
1

Proximal Gradient-Based Unfolding for

Massive Random Access in IoT Networks

Yinan Zou, Graduate Student Member, IEEE, Yong Zhou, Senior Member, IEEE,

Xu Chen, Senior Member, IEEE, and Yonina C. Eldar, Fellow, IEEE

Abstract

Grant-free random access is an effective technology for enabling low-overhead and low-latency

massive access, where joint activity detection and channel estimation (JADCE) is a critical issue.

Although existing compressive sensing algorithms can be applied for JADCE, they usually fail to

simultaneously harvest the following properties: effective sparsity inducing, fast convergence, robust to

different pilot sequences, and adaptive to time-varying networks. To this end, we propose an unfolding

framework for JADCE based on the proximal gradient method. Specifically, we formulate the JADCE

problem as a group-row-sparse matrix recovery problem and leverage a minimax concave penalty rather

than the widely-used `1-norm to induce sparsity. We then develop a proximal gradient-based unfolding

neural network that parameterizes the algorithmic iterations. To improve convergence rate, we incorporate

momentum into the unfolding neural network, and prove the accelerated convergence theoretically.

Based on the convergence analysis, we further develop an adaptive-tuning algorithm, which adjusts

its parameters to different signal-to-noise ratio settings. Simulations show that the proposed unfolding

neural network achieves better recovery performance, convergence rate, and adaptivity than current

baselines.

Index Terms

Massive random access, compressive sensing, proximal gradient unfolding, joint activity detection

and channel estimation.

This paper was presented in part at the IEEE Global Communications Conference (Globecom), Madrid, Spain, 2021 [1].

Y. Zou and Y. Zhou are with the School of Information Science and Technology, ShanghaiTech University, Shanghai 201210,

China (E-mail: {zouyn, zhouyong}@shanghaitech.edu.cn). X. Chen is with the School of Computer Science and Engineering,

Sun Yat-sen University, Guangzhou 510006, China (e-mail: chenxu35@mail.sysu.edu.cn). Yonina C. Eldar is with the Faculty

of Math and CS, Weizmann Institute of Science, Rehovot 7610001, Israel (email: yonina.eldar@weizmann.ac.il).

ar
X

iv
:2

21
2.

01
83

9v
1

 [
ee

ss
.S

P]
 4

 D
ec

 2
02

2

2

I. INTRODUCTION

Massive machine-type communications (mMTC) is expected to connect a massive number of

Internet of Things (IoT) devices [2]. Because of the sporadic short-packet communication and

massive connectivity, adopting the conventional grant-based random access strategy to support

mMTC may lead to overwhelming signaling overhead, thereby introducing significant access

latency. Grant-free random access has received extensive attention, given its potential to enable

low-latency and low-overhead massive access [3]. Specifically, without waiting for the grant, each

IoT device directly transmits its data to the base station (BS) after sending a pilot sequence,

which significantly reduces the signaling overhead. To fully exploit the advantages of grant-free

random access, it is essential to achieve joint activity detection and channel estimation (JADCE)

according to the pilot sequences received at the BS.

Because of the sporadic traffic of IoT devices and large antenna array at the BS, JADCE is

usually modeled as different multiple measurement vector (MMV) compressive sensing (CS)

problems [4]–[6] and then tackled by applying sparse signal processing methods. In particular,

the JADCE problem can be formulated as group LASSO, which can be solved by the iterative

shrinkage thresholding algorithm (ISTA) [7], [8]. Apart from ISTA, other optimization-based

algorithms [9]–[12] have also been developed for JADCE. The authors in [13] proposed an

approximate message passing (AMP)-based algorithm for JADCE in massive multiple-input

multiple-output (MIMO) systems. AMP was further extended for activity detection in multi-

cell networks [14]. In addition, the use of AMP for reconfigurable intelligent surface (RIS)-

assisted massive access systems was studied in [15]. Despite the aforementioned studies, AMP-

based algorithms may not converge in scenarios with either ill-conditioned or non-Gaussian

pilot sequences [16], [17]. Moreover, optimization-based methods often have slow convergence

and high computation complexity, and obtain sub-optimal solutions in practice, leading to non-

negligible performance gap to the optimal solution.

Deep learning (DL) was emerged as a disruptive technique to tackle different optimization

problems in wireless networks [18], including sparse signal recovery. In order to enable model-

driven learning design for sparse signal recovery, unfolding iterative algorithms as recurrent

neural networks (RNN) [19], [20] is an effective strategy. Different from the optimization-

based methods that manually fix the parameters throughout the iterations, RNN adaptively

tunes the parameters in each unfolding layer according to the training data, which accelerates

3

convergence and leads to performance improvement. The authors in [21], [22] proposed to unfold

the generic ISTA and AMP into learned ISTA (LISTA) and learned AMP (LAMP), respectively.

The authors in [23], [24] simplified the LISTA structure by studying its theoretical properties and

proved its linear convergence. In [25], a LISTA framework was developed for group sparsity.

To improve recovery performance, [26] considered an auto-encoder neural network to jointly

design the pilot sequence matrix and recover sparse signal. By exploiting the domain knowledge

and channel structure, the authors in [27] proposed DL-based approaches to aid the message

passing algorithm. An asynchronous grant-free random access system was studied in [28], where

different LAMP-based structures were designed to balance the tradeoff between performance and

complexity. These studies [25]–[27] leveraged the widely-used `1-norm as the sparsity-inducing

penalty (SIP).

