perform the following simulations to support the pro-
posed theory. For all the simulations in this section, we
fix the following for LISTA, ADMM-CSNet, and FFNN: 1.
Parameters are i.i.d. Guassian initialized with zero mean and
unit variance, i.e., N (0, 1). 2. Networks are trained with
the aim of minimizing the square loss function (12) using
stochastic GD. Note that the theoretical analysis proposed in
this work is for GD, however, to address the computation and
storage issues, we considered stochastic GD for the numerical
analysis. 3. Modified soft-plus activation function (refer to
IV-A) with λ = 1 is used as the non-linear activation function.
4. A batch size of T

5 is considered. 5. All the simulations are
repeated for 10 trials.
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Threshold on T : From (31), the choice of T plays a
vital role in achieving near-zero training loss. To illustrate
this, consider two linear inverse models: y1 = A1x1 + e1
and y2 = A2x2 + e2, where y1 ∈ R20×1, x1 ∈ R100×1,
A1 ∈ R20×100, ∥x1∥0 = 2, y2 ∈ R200×1, x2 ∈ R1000×1,
A2 ∈ R200×1000, and ∥x2∥0 = 10. Generate synthetic data
using a random linear operator matrix, which follows the
i.i.d. uniform distribution, and then normalize it to ensure
∥A1∥F = ∥A2∥F = 10. Both models are subjected to
Gaussian noise (e1 and e2) with a signal-to-noise ratio (SNR)
of 10 dB. Here, we generated the data by following standard
CS theory for model priors such as the sparsity of the target
vector (k) and linear operator matrix (A). Once the data is
generated, the following numerical analysis is independent of
the prior values.

Construct an L-layer LISTA and ADMM-CSNet with L =
11. Here, we train LISTA for 30K epochs and ADMM-CSNet
for 40K epochs. For the first model, we choose 0.12 and 0.09
as learning rates for LISTA and ADMM-CSNet, respectively.
For the second model, we choose 1.2 for LISTA and 0.9 for
ADMM-CSNet. Figures 6 and 7 depict the variation of mean
square loss/error (MSE) w.r.t. T for both LISTA and ADMM-
CSNet, respectively. For a fixed m there exists a threshold (by
considering a specific MSE value) on T such that choosing
a T value that is less than this threshold leads to near-zero
training loss. Notably, this threshold is high for ADMM-CSNet
compared to LISTA. Moreover, observe that this threshold
increases as the network width grows.

For comparison, construct an L-layer FFNN, to recover
x1 and x2, that has the same number of parameters as that
of unfolded, hence, we choose L = 14. Here, we train the
network for 40K epochs with a learning rate of 0.04 for the
first model and 0.3 for the second model. Fig. 8 shows the
variation of MSE w.r.t. T . From Fig. 8, we conclude that the
threshold for FFNN is lower compared to LISTA and ADMM-
CSNet.

To assess the generalization capacity of our proposed theory,
we consider the aforementioned first model with a different
setup. Specifically, we employ the modified sigmoid linear
unit (SiLU), defined as σλ(x) = x−λ

1+ex−λ − x−λ
1+e−x−λ , as a

smooth approximation to soft-thresholding activation. In Fig.
9, we illustrate the variation of MSE w.r.t. T for both LISTA
and ADMM-CSNet. LISTA is trained for 30K epochs, while
ADMM-CSNet is trained for 40K epochs. ADMM-CSNet
employs a learning rate of 0.95, whereas LISTA utilizes differ-
ent learning rates (17, 11, 1, 0.9) corresponding to different T
values (10− 30, 50, 70− 90, > 100), respectively, to achieve
near-zero training loss. Observe that the threshold on the
number of training samples is still high for ADMM-CSNet
compared to LISTA. This justifies the generalization ability of
the proposed theory. Additionally, we noted that the training
error of FFNN fails to converge under this configuration,
suggesting its inability to effectively memorize the provided
training data.

Comparison Between Unfolded and Standard Networks:
We compare LISTA and ADMM-CSNet with FFNN in terms
of parameter efficiency. To demonstrate this, consider the first
linear inverse model given in the above simulation. Then,

101 102 103
-140

-60

0

Fig. 6: Training loss vs T for LISTA.
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0

m=1000

m = 100

Fig. 7: Training loss vs T for ADMM-CSNet.
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Fig. 8: Training loss vs T for FFNN.
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-60

0

Fig. 9: Training loss vs T for both LISTA and ADMM-CSNet
by considering the modified SiLU as an activation function.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2024.3412981

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on June 16,2024 at 08:08:25 UTC from IEEE Xplore.  Restrictions apply. 



