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Abstract—Multiple-input multiple-output (MIMO) systems utilize
multiple antennas and signal acquisition chains, facilitating multi-
user communications with increased spectral efficiency and better
coverage via beamforming. MIMO systems are typically costly to
implement and consume high power. A commonly used method to
reduce the cost of MIMO receivers is to design hybrid analog/digital
beamforming (HBF), which reduces the number of RF chains. How-
ever, the added analog circuitry involves active components whose
consumed power may surpass that saved in RF chain reduction. An
additional method to realize power-efficient MIMO systems is to use low-
resolution analog-to-digital converters (ADCs), however, compromising
signal recovery accuracy. In this work, we propose a power-efficient
hybrid MIMO receiver with dedicated beamforming to mitigate spatial
interferers in congested environments, utilizing low-quantization rate
ADCs, jointly optimizing the analog and digital processing using
task-specific quantization techniques. We present an efficient analog
pre-processing hardware architecture utilizing sparse low-resolution
vector modulators to reduce analog processing power while maintaining
recovery accuracy. Supported by numerical simulations and power
analysis, our power-efficient MIMO receiver achieves comparable signal
recovery performance to power-hungry fully-digital MIMO receivers
using high-resolution ADCs. Furthermore, our receiver outperforms
the task-agnostic HBF receivers with low-quantization rate ADCs in
recovery accuracy at lower power.

Index Terms— Analog-to-digital conversion, beamforming, hybrid
architecture, MIMO, quantization.

I. INTRODUCTION

Widespread utilization of multiple-input multiple-output (MIMO)
communications brings superior data capacity, improved coverage, and
highly robust multi-user support [1]–[4]. While the theoretical gains
of MIMO communications have been extensively studied, hardware
implementations usually face practical trade-offs between power con-
sumption, spectral efficiency, and fidelity [5]–[8]. MIMO receivers
typically consist of multiple signal acquisition chains for spatial signal
processing. Each signal acquisition chain consists of a radio-frequency
(RF) front end performing RF signal amplification with low noise
and then downconverting this RF signal to low baseband frequencies.
This continuous-time analog signal in the baseband is translated to the
digital domain for further processing. Analog-to-digital conversion is
performed in two steps: the continuous-time analog signal is sampled
and converted to a discrete-time signal and then quantized into a
discrete-amplitude representation stored as digital bits [9]. This process
is usually carried out in hardware using uniform scalar analog-to-digital
converters (ADCs) [10]. MIMO systems traditionally apply brute-force
data acquisition with spatial signal processing using high-resolution
quantization and Nyquist sampling rates leading to high power con-
sumption and hardware design complexity, especially in massive MIMO.

A common approach to mitigate the increased cost of MIMO re-
ceivers is to utilize fewer RF chains and ADCs than antenna elements
via hybrid analog/digital beamforming (HBF). Such architectures in-
corporate an additional analog combiner circuit before the quantization,
allowing dimensionality reduction [11], [12] while preserving the ability
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of the MIMO array in achieving directed beamforming via, e.g., holo-
graphic techniques [13]. In fact, HBF is also utilized without RF chain
reduction to boost pre-acquisition spatial interferer rejection [14]–[17].
Nonetheless, the introduction of an analog combiner comprised of active
components may also be power-hungry. An additional power reduction
technique is to use low-resolution acquisition, connecting each antenna
to a low-quantization rate ADC [18]–[21]. However, the distortion added
by coarse quantization results in degraded signal recovery.

Recently, a task-specific (task-based) quantization framework was
introduced to design MIMO receivers utilizing bit-constrained ADCs
[22]–[25] while achieving accurate signal recovery. For task-specific
quantization, the analog pre-processing front end is designed to be
aware of the use of low-resolution ADCs and the desired task. Task-
specific receivers combine the signals in the analog domain such that the
quantization distortion hardly affects the low-dimensional task informa-
tion recovered in digital. The task-specific approach achieves improved
signal recovery in MIMO communications [8], [26], [27], and radar
[28]. Despite its numerically evaluated performance gains, implementing
MIMO receivers utilizing task-specific quantization requires an analog
pre-processing front end, i.e., analog combiner, which may be costly
and power-hungry. Therefore, it is essential to develop a power-efficient
design methodology for the task-specific MIMO systems.