To further promote sparse solutions, a proximal operator method was unfolded as an RNN

for non-convex SIP-regularized problems in [29]. Though the scalar operator-based unfolding

structure in [29] is effective for SMV problems, it does not consider the group-sparse structure

that exists in the JADCE problem. Furthermore, these DL-based methods [25]–[30] are developed

based on a common assumption that the training and test datasets share the same distribution,

i.e., signal-to-noise ratio (SNR) and device active ratio remain unchanged in the training and

test stages. However, in many practical IoT networks, SNR and device active ratio are time-

varying, which leads to a discrepancy between the training and test datasets. Hence, existing

DL-based algorithms cannot be directly applied in such dynamic environments. An intuitive

method to tackle this issue is to collect a new training dataset and re-train the neural network,

which, however, incurs excessive communication and computation overhead for data collection

and training. The authors in [31] proposed an adaptive scheme based on LISTA. However, how

to develop an adaptive method for JADCE problems with group-sparse channel matrix and non-

convex SIP has not been studied.

In this paper, we propose an adaptive unfolding neural network framework for JADCE based

on a non-convex regularizer for group-sparsity, which ensures robustness to non-Gaussian pilot

sequences, achieves fast convergence with theoretical guarantees, and adapts to time-varying

device active ratio and SNR. As an effective approach to restrain oscillation and accelerate con-

vergence, we incorporate momentum into the unfolding neural network. The main contributions

of this paper are summarized as follows:

• We formulate the JADCE problem as a minimax concave penalty (MCP) regularized group-

4

row-sparse matrix recovery problem. To efficiently solve this challenging problem, we

propose a light-weight unfolding neural network, termed analytic learned proximal gradient

method (ALPGM).

• To further improve convergence rate, we incorporate momentum into ALPGM and pro-

pose an accelerated variant of ALPGM, termed ALPGM with momentum (ALPGM-MM).

Theoretical analysis is conducted to characterize the convergence of ALPGM-MM. The

theoretical result shows that ALPGM-MM has the no-false-positive property and enjoys a

better convergence rate than ALISTA-GS in [25] under certain parameter settings.

• Based on the convergence analysis, we further propose an adaptive-tuning scheme, termed

LPGM-AT, which adapts to the variation of the device active ratio and SNR. The hyper-

parameters in LPGM-AT are optimized by grid search rather than back-propagation, which

significantly reduces the computational complexity. The proposed LPGM-AT adaptively

adjusts the network parameters according to the input data, and hence facilitates JADCE in

time-varying IoT networks.

• Simulations show that the proposed ALPGM and ALPGM-MM achieve better recovery

performance than the baselines. Moreover, benefiting from the momentum acceleration, the

proposed ALPGM-MM exhibits faster convergence rate than ALPGM. LPGM-AT signif-

icantly outperforms ALPGM and ALPGM-MM on the test dataset that differs from the

training dataset in terms of device active ratio and SNR.

The remainder of this paper is organized as follows. System model and problem formulation

are described in Section II. In Section III, we propose three unfolding neural networks for

tackling the JADCE problem. We present simulation results in Section IV. Finally, the paper is

concluded in Section V.

Notations: We denote [N] = [1, . . . , N]. We use RN and CN to denote the real and complex

domains of dimension N , respectively, |S| denotes the cardinality of set S and supp(x) is the

support of vector x = [x1, . . . , xN] ∈ RN . We denote the sign function and the generalized

inverse of a matrix as sign(·) and X†, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this paper, we consider a single-cell IoT network, which consists of N single-antenna IoT

devices and one M -antenna BS. Compared to the number of BS antennas, the number of IoT

5

Active IoT devices

Inactive IoT devices

Base Station

𝒀 = 𝑺𝑿 + 𝒁

Group-row-sparse matrix

Noise
Pilot sequence

 matrix

Fig. 1. An illustration of an IoT network that consists of massive devices with sporadic traffic.

devices is generally much larger, i.e., N �M . According to the principle of grant-free random

access, each IoT device with sporadic traffic independently makes the transmission decision, and

a small number of IoT devices decide to transmit in each transmission block. Specifically, the

active devices, without the need to obtain a scheduling grant from the BS, send their pre-allocated

pilot sequences along with their short-length data, while the inactive devices keep silent. In any

transmission block, we denote an = 1 if device n is active, and an = 0 otherwise. The uplink

channel response between IoT device n and the BS is denoted as hn ∈ CM , which remains

unchanged in each transmission block and varies independently across different blocks and

devices [32]. With synchronized pilot transmissions from active devices, the signal y(`) ∈ CM

received at the BS is

y(`) =
N∑
n=1

hnansn(`) + z(`), ` = 1, . . . , L, (1)

where sn(`) is the `-th pilot symbol transmitted by device n, L denotes the pilot length, and

z(`) ∈ CM denotes the additive white Gaussian noise (AWGN) vector with each entry following

distribution CN (0, σ2). Compared to the device number, the pilot sequence length is generally

much smaller, i.e., L � N , which makes it impractical for all devices to have orthogonal

sequences. As a result, each device is assigned a non-orthogonal but unique sequence.

By denoting Y = [y(1), . . . ,y(L)]T ∈ CL×M , A = Diag(a1, . . . , aN) ∈ RN×N , S =

[s(1), . . . , s(L)]T ∈ CL×N with s(`) = [s1(`), . . . , sN(`)]T ∈ CN , H = [h1, . . . ,hN]T ∈ CN×M ,

6

and Z = [z(1), . . . ,z(L)]T ∈ CL×M , the received signal at the BS is rewritten in matrix form

as

Y = SAH + Z. (2)

Before decoding data, the BS conducts JADCE (i.e., recovering matrices A and H) based on

the received pilot signals. Denoting X = AH ∈ CN×M , we rewrite (2) as

Y = SX + Z. (3)

B. Problem Formulation

Since the device activity matrix A is diagonal, we have X = [a1h1, . . . , aNhN]T. If device

n is inactive, then all entries of the n-th row of matrix X are zero. Thus, matrix X has the

structure of group-sparsity in rows and all columns share the same support. Achieving JADCE

is equivalent to recovering the row support of X and the elements of nonzero rows based on

the noisy observation Y at the BS. Such a matrix recovery problem is given by

P : minimize
X∈CN×M

1

2
‖Y − SX‖2F + λG(X), (4)

where λ > 0 is the regularization parameter, and G(X) is an SIP term introduced to induce the

group-row-sparsity of matrix X .