11

0 0.5 1 1.5 2 2.5 3

104

-120

-100

-80

-60

-40

-20

0

20

Fig. 10: Comparison between LISTA, ADMM-CSNet, and FFNN
in terms of the required number of parameters, P , for training loss
convergence.
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Fig. 11: Variation of the expected MAE w.r.t. m for both LISTA
and ADMM-CSNet.

construct LISTA, ADMM-CSNet, and FFNN with a fixed
number of parameters and consider T = 30. Also, consider the
same learning rates that are associated with the first model in
the above simulation for LISTA, ADMM-CSNet, and FFNN.
Here we choose L = 6 for both LISTA and ADMM-CSNet,
and L = 8 for FFNN, resulting in a total of 72K parameters.
As shown in Fig. 10, the convergence of training loss to zero
is better for LISTA and ADMM-CSNet compared to FFNN.
Fig. 10 also shows the training loss convergence of FFNN with
L = 11. Now, FFNN has 102K learnable parameters, and its
performance is comparable to LISTA for higher epoch values.
Therefore, to achieve a better training loss FFNN requires
more trainable parameters.

Generalization: In this simulation, we show that zero-
training error leads to better generalization. To demonstrate
this, consider LISTA/ADMM-CSNet/FFNN with a fixed T
and observe the variation of the expected mean absolute error
(MAE) w.r.t. m. If the generalization performance is better,
then it is anticipated that the expected MAE reduces as the m
increases. Because an increase in m improves the possibility
of getting near-zero training loss for a fixed T . In Fig. 11,
we present the results for LISTA, ADMM-CSNet, and FFNN
with T = 100. Notably, the expected MAE diminishes as m
increases, i.e., as the number of parameters grows. Further, it is
observed that for this choice of T , the training error is near-

zero for m values exceeding approximately 300 for FFNN,
and approximately 250 for both LISTA and ADMM-CSNet.
This finding underscores the importance of zero-training error
in generalization.

However, it is important to note that the generalization
results presented here are preliminary and require a rigorous
analysis for more robust conclusions; because considering a
smaller value of T may not yield satisfactory generalization
performance. Thus, it is important to find a lower bound on T
to optimize both the training process and overall generalization
capability.

VI. Conclusion

In this work, we provided optimization guarantees for
finite-layer LISTA and ADMM-CSNet with smooth nonlinear
activation. We begin by deriving the Hessian spectral norm of
these unfolded networks. Based on this, we provided condi-
tions on both the network width and the number of training
samples, such that the empirical training loss converges to
zero as the number of learning epochs increases using the GD
approach. Additionally, we showed that LISTA and ADMM-
CSNet outperform the standard FFNN in terms of threshold
on the number of training samples and parameter efficiency.
We provided simulations to support the theoretical findings.

The work presented in this paper is an initial step to
understand the theory behind the performance of unfolded
networks. While considering certain assumptions, our work
raises intriguing questions for future research. For instance, we
approximated the soft-threshold activation function by devis-
ing a doubly differentiable function using soft-plus. However,
it is important to analyze the optimization guarantees without
relying on any such approximations. A promising avenue for
investigation is the Gram-matrix-based analysis proposed in
[32]. Additionally, we assumed a constant value for λ in
σλ(·). It is interesting to explore the impact of treating λ as a
learnable parameter. Furthermore, analyzing the changes in the
analysis for other loss functions presents an intriguing avenue
for further research.

Appendix

Proof of Theorem 3: The Hessian block H l1,l2
s can be

decomposed as given in (35), using the following chain rule:

∂fs

∂wl
=

∂gl

∂wl

 L∏
l′=l+1

∂gl

∂gl′−1

 ∂fs

∂gL
.

Hl1,l2
s =

∂2gl1(
∂wl1

)2 ∂fs

∂gl1
Il1=l2 +

 ∂gl1

∂wl1

l2−1∏
l′=l1+1

∂gl′

∂gl′−1

 ∂2gl2

∂wl2∂gl2−1

(
∂fs

∂gl2

)
+

L∑
l=l2+1

 ∂gl1

∂wl1

l−1∏
l′=l1+1

∂gl′

∂gl′−1

 ∂2gl′(
∂gl′−1

)2 ∂gl2

∂wl2

l∏
l′=l2+1

∂gl′

∂gl′−1

(∂fs

∂gl

)
.