In this work, we study power-efficient hybrid MIMO receivers
implementing bit-constrained signal recovery. We focus on MIMO
communications in congested environments, where multiple users may
be operating simultaneously, creating undesired interference. Hence,
our task is to achieve simultaneous recovery of the desired signals
and rejection of the interferers. Since power consumption is highly
implementation-dependent, in this paper, we consider analog combiners
implemented using vector modulators (VMs) [29]. We exploit boosting
the VMs to be either discrete or sparsely activated since the power
consumption is directly proportional to utilized hardware complexity
[11], [30]. We propose a task-specific algorithm co-integrating these
hardware-level techniques to achieve an accurate and power-efficient
recovery of the desired task information. We present a hardware
architecture utilizing low-resolution ADCs and a programmable analog
pre-processing front end. By developing a model for end-to-end system
evaluation, we compare the proposed system performance against task-
agnostic MIMO systems in terms of signal recovery accuracy and
receiver beam pattern via numerical simulations. Next, we provide
power consumption estimates for the proposed and benchmark systems
derived from the measured power consumption of the state-of-the-art
(SOA) hardware implementations. At a significantly reduced quantiza-
tion rate, we show that our design achieves accurate signal recovery
comparable to the performance of the fully-digital MIMO receivers
using high-resolution ADCs. Furthermore, the task-specific receiver
notably outperforms such task-agnostic architectures operating under
similar bit constraints. Regarding beam pattern, we demonstrate that our
design attenuates the interferers by ≥ 36dB. Finally, the task-specific
receiver reduces the power consumption by at least 58% compared to
task-agnostic fully-digital MIMO and HBF receivers.

The rest of the paper is organized as follows: Section II reviews the
system model. The HBF design algorithm is provided in Section III.
Section IV presents the receiver architecture and our model-based
performance evaluation supported with numerical simulations and power
consumption estimates, and Section V concludes the paper.

5338978-1-6654-0540-9/22/$31.00 ©2022 IEEE ICASSP 2022

IC
A

SS
P 

20
22

 - 
20

22
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

8-
1-

66
54

-0
54

0-
9/

22
/$

31
.0

0 
©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P4

39
22

.2
02

2.
97

46
36

2

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on August 02,2023 at 10:04:36 UTC from IEEE Xplore.  Restrictions apply. 



Ŝ = 

BQb(Ax)

Digital 

Filter 




B

Task-
Specific

Recovery

Inputs


MSE

Control


Bit-Constrained MIMO Receiver
z = Ax
Analog

Combiner 




ANxP

A1,1  ...  A1,P

A2,1  ...  A2,P


AN,1  ...  AN,P


...     ...     ...




...     ...     ...




...     ...     ...
XN-1



θ1



ϕM

 Qb(z)= Qb(Ax)


S1



SK

θK
Angles of Arrival
& Power Levels 



ϕ1



V1 X1

X2

XN

ADC I1


ADC Q1


ADC IP


ADC QP


VM

Fig. 1: Task-Specific hybrid MIMO receiver system with embedded
beamforming and low-quantization rate ADCs.

II. SYSTEM MODEL

A. Task-Specific Hybrid MIMO with Embedded Beamforming
Consider a hybrid MIMO receiver with N antenna elements and P

RF chains and ADCs. Let x = [x1, . . . , xN ]T be signal observed at the
N elements. The received signal is first processed in analog, yielding
the vector z = [z1, . . . , zP ]

T , which is forwarded to the ADCs. Let A
be the P ×N analog pre-processing matrix, the output vector z is

z = Ax. (1)

The vector z is converted to a digital representation using P identical
uniform ADCs, each with b levels, i.e., the overall number of bits used
is P dlog2 be. The resulting vector processed in digital is Qb (z), where
Qb(·) is the element-wise uniform quantization operator with b levels.