In the following, (3) is rewritten as its real-valued counterpart

Ỹ = S̃X̃ + Z̃ =

R{S} −I {S}
I {S} R{S}

R{X}
I {X}

+

R{Z}
I {Z}

 , (5)

where R{·} and I{·} denote the real and imaginary parts of a complex matrix. Hence, problem

P is rewritten as

Pr : minimize
X̃∈R2N×M

1

2
‖Ỹ − S̃X̃‖2F + λG(X̃). (6)

To induce a group-sparse solution, the authors in [25], [33] adopted a convex SIP in the form of

G(X̃) =
∑2N

i=1 ‖X̃i,:‖2 (i.e., mixed `1/`2-norm), and reformulated problem Pr as group LASSO

[8]. Since MCP [34] induces further sparsity than the `1-norm, we choose MCP as the SIP and

rewrite problem Pr as the following group MCP problem [35]

Group MCP : minimize
X̃∈R2N×M

1

2
‖Ỹ − S̃X̃‖2F + λ

2N∑
i=1

gη(‖X̃i,:‖2), (7)

7

where

gη(z) =


|z| − ηz2, if |z| ≤ 1

2η
,

1

4η
, if |z| > 1

2η
.

(8)

C. Conventional Proximal Gradient Method

For group MCP, we apply the following iterative proximal gradient method (PGM) to recover

real-valued matrix X̃

X̃k+1 = Pλγk,fηk

(
X̃k + γkS̃

T(Ỹ − S̃X̃k)
)
, (9)

where γk denotes the step-size and X̃k is an estimation of X̃ at iteration k. The multivariate

proximal operator Pλγk,fηk (·) is given by

Pθk,fηk (X̃i,:) = arg min
Ũi,:

1

2
‖Ũi,: − X̃i,:‖22 + fηk(Ũi,:), (10)

with fηk(Ũi,:) = θkgηk(‖Ũi,:‖2) and θk = λγk. The univariate proximal operator can be written as

P̂θk,fηk (x) = arg minu
1
2
(u−x)2 + f̂ηk(u), where f̂ηk(u) = θkgηk(u) [36]. To have a well-defined

minimum [1], we should have ηk < 1
2θk

, which yields

P̂θk,fηk (x) =



0, if |x| ≤ θk,

x− θksign(x)

1− 2θkηk
, if θk < |x| ≤

1

2ηk
,

x, if |x| > 1

2ηk
.

(11)

Based on [37, Theorem 6.18] and (11), we obtain

Pθk,fηk (X̃i,:) =


P̂θk,fηk (‖X̃i,:‖2)

X̃i,:

‖X̃i,:‖2
, if X̃i,: 6= 0,

0, otherwise.

(12)

The resulting PGM can solve problem (7) [38]. However, it has several limitations. First,

PGM achieves sublinear convergence rate and usually takes many iterations to converge. In

time-varying IoT networks, the variations of device active ratio and SNR cause PGM to re-

execute, which incurs a high computational complexity. Second, an inappropriate choice of the

regularization parameter λ may severely degrade performance of PGM. Third, the values of the

step-size γk and parameter ηk influence the convergence rate, and are generally tricky to choose.

To tackle these limitations, we propose an unfolding neural network framework to improve

recovery performance and accelerate the convergence by learning key parameters λ, γk, and ηk.

8

0B

+ 0 0
, fP
 + 1 1

, fP


1B

...

...

— —

+ + ...

...

— —

0B

+ 0 0
, fP


Y

0

X
1

X
0W + 1 1

, fP


1W

1B

... K

X

...

+ + ...

...

— —

11+

1

+

—

21+

2

2

X
2W +

2B

2 2
, fP


+ 2 2
, fP


1B

—

0 0
, fP
 1 1

, fP
 +

—

2 2
, fP


0 0
, fP
 1 1

, fP
 2 2

, fP


3

𝒀

𝒀

𝑺

𝑺

𝑿 0 𝑿 1 𝑿 2 𝑿 𝐾

𝑺 𝑺

𝑺 𝑺

𝑿 0 𝑿 1 𝑿 2 𝑿 𝐾

𝑿 0 𝑿 1 𝑿 2 𝑿 𝐾

𝒀

𝑺 𝑺 𝑺

𝛾0𝑩 𝛾1𝑩 𝛾2𝑩

𝛾0𝑩 𝛾1𝑩 𝛾2𝑩

+ + ...

...

— —

0 0
, fP
 1 1

, fP
 +

—

2 2
, fP


𝒀

𝑺 𝑺 𝑺

𝑿 0 𝑿 1 𝑿 2 𝑿 𝐾

𝛾0𝑩 𝛾1𝑩 𝛾2𝑩

Fig. 2. An illustration of the proposed ALPGM, where {γk, θk, ηk}K−1
k=0 are trainable parameters.

III. PROPOSED UNFOLDING FRAMEWORK

This section proposes an unfolding framework that tackles the matrix recovery problem by

unfolding the conventional PGM discussed in Section II-C.