(35)
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From (35), the spectral norm of H l1,l2
s can be bounded as

∥∥∥Hl1,l2
s

∥∥∥
2
≤

∥∥∥∥∥ ∂2gl1(
∂w(l1)

)2
∥∥∥∥∥
2,2,1

∥∥∥∥ ∂fs

∂gl1

∥∥∥∥
∞

+ Ll2−l1−1
σ

∥∥∥∥ ∂gl1

∂wl1

∥∥∥∥
F∥∥∥∥ ∂2gl2

∂wl2∂gl2−1

∥∥∥∥
2,2,1

∥∥∥∥ ∂fs

∂gl2

∥∥∥∥
∞

+

L∑
l=l2+1

L2l−l1−l2
σ

∥∥∥∥ ∂gl1

∂wl1

∥∥∥∥
F∥∥∥∥∥ ∂2gl(

∂gl′−1
)2
∥∥∥∥∥
2,2,1

∥∥∥∥ ∂gl2

∂wl2

∥∥∥∥
F

∥∥∥∥∂fs∂gl

∥∥∥∥
∞

.

(36)

Note that (36) uses the fact that
∥∥∥ ∂gl′

∂gl′−1

∥∥∥
F

≤ Lσ . By using
the notations given in (24) and (25), we get∥∥H l1,l2

s

∥∥ ≤ C1Q2,2,1 (fs)Q∞ (fs) ,

where C1 is a constant depend on L and Lσ .
Proof of Lemma 4: For l = 0, ∥x0∥ ≤

√
m∥x0∥∞ ≤√

mCx, ∥z0∥ ≤
√
m∥z0∥∞ ≤

√
mCz , and ∥u0∥ ≤√

m∥u0∥∞ ≤
√
mCu. Whereas for l = 1, 2, . . . , L, we have

∥∥∥xl
∥∥∥ =

∥∥∥∥∥σ
(
W l

1√
n
y +

W l
2√
m

xl−1

)∥∥∥∥∥
≤ Lσ

∥∥∥∥∥W l
1√
n

∥∥∥∥∥ ∥y∥+ Lσ

∥∥∥∥∥ W l
2√
m

∥∥∥∥∥∥∥∥xl−1
∥∥∥+ σ(0)

≤ Lσ

(
c10 +

R1√
n

)√
nCy + Lσ

(
c20 +

R2√
m

)
cl−1
ISTA;x + σ(0)

= clISTA;x.

Here, we used Lemma 3 and Lσ-Lipschitz continuous of the
activation function σ(·). Similarly,∥∥∥zl∥∥∥ =

∥∥∥∥σ( 1
√
n
W l

1y +
1

√
m

W l
2

(
zl−1 − ul−1

)
+ ul−1

)∥∥∥∥
≤ Lσ

1
√
n

∥∥∥W l
1

∥∥∥ ∥y∥+ Lσ
1

√
m

∥∥∥W l
2

∥∥∥∥∥∥zl−1
∥∥∥+ 1

√
m

Lσ

∥∥∥W l
2

∥∥∥∥∥∥ul−1
∥∥∥

+ Lσ

∥∥∥ul−1
∥∥∥+ σ(0)

≤ Lσ

(
c10 +

R1√
n

)√
nCy + Lσ

(
c20 +

R2√
m

)
cl−1
ADMM;z

+ Lσ

(
1 + c20 +

R2√
m

)
cl−1
ADMM;u + σ(0)

= clADMM;z

and∥∥∥ul
∥∥∥ =

∥∥∥∥ul−1 +

(
1
√
n
W l

1y +
1

√
m

W l
2

(
zl−1 − ul−1

)
− zl

)∥∥∥∥
≤
∥∥∥ul−1

∥∥∥+ ∥∥∥∥ 1
√
n
W l

1y

∥∥∥∥+ ∥∥∥∥ 1
√
m

W l
2z

l−1

∥∥∥∥+ ∥∥∥∥ 1
√
m

W l
2u

l−1

∥∥∥∥+ ∥∥∥zl∥∥∥
≤
(
c10 +

R1√
n

)√
nCy +

(
c20 +

R2√
m

)
cl−1
ADMM;z

+

(
c20 +

R2√
m

+ 1

)
cl−1
ADMM;u + clADMM;z

= clADMM;u,

completing the proof.
Proof of Theorem 6: Consider the real symmetric NTK

matrix [K (w0)]mT×mT . Utilizing the Rayleigh quotient of
K (w0), we can write the following for any x such that
∥x∥2 = 1:

λmin (K (w0)) ≤ x⊤K (w0)x ≤ λmax(K (w0)).