The received vector x incorporates a set of K desired signals, denoted
by s1, . . . , sK , received from sources at relative angles θ1, . . . , θK ,
respectively. In addition, the received vector also includes M inter-
ferer components v1, . . . , vM received from sources at relative angles
φ1, . . . , φM , respectively. All sources are assumed to be narrowband
and lying at the far-field, and thus the noisy received signal is given by

x =

K∑
k=1

ska(θk) +

M∑
m=1

vma(φm) +w. (2)

In (2), w is additive white Gaussian noise with variance σ2
w , and a(θ)

is the N × 1 steering weights vector whose entries are given by

[a(θ)]n = e−j2πn
d
λ

sin(θ), (3)

where d is the element spacing and λ is the wavelength. An illustration
of this system is depicted in Fig. 1.

By defining the steering matrices Aθ ∈ CN×K and Aφ ∈ CN×M
such that [Aθ]n,k = [a(θk)]n and

[
Aφ

]
n,m

= [a(φm)]n, as well as
s = [s1, . . . , sK ]T and v = [v1, . . . , vM ]T , we can write (2) as

x = Aθs+Aφv +w. (4)

Based on (4), the second-order statistical moments of the observed x

is Cx = AθCsA
H
θ +AφCvA

H
φ + σ2

wIN , while its correlation with
the task of interest s is given by Csx = CsA

H
θ . Here, Cs and Cv

denote the covariance matrices of s and v, respectively. These statistical
measures are utilized for the task-specific recovery problem.

B. Problem Formulation

Our goal is to tune the analog combiner A of the HBF MIMO
receiver based on the signal model in (4). Our design is optimized
for multiple tasks, including (1) accurate signal recovery, (2) spatial
interferer suppression, and (3) power efficiency.

Signal Recovery: The main task of the receiver is to recover the
desired signal s from the digital representation Qb(z). Our design

measure here is the mean-squared error (MSE), a common design
objective for signal recovery. The MSE is defined by

MSE(A) := E
{
‖s−E{s|Qb(Ax)}‖2

}
. (5)

Interferer Suppression: The MSE objective focuses only on the
ability to recover s. As such, it may prefer settings of A in which the
effect of v is mitigated via digital processing. In practice, it is often
preferable to reject interferers in the analog domain. The strong spatial
interferers may lead to receiver desensitization and increased dynamic
range requirement of ADCs [16]. Consequently, we also explicitly
require the analog combiner to suppress the spatial interferers. Since
the contribution of v on the analog combiner output z takes the form
AAφ, we penalize interferer rejection via the max norm of AAφ, i.e.,

IntRej(A) := ‖AAφ‖max = max
i,j

(
|[AAφ]i,j |

)
. (6)

Power Efficiency: The power consumption of MIMO receiver front
end is dictated by the individual cost of each hardware component,
including local oscillators generation (LO Gen), RF amplifiers, mixers,
filters, and ADCs. The use of low-resolution quantizers notably reduces
the ADC power consumption, which is approximately proportional to
the number of levels b [10]. In this work, we consider the design of the
analog combiner A implemented using VMs. When using VMs, the
elements of A cannot take any value in C, and are constrained to some
discrete set A ⊂ C, including 0 ∈ A, i.e. when VM is deactivated. In
this case, the power consumption of an analog combiner A is highly
dependent on two factors: how many different values can its entries take,
i.e., |A|, and which of its entries are active, namely, the sparsity level of
A. If the sparsity level of A increases while reducing its resolution, i.e.,
using a coarse A, the power consumption of the receiver significantly
reduces.