A. ALPGM

Following the idea of algorithm unfolding, we unfold the iteration in (9) as an RNN. By

treating X̃k and X̃k+1 as the input and output of the activation function Pλγk,fηk (·), respectively,

(9) can be mapped to a one-layer neural network. Therefore, the K iterations are implemented

by a K-layer RNN, where each neural network layer corresponds to a specific iteration of PGM.

Motivated by [23], [24], we replace S̃T by matrix B which can be obtained before the training

phase via solving the following optimization problem

minimize
B∈R2N×2L

‖BS̃‖2F (13)

subject to Bi,:S̃:,i = 1, ∀i ∈ [2N]. (14)

We utilize the projected gradient descend (PGD) method to solve problem (13) [24]. The

unfolding neural network termed ALPGM is thus given by

X̃k+1 =Pθk,fηk

(
X̃k+γkB(Ỹ −S̃X̃k)

)
, k = 0, . . . , K − 1, (15)

where θk = λγk is the thresholding parameter of layer k. The trainable parameters are Θ =

{γk, θk, ηk}K−1k=0 . The proposed ALPGM is shown in Fig. 2.

We note that an intuitive method to unfold (9) is to fix S̃T and then directly learn {γk, θk, ηk}.

Another method is to replace γkS̃
T by Bk and then learn {Bk, θk, ηk}. These two methods

achieve poorer recovery performance and slower convergence rate than our proposed ALPGM,

as will be shown in Section IV-A.

9

0B

+ 0 0
, fP
 + 1 1

, fP


1B

...

...

— —

+ + ...

...

— —

0B

+ 0 0
, fP


Y

0

X
1

X
0W + 1 1

, fP


1W

1B

... K

X

...

+ + ...

...

— —

11+

1

+

—

21+

2

2

X
2W +

2B

2 2
, fP


+ 2 2
, fP


1B

—

0 0
, fP
 1 1

, fP
 +

—

2 2
, fP


0 0
, fP
 1 1

, fP
 2 2

, fP


3

𝒀

𝒀

𝑺

𝑺

𝑿 0 𝑿 1 𝑿 2 𝑿 𝐾

𝑺 𝑺

𝑺 𝑺

𝑿 0 𝑿 1 𝑿 2 𝑿 𝐾

𝑿 0 𝑿 1 𝑿 2 𝑿 𝐾

𝒀

𝑺 𝑺 𝑺

𝛾0𝑩 𝛾1𝑩 𝛾2𝑩

𝛾0𝑩 𝛾1𝑩 𝛾2𝑩

+ + ...

...

— —

0 0
, fP
 1 1

, fP
 +

—

2 2
, fP


𝒀

𝑺 𝑺 𝑺

𝑿 0 𝑿 1 𝑿 2 𝑿 𝐾

𝛾0𝑩 𝛾1𝑩 𝛾2𝑩

+ + ...

...

— —

11+

1

+

—

21+

2

0 0
, fP
 1 1

, fP
 2 2

, fP


3

𝑿 0 𝑿 1 𝑿 2 𝑿 𝐾

𝒀

𝑺 𝑺 𝑺

𝛾0𝑩 𝛾1𝑩 𝛾2𝑩

Fig. 3. An illustration of the proposed ALPGM-MM, where {γk, θk, ηk}K−1
k=0 and {βk}K−1

k=1 are trainable parameters.

B. ALPGM-MM

For vanilla gradient descent, the gradient may not always point towards the minimum, which

results in an oscillating update path and slow convergence. One solution is to utilize momentum

to mitigate oscillations and speed up convergence [39]. Hence, we propose ALGPM-MM where

we introduce a momentum term relating to X̃k−1 into the update of X̃k+1 in ALGPM, i.e.,

X̃k+1 =


Pθk,fηk

(
X̃k + γkB(Ỹ − S̃X̃k)

)
, if k = 0,

Pθk,fηk

(
X̃k + γkB(Ỹ − S̃X̃k) + βk(X̃

k − X̃k−1)
)
, if k = 1, . . . , K − 1,

(16)

where βk is the momentum parameter. The trainable parameters are {γk, θk, ηk}K−1k=0 and {βk}K−1k=1 .

The proposed ALPGM-MM is shown in Fig. 3.

Since the update of X̃k+1 is dependent upon X̃k and X̃k−1, it is difficult to directly analyze

the convergence of ALPGM-MM. Besides, the multivariate proximal operator with respect to

MCP also brings a critical challenge for convergence analysis. For tractability of the convergence

analysis of ALPGM-MM, the following problem replaces (13) to ensure that the matrix BS̃ is

symmetric. By defining B = ((GTG)S̃)T ∈ R2N×2L with G ∈ R2L×2L, (13) can be written as

minimize
G∈R2L×2L

‖S̃TGTGS̃ − I‖2F (17)

subject to (S̃TGTGS̃)i,i = 1, ∀i ∈ [2N]. (18)

Then, we define an auxiliary matrix D = GS̃ ∈ R2L×2N and reformulate (17) as

minimize
G∈R2L×2L,

D∈R2L×2N

‖DTD − I‖2F + τ‖D −GS̃‖2F (19)

subject to (DTD)i,i = 1, ∀i ∈ [2N], (20)

10

where τ > 0 denotes the regularization parameter. We can also adopt the PGD method to solve

this problem [40]. Through the above reformulation, matrix BS̃ is guaranteed to be a positive

semidefinite matrix. In summary, before the training phase of ALPGM-MM, we solve problem

(19) to obtain G, and then obtain B = ((GTG)S̃)T.