Let x be a vector having all zeros except the sth component to
be 1. Thus λmin(K (w0)) ≤ [K (w0)]s,s, for any s ∈ [mT ].
Assume s = 1, this implies,

λmin (K (w0)) ≤ ⟨∇w0f1,∇w0f1⟩ , (37)

where f1 is the 1st component in the the model output vector
f corresponding to the first training sample. We now aim to
compute ⟨∇w0f1,∇w0f1⟩ for FFNN, LISTA, and ADMM-
CSNet.

Consider a one-layer FFNN, then from (34), the sth compo-
nent of fFFNN is, fs = 1√

m
σ
(

1√
n
W 1

0 (s, :)y
)
, where W 1

0 (s, :)

represents the sth row of W 1
0 . This implies,〈

∇W 1
0
fs,∇W 1

0
fs

〉
=

[
σ′(x̃1

s)√
mn

]2
∥y∥2 ≤ L̂2ŷ,

where L̂ = Lσ√
m
, and ŷ = ∥y∥2

n . Similarly, for a 2-layered
FFNN, we have

⟨∇W0
fs,∇W0

fs⟩ =
〈
∇W 1

0
fs,∇W 1

0
fs

〉
+
〈
∇W 2

0
fs,∇W 2

0
fs

〉
≤ (L̂2)2ŷ

[∥∥W 1
0

∥∥2 + ∥∥W 2
0 (s, :)

∥∥2] .
Generalizing the above equations, one can derive the upper
bound on λ0,FFNN for an L-layer FFNN as

λ0,FFNN ≤ UBFFNN

= L̂2Lŷ

L−1∑
i=1

∥vT
s WL

0 ∥2
L−1∏

j=1,j ̸=i

∥W j
0 ∥

2 +

L−1∏
j=1

∥W j
0 ∥

2

 .

(38)
Likewise, consider L = 1, then from (13), the sth component
of fLISTA is

fs =
1√
m
σ

(
1√
n
W 1

10(s, :)y +
1√
m
W 1

20(s, :)x

)
.

This implies,

⟨∇w0fs,∇w0fs⟩ =
〈
∇W 1

10
fs,∇W 1

10
fs

〉
+
〈
∇W 1

20
fs,∇W 1

20
fs

〉
≤ L̂2 [ŷ + x̂] ,

where x̂ = ∥x∥2

m . If L = 2, then the sth component of fLISTA
is

⟨∇w0
fs,∇w0

fs⟩ =
〈
∇W 2

10
fs,∇W 2

10
fs

〉
+
〈
∇W 2

20
fs,∇W 2

20
fs

〉
+
〈
∇W 1

10
fs,∇W 1

10
fs

〉
+
〈
∇W 1

20
fs,∇W 1

20
fs

〉
≤ L̂2

[
ŷ + L̂2∥x̃(1)∥2

]
+ L̂4 [ŷ + x̂]

∥∥v⊤
s W

2
20

∥∥2 .
By extending the above equations, we obtain the upper bound
on λ0,LISTA for an L-layer LISTA as

λ0,LISTA ≤ UBLISTA = L̂2 (ŷ + x̂) , for L = 1

λ0,LISTA ≤ UBLISTA = L̂2L (ŷ + x̂) ∥vT
s WL

20∥2
L−1∏
l=2

∥W l
20∥2

+

L−1∑
k=2

L̂2L−2k+2

[
ŷ + L̂2

∥∥∥x̃(k−1)
∥∥∥2] ∥vT

s WL
20∥2

L−1∏
l=k+1

∥W l
20∥2

+ L̂2
[
ŷ + L̂2∥x̃(L−1)∥2

]
, for L > 1,

(39)
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where L̂ = Lσ√
m
, ŷ = ∥y∥2

n , and x̂ = ∥x∥2

m . Repeat-
ing the same analysis, one can derive the upper bound on
λ0,ADMM-CSNet of an L-layer ADMM-CSNet as

λ0,ADMM-CSNet ≤ UBADMM-CSNet = L̂2
[
ŷ + â(L−1)

]
+

L−1∑
k=1

L̂2L−2k+2
[
ŷ + â(k−1)

]
∥vT

s WL
20∥2

L−1∏
l=k+1

∥W l
20∥2,

(40)

where â(l) = ∥z(l)−u(l)∥2

m , ∀l ∈ [L− 1] ∪ {0}.
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