III. TASK-SPECIFIC LOW-POWER ACQUISITION

Here, we introduce an end-to-end design algorithm for the HBF
MIMO receiver. We consider the case where the number of ADCs,
their resolution b, and mapping of the VMs A are dictated by the
hardware, and optimize A accordingly. We focus on signal recovery
in Section III-A, then we incorporate interferer suppression and power
reduction in Section III-B. We summarize the design in Section III-C.

A. Signal Recovery via Task-Specific Quantization
Recovering A which minimizes (5) is a special case of the task-

specific (task-based) quantization setup studied in [22]. There, it was
shown that while minimizing (5) is likely to be analytically intractable,
one can obtain accurate signal recovery by modeling the ADCs as
implementing non-subtractive dithered quantization, while aiming to
recover the linear minimal MSE estimate of s, i.e., the digital processing
outputs an estimate of the form ŝ = BQb(Ax) for some B ∈ CK×P .

To formulate the MSE objective under the above considerations,
define Γ , CsxC

−1/2
x , and let {λΓ,i} be its singular values arranged in

descending order. Also, set κ , η2
(
1− η2

3b2

)−1, where η is a coefficient
tuned to guarantee negligible overloading probability of the ADCs (set
here to η = 3). We can now reformulate the MSE in (5) as stated in
the following lemma (adapting [22, Lem. 1] to complex signals):

Lemma 1. When the ADCs utilize non-subtractive dithered quantizers
with vanishing overloading probability, the MSE objective (5) becomes

MSE(A) = Tr

(
ΓCxΓH−ΓCxA

H

(
ACxA

H

+
2κ · Tr(ACxA

H)

3b2 · P
IP

)−1

ACxΓH

)
. (7)

This MSE is achieved by setting the digital filter to be
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B (A) = ΓCxA
H

(
ACxA

H +
2κ · Tr(ACxA

H)

3b2 · P
IP

)−1

. (8)

While Lemma 1 rigorously holds under some limiting assumptions
on the system operation, i.e., using non-subtractive dithered quantizers,
it also approximately holds when these assumptions are not satisfied
for a broad range of input signals [22]. Furthermore, as shown in [22],
the MSE objective in (7) is convex. In the following, we exploit this
convexity to incorporate additional design considerations such that A
is optimized while meeting the requirements detailed in Section II-B.

B. Low-Power Interferer Suppression
The objective (7) admits a closed-form minimizer, see [22, Thm. 1].

However, such a design only considers the signal recovery task and
does not impose any structure on A. To account for the interference
rejection requirement and to balance the power consumption of the
analog circuitry, we formulate our design objective as

L(A) = MSE(A) + γI IntRej(A) + γS‖A‖1,1. (9)

In (9), ‖ · ‖1,1 is the entry-wise `1 norm operator, while γI , γS ≥ 0 are
regularization coefficients, balancing the contribution of signal recovery
MSE, spatial interferer rejection, and sparsity level of analog combiner
in the overall loss measure L(A). The interferer rejection regularization
term defined in (6) is convex [31, Ch. 3.2], while sparsity of A is boosted
in a manner that preserves convexity by adding the entry-wise `1 norm.

The final consideration which is not accounted for in (9) is the usage
of discretized VMs. The resulting optimization is thus formulated as

Ao = argmin
A∈AP×N

L(A). (10)

The fact that the optimization problem (5) is formulated over a discrete
(i.e., non-convex) search space makes obtaining the analog combiner
that optimizes the objective within the constrained set extremely chal-
lenging. Nonetheless, as the objective L(A) is convex, one can utilize
discrete optimization to recover suitable designs of A, as we do next.