In Theorem 1, we show that ALPGM-MM has the no-false-positive property and achieves a

faster convergence rate than ALISTA-GS in [25]. We denote ψ(X̃) = [‖X̃1,:‖2, . . . , ‖X̃2N,:‖2]T

and define the mutual coherence of D as φ , maxi 6=j |DT
:,iD:,j|. As in [23]–[25], [29], [31],

signal X̃∗ and noise Z̃ are assumed to belong to the set X (µx, µx, s, ε) , {(X̃∗, Z̃) | 0 < µx ≤

‖X̃∗
i,:‖2 ≤ µx,∀ i ∈ S, |S| ≤ s, ‖Z̃‖F ≤ ε}, where supp(ψ(X̃∗)) is denoted as S.

Theorem 1. For ALPGM-MM, we denote the input as Ỹ = S̃X̃∗ + Z̃ and X̃0 = 0, the

output as {X̃k}∞k=1, and ‖X‖2,1 =
∑

n ‖Xn,:‖2. If cφs , (2s− 1)φ < 1, ‖B‖2,1 ≤ µB, and the

parameters {θk, ηk, γk, βk} satisfy

φ sup
(X̃∗,Z̃)∈X (µx,µx,s,ε)

‖X̃k − X̃∗‖2,1 + µBε = θk ≤
1

2ηk
, ∀ k, (21)

γk = 1, ∀ k, (22)

βk →
1

2s

(
1−

√
1− cφs

)2

, as k →∞, (23)

ηk →
1

2θk
, as k →∞, (24)

then the sequence of iterations in (16) satisfies

supp(ψ(X̃k)) ⊆ S, ∀ k, (25)

and

‖X̃k − X̃∗‖F ≤ C0

k∏
t=1

ct +
(1 + s)µBε

1− cφs
, ∀ k, (26)

where C0 > 0 is a constant and ck satisfies

0 < ck ≤ cφs < 1, ∀ k, (27)

0 < ck ≤ 1−
√

1− cφs, ∀ k >
⌈

log(µx)− log(6C0)

log(cφs)

⌉
+ 2. (28)

Proof. See Appendix A.

According to Theorem 1, as long as the parameters satisfy (21)-(24), the index set of the

rows containing non-zero elements of ψ(X̃k) belongs to that of the ground truth. Based on the

11

no-false-positive property, we prove that X̃k converges to the vicinity of the ground truth X̃∗,

i.e., X̃k is close to X̃∗, which is group-row-sparse. Theorem 1 also demonstrates that ALPGM-

MM achieves a linear convergence rate in a noisy scenario. Although the convergence rate is

linear, the convergence rate of ALPGM-MM (i.e., cφs) is better than the convergence rate in [1]

(i.e., φs(
√
M + 1)− φ). This is because the multivariate proximal operator exploits the group-

row-sparsity property, which accelerates the convergence. In addition, since 1−
√

1− cφs < cφs

when cφs < 1, the convergence performance of ALPGM-MM is better than that of ALISTA-GS

in [25] under the same setting because the momentum term provides convergent acceleration.

As ALPGM shares a similar network with ALPGM-MM except the momentum part, the

convergence analysis of ALPGM-MM can be reduced to that of ALPGM by removing the

momentum part. Through some modifications of the proof of Theorem 1, one prove that ALPGM

also achieves linear convergence rate.

From a theoretical perspective, Theorem 1 verifies the validity of ALPGM-MM under certain

conditions of parameters {θk, ηk, γk, βk}. This assumption is only made for tractability of the

analysis. Although the parameters learned by back-propagation may not necessarily satisfy

the conditions in Theorem 1, ALPGM-MM with learned parameters still exhibits excellent

performance and fast convergence in practice, as we show in Section IV-B.

C. LPGM-AT

Most DL-based approaches including the proposed ALPGM and ALPGM-MM rely on the

assumption that the SNR and the device active ratio remain the same during the training and

test stages. As a result, they may not work well in dynamic IoT networks, where the SNR and

device active ratio are time-varying. To tackle this problem, we further develop an adaptive-tuning

algorithm, termed LPGM-AT, for dynamic IoT networks.

In ALPGM-MM, {γk, θk, ηk, βk} are regarded as the trainable parameters, and optimized by

back-propagation on the training dataset. Thus, the optimized parameters entirely depend on

training data and are applicable for test data that follows the same distribution with training

data. The drawback is that a minor discrepancy between training and test data distributions may

incur severe performance degradation. To address this issue and achieve algorithmic robustness,

we turn our attention to optimize the parameters according to X̃k and Ỹ . We design the adaptive-

tuning update formulas of {γk, θk, ηk, βk} as follows

θk = cθ‖S̃†(S̃X̃k − Ỹ)‖2,1, k = 0, . . . , K − 1, (29)

12

γk = 1, ∀ k, (30)

βk = cβ‖ψ(X̃k)‖0, k = 1, . . . , K − 1, (31)

ηk =
1

cη‖ψ(X̃k)‖0θk
, k = 0, . . . , K − 1, (32)

where cθ > 0, cβ > 0, cη > 0 are tunable hyperparameters.

In the following we motivate the choices of (29)-(32). Starting with (29), since Ỹ = S̃X̃∗+Z̃,

we obtain S̃†Ỹ = S̃†S̃X̃∗ + S̃†Z̃, where S̃† is the generalized inverse of S̃. Through adding

S̃†S̃X̃k and taking the norm on both sides, we obtain ‖S̃†S̃X̃k−S̃†Ỹ ‖2,1 = ‖S̃†S̃(X̃k−X̃∗)−

S̃†Z̃‖2,1. We use ‖S̃†(S̃X̃k−Ỹ)‖2,1 to approximate (21) because ‖S̃†S̃(X̃k−X̃∗)−S̃†Z̃‖2,1 ≈

O(‖X̃k − X̃∗‖2,1) + O(ε). In (21), the thresholding parameter θk relies on X̃k and ground

truth X̃∗. By comparing (29) with (21), we observe that the thresholding parameter θk only

depends on X̃k and Y , and does not need the prior knowledge of X̃∗. Second, for step-size

parameter γk, we set γk = 1, k = 0, . . . , K − 1 according to (22). Third, in (23), the momentum

parameter βk approaches 1
2s

(1 −
√

1− cφs)2 with cφs = (2s − 1)φ when k approaches infinity.

Note that 1
2s

(1−
√

1− cφs)2 is a monotonic increasing function of s when s > 1. By following

the same idea of getting rid of the dependence on X̃∗, we utilize ‖ψ(X̃k)‖0 to approximate
1
2s

(1−
√

1− cφs)2, because X̃k converges to X̃∗ while ‖ψ(X̃k)‖0 approaches ‖ψ(X̃∗)‖0. Finally,

by considering the coupling relationship between ηk and θk (i.e., 2θkηk < 1), we design the

adaptive-tuning update formula of parameter ηk as (32).

We use grid search to find the best hyperparameters (i.e., cθ, cβ , and cη) instead of back-

propagation in the training phase. Specifically, we execute the algorithm on the training dataset

with a series of hyperparameter combinations and choose the hyperparameter combination that

achieves the best performance. LPGM-AT only needs to optimize three hyperparameters, which

significantly reduces the training complexity. Although DL can also be leveraged for optimizing

the three hyperparameters, it entails a much higher computational complexity than grid search.

The values of hyperparameters {cθ, cβ, cη} are determined in the training phase. Once the

training phase ends, the hyperparameters are fixed, and directly applied to the test datasets.

According to (29)-(32), parameters {θk, βk, ηk} rely on hyperparameters {cθ, cβ, cη}, X̃k, and

Ỹ . As the hyperparameters are fixed in the test phase, parameters {θk, βk, ηk} only depend on

X̃k and Ỹ . For different distributions of the test dataset, parameters {θk, βk, ηk} vary with X̃k

and Ỹ . Thus, our proposed LPGM-AT is self-adaptive for different test datasets. If the test dataset

shares the same distribution with the training dataset, LPGM-AT achieves the same performance

13

on both datasets. If the distribution of the test dataset differs from that of the training dataset,

then LPGM-AT adapts to the unknown distribution of the test dataset.

D. Training and Testing Strategies

1) ALPGM and ALPGM-MM: For these two neural networks, we adopt supervised learning

based on training set {X̃∗
i , Ỹi}Ti=1, where Ỹi is the data, X̃∗

i is the corresponding label, and T

is the size of the training set. We denote the output of K-layer RNN as X̃K(Θ, Ỹi, X̃
0), where

Ỹi and X̃0 are the inputs of the K-layer RNN. Given {X̃∗
i , Ỹi}Ti=1, we obtain the parameters

of K-layer RNN via solving the following problem

Θ∗ = arg min
Θ

T∑
i=1

∥∥∥X̃K(Θ, Ỹi, X̃
0)− X̃∗

i

∥∥∥2
F
. (33)

To avoid converging to a local minimum, the network parameters are trained layer-by-layer

[22]. We take the training of the parameters of layer k, denoted as Θk−1, as an example, which

is performed after the parameters of the first (k − 1) layers, denoted as Θ0:k−2, are trained. To

optimize Θk−1, we need to solve problem

min
Θk−1

T∑
i=1

‖X̃k(Θ0:k−1, Ỹi, X̃
0)− X̃∗

i ‖2F (34)

with learning rate α0. After that, we further solve problem

min
Θ0:k−1

T∑
i=1

‖X̃k(Θ0:k−1, Ỹi, X̃
0)− X̃∗

i ‖2F (35)

to optimize parameters Θ0:k−1 with learning rates α1 and α2. Through the above process, the

first k layers’ parameters can be obtained. After learning these parameters, the BS performs

JADCE in the test stage by applying the proposed unfolding networks.

2) LPGM-AT: For LPGM-AT, we only need to find the appropriate hyperparameters (i.e. cθ,

cβ , and cη) by using grid search in the training stage, which significantly reduces the training

cost.

IV. SIMULATION RESULTS

In the simulations, the channels between the BS and IoT devices follow independent Rayleigh

fading. The activity of each device follows an independent Bernoulli distribution. We set P(an =

0) = 0.9 and P(an = 1) = 0.1, ∀ n ∈ [N]. We set the regularization parameter λ as 0.1 and

define the transmit SNR as E[‖SX‖2F]/E[‖Z‖2F]. The neural networks have K = 16 layers.

14

2 4 6 8 10 12 14 16

Layers

-45

-40

-35

-30

-25

-20

-15

-10

-5

N
M

S
E

(d
B

)

Step-LPGM

LPGM-CP

ALPGM

Fig. 4. NMSE versus number of layers for different proximal gradient methods.

The sizes of training dataset, validation dataset, and test dataset are 51200, 2048, and 2048,

respectively. The learning rates are set to α0 = 1× 10−3, α1 = 0.2α0, and α2 = 0.02α0. In the

test phase, the group-sparse-matrix recovery performance is measured by using the normalized

mean square error (NMSE), defined as

NMSE(X̃k, X̃∗) = 10log10

(
E‖X̃k − X̃∗‖2F

E‖X̃∗‖2F

)
. (36)

A. Performance Comparison

In the first part of the simulation, ALPGM is compared with the following two unfolding

PGM:

• Step-LPGM: By fixing S̃T in (9) and denoting θk = λγk, we learn the step-size γk,

thresholding parameter θk, and parameter ηk. The trainable parameters are the same as

that of ALPGM. The neural network is given by

X̃k+1 =Pθk,fηk

(
X̃k+γkS̃

T(Ỹ −S̃X̃k)
)
, k = 0, . . . , K − 1. (37)

• LPGM-CP: We replace γkS̃T in (9) by Bk and obtain the following neural network

X̃k+1 =Pθk,fηk

(
X̃k+Bk(Ỹ −S̃X̃k)

)
, k = 0, . . . , K − 1, (38)

where {Bk, θk, ηk} are trainable parameters.