C. Analog Combiner Design
Design Algorithm: Since the optimization problem (10) seeks to

minimize a convex objective over a discrete set, we tackle it using
projected convex optimization. Our design strategy is comprised of kmax

rounds of a convex optimizer for minimizing L(A) over CP×N , with
periodic projections onto the discrete A. We use OL(·) to denote the
iterative optimizer with loss measure L. By using proximal gradient
descent with step-size µ > 0 while treating L̃(A) := MSE(A) +

γI IntRej(A) as the task term and ‖A‖1,1 as the prior, thus guaranteeing
sparsity of the analog combiner, it holds that [32, Ch. 3]

OL(A) = arg min
Ã∈CP×N

γS‖Ã‖1,1 +
1

2

∥∥Ã−A+ µ∇AL̃(A)
∥∥2
2,2

= TγS {A− µ∇A (MSE(A) + γI IntRej(A))} . (11)

Here, T is the element-wise complex soft-thresholding operator, given
by Tλ(z) := ej arg(z) max(|z| − λ, 0). Every kproj iterations, the
intermediate A(k) is projected to account for the discrete VMs via the
element-wise projection operator PA(z) := argmina∈A ‖a− z‖2. The
resulting algorithm is summarized as Algorithm 1.

The main hyperparameters of Algorithm 1 are the regularization
coefficients γI , γS , the iteration limits kmax, kproj, and the initial setting
of A(0). These add up to the individual hyperparameters of the convex
optimizer OL(·). In our experimental study, where the number of
complex ADCs is equal to the number of desired sources, i.e., P = K,
we use A(0) = Γ as our initial estimate and set the digital filter via (8).

Discussion: Algorithm 1 allows tuning of the HBF receivers to
accurately carry out signal recovery and interferer rejection tasks while
boosting low-power implementation. In Section IV, we show that by
utilizing Algorithm 1 to design a task-specific HBF receiver with low-
resolution ADCs and quantized VMs with sparsity, one can achieve

Algorithm 1: Analog combiner setting

Init: Fix A(0)

1 for k = 1, 2, . . . , kmax do
2 Update A(k) ← OL

(
A(k−1)

)
3 if mod (k, kproj) = 0 then
4 Project via A(k) ← PA(A(k))
5 end
6 end

Output: Analog combiner A(kmax).

comparable or improved MSE compared to task-agnostic HBF receivers,
while consuming half the power at a 4× reduced quantization rate.

The proposed tuning of the analog combiner requires prior knowledge
of the angle of arrivals and power levels. These are used to form
the correlation matrices Cx and Csx used by the algorithm. This
information should therefore be either estimated or externally provided
by a spatial sensor. Furthermore, one of the open challenges is to analyze
the impact of hardware non-idealities on the task-specific MIMO system
performance, such as frequency-independent and -dependent gain and
phase imbalance of vector modulators. This future study will enable us
to design a co-optimized solution between the hardware and algorithms
to cope with these issues. Finally, in our simulations, we manually select
the hyperparameters of Algorithm 1. However, the recent success of
deep learning tools in enabling rapid optimization [33] indicate that
one can design data-driven hyperparameter setting via, e.g., the learn-
to-optimize framework [34] or via deep unfolding [35]. The latter was
recently shown in [36] to be particularly suitable for realizing accurate
and fast optimization of convex objectives over discrete sets as in (10).
This extension of our design algorithm is left for future study.

IV. TASK-SPECIFIC HYBRID MIMO SYSTEM EVALUATION

In this section, we evaluate the proposed MIMO receiver system. in
Section IV-A. Next, in Section IV-B, we characterize the signal recovery
performance using the MSE metric. We demonstrate the robustness
of the system to spatial interferers by showing angular-dependent
beampatterns of the analog combiner front end model in Section IV-C.
Finally, we provide power consumption estimates in Section IV-D.