15

2 4 6 8 10 12 14 16

Layers / Iterations

-45

-40

-35

-30

-25

-20

-15

-10

-5
N

M
S

E
(d

B
)

PGM

ISTA-GS

FISTA-GS

ALISTA-GS

ALPGM

ALPGM-MM

LPGM-AT

(a) Complex Gaussian pilot sequence matrix

2 4 6 8 10 12 14 16

Layers / Iterations

-45

-40

-35

-30

-25

-20

-15

-10

-5

N
M

S
E

(d
B

)

PGM

ISTA-GS

FISTA-GS

ALISTA-GS

ALPGM

ALPGM-MM

LPGM-AT

(b) Binary pilot sequence matrix

2 4 6 8 10 12 14 16

Layers

-45

-40

-35

-30

-25

-20

-15

-10

-5

N
M

S
E

(d
B

)

PGM

ISTA-GS

FISTA-GS

ALISTA-GS

ALPGM

ALPGM-MM

LPGM-AT

(c) Zadoff-Chu pilot sequence matrix

Fig. 5. NMSE versus number of layers or iterations for different pilot sequence matrices.

We set M , N , and L to 6, 250, and 125, respectively. The SNR is set to 40 dB. We utilize

Zadoff-Chu pilot sequence matrix [41] and generate it as in [42]. Each column of the pilot

sequence matrix is normalized. Fig. 4 shows that our proposed ALPGM achieves a smaller

NMSE than LPGM-CP and a faster convergence rate than Step-LPGM.

B. Convergence Performance

Unfolding PGM has shown its better performance than ISTA and LISTA for solving SMV

problems in [29]. Thus, we in this paper do not compare the unfolding PGM with these methods

for regular sparse recovery. We focus on comparing our proposed structures with the following

methods for group sparsity:

16

• PGM: PGM is an iterative algorithm to solve MMV problems. The update formula of PGM

is given in (9).

• ISTA-GS: ISTA-GS [8] is an extension of ISTA to solve MMV problems by replacing

the scalar soft-thresholding function in ISTA with multidimensional shrinkage thresholding

operator. The update formula of ISTA-GS is given by

X̃k+1 = Tλ/C
(
X̃k +

1

C
S̃T(Ỹ − S̃X̃k)

)
, (39)

where Tλ/C is the multidimensional shrinkage thresholding operator

Tθ(X̃i,:) = max{0, ‖X̃i,:‖2 − θ}
X̃i,:

‖X̃i,:‖2
(40)

with θ = λ/C, λ = 0.1, and C denotes the largest eigenvalue of S̃TS̃.

• Fast ISTA-GS (FISTA-GS): FISTA [43] is a Nesterov momentum speed-up of ISTA.

Correspondingly, FISTA-GS is an accelerated variant of ISTA-GS to solve MMV problems.

• ALISTA-GS: ALISTA-GS is an unfolding algorithm for MMV problems proposed in [25].

The neural network is

X̃k+1 = Tθk
(
X̃k + γkB(Ỹ − S̃X̃k)

)
, (41)

where matrix B can be obtained by solving problem (13), and {θk, γk} are trainable

parameters. Other settings of ALISTA-GS are the same as that of our proposed algorithms.

We evaluate these methods using three types of pilot sequence matrices, i.e., complex Gaussian

pilot sequence matrix, binary pilot sequence matrix, and Zadoff-Chu pilot sequence matrix.

Specifically, we generate the complex Guassian pilot sequence matrix by utilizing the complex

Gaussian distribution. For the binary pilot sequence matrix, each element is selected uniformly

at random on 1 or −1. In addition, each column of the pilot sequence matrix is normalized. The

settings of SNR, device active ratio, M , N , and L are same as that of Fig. 4.

Fig. 5 depicts the NMSE versus number of layers or iterations for our proposed networks and

the baseline methods. ALPGM achieves much lower NMSE than PGM because the parameters

in ALPGM are learned to fit the target signals. Benefiting from the MCP-based multivariate

proximal operator, the proposed networks (i.e., ALPGM, ALPGM-MM, and LPGM-AT) achieve

better performance and faster convergence rate than the baseline methods under all three pilot

sequence matrices. Besides, ALPGM-MM achieves faster convergence rate than ALPGM because

the momentum term accelerates convergence. In this experiment, the test data has the same

17

0.07 0.08 0.09 0.1 0.11 0.12

Device active ratio

-50

-45

-40

-35

-30

-25

-20

N
M

S
E

(d
B

)

PGM

ISTA-GS

FISTA-GS

ALISTA-GS

ALPGM

ALPGM-MM

LPGM-AT

Fig. 6. NMSE versus device active ratio when S is Zadoff-Chu pilot sequence matrix.

distribution as the training data, and thus the proposed APGM-AT achieves almost the same

performance as ALPGM and ALPGM-MM.

C. Performance Comparison Under Different Settings

We compare our proposed three networks with the baselines under various device active ratios,

lengths of pilot, and SNRs. As the Zadoff-Chu pilot sequence matrix outperforms other practical

pilot sequence matrices in Fig. 5, in the following we adopt the Zadoff-Chu pilot sequence matrix.