A. Hardware Architecture and Model-Based Simulation Setup
We model a task-specific MIMO hardware system to evaluate perfor-

mance improvements compared to task-agnostic MIMO receivers and
estimate power savings from the proposed task-specific quantization
techniques. Our hardware system features an RF analog-combiner front
end and digital signal processing (DSP) back end for task-specific
recovery similar to the system illustration shown in Fig. 1. The RF
analog-combiner front end consists of reconfigurable VMs with low
noise, each assigned to a value of a specific matrix A entry. For an
N × P front end, a total of N × P VMs have to be utilized. The
system is configured using the prior knowledge of the angle of arrivals
and signal power, as mentioned in Section III-C. The coefficients of
the analog-combiner matrix A are computed according to Algorithm 1
in the DSP back end, and the VMs are configured using a control
module. The N -element input observations x = [x1, . . . , xN ]T are fed
into the analog combiner at RF frequencies, downconverted to a low
baseband frequency, and provided to the low-quantization rate ADCs as
in- and quadrature-phase signals (I & Q). In the digital domain, the filter
B, computed using (8), is applied and signal recovery is performed.
Performance is characterized using MSE.

For our simulations, we consider an 8 × 2 hybrid MIMO system,
with K = 2 desired signals at angles θ1 = π

8
, θ2 = −π

4
with variances

1.5 and 0.5, respectively. Additionally, we model M = 2 unwanted
interferers at angles φ1 = − π

18
, φ2 = π

3
with variances 5 for both

sources. Consequently, the interferers are several times stronger than
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1.5x

lower
MSE 

> 4x lower quantization rate

Fig. 2: MSE vs. total number of quantization bits for recovering K = 2

desired signals in the presence M = 2 spatial interferers.

the desired signals. The noise level is set to σ2
w = 1. For comparison

purposes, we also evaluate the performance of the system without any
quantization. In addition, we model a task-agnostic 8× 2 conventional
hybrid MIMO receiver with beamforming in analog and recovery in
digital, and a task-agnostic 8×8 fully-digital MIMO receiver recovering
the data solely in the digital domain, as benchmark systems.

B. MSE Performance
We evaluate the signal recovery MSE performance achieved using

Algorithm 1 for various levels of analog pre-processing matrix A

sparsity and VM resolution. The MSE in recovering s versus the overall
number of bits, i.e., P dlog2 be, is depicted in Fig. 2. We show the
numerical simulation results for sparsity levels of 0 and 25% with non-
quantized, continuous (Cont.) matrix A, and for 25% sparse A with
VMs quantized with relatively low resolution, e.g., 4-bit resolution.
We observe in Fig. 2 that by utilizing Algorithm 1, one can design a
task-specific hybrid MIMO receiver using low-quantization rate ADCs
to approach the MSE performance achieved without any quantization,
while using low-resolution VMs, e.g., merely 24 = 16 different settings
for 4 bits, and deactivating 25% of VMs for sparsity to reduce power.

The task-agnostic fully-digital MIMO receiver achieves substantially
worse MSE performance at a comparable total ADC bit budget. For
the same targeted MSE performance floor, more than 4× quantization
rate reduction is observed with the proposed method. The conventional
hybrid MIMO receiver, which only beamforms towards the desired
angles and does not account for the interferers, also demonstrates worse
recovery performance. Thus, the proposed method shows 1.5× lower
MSE at the same quantization rate of 16 bits, as shown in Fig. 2.

C. Task-Specific Beamforming and Array Factors
Algorithm 1 designs the analog combiner to reject the spatial in-

terferers in analog, jointly optimized with the main system task of
recovering the desired signals, s, in digital. We model and compute
the array factor (AF), illustrating the suppression of interferers in the
spatial domain. The array factor is a measure of MIMO receiver gain
as a function of an incoming signal’s angular direction and defined
as AF (θ) =

∑N
i=1 Aie

jπi sin(θ), where Ai is a specific complex
gain coefficient applied to the input signal, and N is the number of
input antennas [14]. For an N × P MIMO receiver, there would be P
independent beams directed towards a specific angle.

The AF computed at the P = 2 analog outputs of the proposed system
is illustrated in Fig. 3, and is compared with a task-agnostic conventional
hybrid MIMO receiver whose analog combiner beamforms towards θ1
(Fig. 3a) and θ2 (Fig. 3b). The beam patterns achieved by Algorithm 1
are directed towards both the desired angles θ1 and θ2 , forming a linear
combination of the desired signals at the output, while suppressing the
interferers at angles φ1, φ2 by ≥ 36dB. However, as observed in Fig. 3,
since the analog combiner is not only optimized for beamforming but
rather designed for facilitating recovery from quantized observations,
our analog combiner achieves lower AF gain for the desired signals
compared to the conventional beamforming. Nonetheless, the lower AF
gain does not harm the task-specific recovery accuracy (Fig. 2).

θ2 θ1ϕ1

36 dB 38 dB

ϕ2

(a) Array factor plot for output 1

θ2 θ1
ϕ1

41 dB

ϕ2

43 dB

(b) Array factor plot for output 2

Fig. 3: AF plots vs. angle of arrival for P = 2 outputs (dB scale, 20log).

Hardware Component / System Power (mW)
LNA/VM PLNA/VM (1-5 GHz 8 bit/4 bit) [15], [37] 20/10

Mixer with LO Gen (1-5 GHz) PMIX [38], [39] 15
Baseband Amplifier PBB [11] 5

ADC PADC (100 MS/s 10 bit/4 bit) [40], [43] 10/0.5
Fully-Digital MIMO Receiver (8× 8) 520

Conventional Hybrid MIMO Receiver (8× 2) 410
Task-Specific Hybrid MIMO Receiver (8× 2) 172

TABLE I: Estimated power consumption comparison.

D. Power Consumption Model
We estimate the power consumption of the proposed task-specific

HBF MIMO receiver and the task-agnostic benchmark systems by using
the measured power consumption of individual hardware components
reported in the SOA integrated designs [11], [15], [37]–[41]. Power
consumption of an N ×N fully-digital MIMO receiver is estimated by:

PFD = N · PLNA +N · PMIX + 2 ·N · PBB + 2 ·N · PADC. (12)

Here, PLNA is the power consumed by a low-noise amplifier, PMIX is
the power of the mixer, and PBB and PADC are baseband amplifier and
ADC power consumption, respectively, doubled for I & Q paths. The
power consumed by an N × P hybrid MIMO receiver is estimated by:

PHYB = γSP ·N ·P ·PVM+P ·PMIX+2 ·P ·PBB+2 ·P ·PADC. (13)

Here, PVM is the power consumed by a low-noise VM-amplifier and
γSP is the analog combiner sparsity coefficient: γSP = 1 denotes a
non-sparse A, while γSP = 0.75 corresponds to 25% sparsity. The
estimated power consumption of each hardware component and the total
power consumption of task-specific and -agnostic MIMO receivers are
summarized in Table I. The power scaling for various quantization levels
of the VMs is based on [42] when using 8 bits for high-resolution
VMs. For the ADC power estimation, we utilize Walden FoM [30],
[41]. Our results show that the proposed power-saving techniques (25%
sparsity, 4-bit VMs, 4-bit ADCs) provide more than 58% reduction in
power compared to the task-agnostic MIMO architectures using high-
resolution ADCs, high-power LNAs, and high-resolution VMs. These
notable power gains add to the improved MSE performance shown in
Fig. 2 and the spatial interferer rejection observed in Fig. 3.

V. CONCLUSIONS

In this work, we studied a power-efficient hybrid MIMO receiver
design with embedded beamforming and low-resolution ADCs using
task-specific quantization. We introduced a power-efficient analog and
digital joint optimization framework, incorporating sparse analog com-
bining and considering the finite resolution of the configurable analog
pre-processing hardware. Furthermore, we demonstrated suppression
of undesired spatial interferers to facilitate operation in congested
spectrum environments. Supported by our numerical simulation results,
the proposed hybrid MIMO receiver notably outperforms the task-
agnostic MIMO receivers by achieving optimal MSE performance at
lower power and lower quantization rate.
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