In order to ensure the convergence of iterative methods (i.e., PGM, ISTA-GS, and FISTA-GS),

the numbers of iterations of iterative methods are set to 50. The number of layers of all neural

networks is 16. Other settings are same as Section IV-B.

In Figs. 6, 7, and 8, we observe that ISTA-GS and FISTA-GS achieve similar performance

after convergence. In addition, PGM outperforms ISTA-GS because the MCP-based proximal

operator is more capable of inducing sparsity than `1-norm. The proposed three networks all

achieve much lower NMSEs than the baseline methods under different device active ratios,

lengths of pilot, and SNRs. In Figs. 7 and 8, the NMSE decreases with the length of pilot and

SNR, since longer pilot sequences and less noise lead to better channel estimation.

The results in Fig. 8 demonstrate that by utilizing MCP, the proposed ALPGM-MM reduces

the NMSE up to 12% compared to ALISTA-GS when SNR = 40 dB. Besides, when the test

18

125 135 145 155 165 175

Length of pilot

-50

-45

-40

-35

-30

-25

-20

N
M

S
E

(d
B

)

PGM

ISTA-GS

FISTA-GS

ALISTA-GS

ALPGM

ALPGM-MM

LPGM-AT

Fig. 7. NMSE versus length of pilots when S is Zadoff-Chu pilot sequence matrix.

40 42 44 46 48 50

SNR

-60

-55

-50

-45

-40

-35

-30

-25

-20

N
M

S
E

(d
B

)

PGM

ISTA-GS

FISTA-GS

ALISTA-GS

ALPGM

ALPGM-MM

LPGM-AT

Fig. 8. NMSE versus SNR when S is Zadoff-Chu pilot sequence matrix.

dataset shares the same distribution with the training dataset, the proposed LPGM-AT achieves

comparable performance with ALPGM and ALPGM-MM.

D. Adaptation Comparison

We compare the adaptivity of the proposed three networks the baseline methods for the

scenario with mismatch between the training and test datasets. In this subsection, the number

of iterations of iterative methods (i.e., PGM, ISTA-GS, and FISTA-GS) is set to 50, while the

19

0.07 0.09 0.11 0.13 0.15 0.17

Device active ratio

-24

-23

-22

-21

-20

-19

-18

-17

-16

-15

-14

-13

N
M

S
E

(d
B

)

PGM

ISTA-GS

FISTA-GS

ALISTA-GS

ALPGM

ALPGM-MM

LPGM-AT

(a) SNR of test dataset is changed to 15 dB

8 10 12 14 16 18

SNR

-22

-20

-18

-16

-14

-12

-10

-8

-6

N
M

S
E

(d
B

)

PGM

ISTA-GS

FISTA-GS

ALISTA-GS

ALPGM

ALPGM-MM

LPGM-AT

(b) Device active ratio of test dataset is changed to P(an =

1) = 0.15

Fig. 9. All models except iterative methods are trained when S is Zadoff-Chu pilot sequence matrix and the device active ratio

is 0.1 with SNR = 40 dB.

number of the layers of the DL-based methods (i.e., ALPGM, ALPGM-MM, and ALISTA-GS)

and LPGM-AT is set to 16. ALPGM, ALPGM-MM, and ALISTA-GS are trained by back-

propagation under the settings of Fig. 5(c). LPGM-AT is trained by grid search to find the

best hyperparameter combination on the same training dataset as ALPGM, ALPGM-MM, and

ALISTA-GS. Then we directly apply them to the test dataset with different device active ratios

and SNRs.

Fig. 9(a) shows the NMSE versus the device active ratio of the test dataset when SNR = 15 dB

for the test dataset. The performance of the DL-based methods (i.e., ALPGM, ALPGM-MM, and

ALISTA-GS) degrades because they are sensitive to the mismatch between the training and test

datasets. However, the results clearly show that LPGM-AT outperforms the DL-based methods

and iterative methods because LPGM-AT can adapt its parameters to different distributions of

the test dataset. In Fig. 9(b), we change the device active ratio of the test dataset to 0.15 with

lower SNRs than that of the training dataset. The results indicate that LPGM-AT is able to adapt

to time-varying IoT networks and outperforms other methods.

20

TABLE I

TRAINING TIME AND TEST TIME COMPARISON

ALPGM ALPGM-MM LPGM-AT ALISTA-GS PGM ISTA-GS FISTA-GS

Training Time 2.49 h 2.25 h 8.18 min 3.27 h - - -

Test Time per Sample 6.2× 10−4 s 6.5× 10−4 s 6.4× 10−4 s 6.0× 10−4 s 2.5× 10−3 s 2.3× 10−3 s 2.5× 10−3 s

E. Computation Complexity Comparison

In this subsection, the training and test time of the proposed three networks are compared with

the baseline methods. Table I shows that the training time of the DL-based methods (i.e., ALPGM,

ALPGM-MM, and ALISTA-GS) need several hours. This is because DL-based methods optimize

parameters by back-propagation on a large volume of training data, and the training procedures

are time-consuming. Since the momentum term provides convergence acceleration, ALPGM-

MM has the least training time among the DL-based methods. In contrast, the grid search for

LPGM-AT is quite computation-efficient, because it only need to search three hyperparameters.

LPGM-AT only needs less than 10 minutes to find the best hyperparameters by grid search, which

dramatically reduces the computation overhead. Moreover, the test time of the proposed network

is much smaller than the iterative methods, which demonstrates that the proposed network is

more practical for JADCE in IoT networks.

V. CONCLUSION

In this paper, we proposed an unfolding framework that is based on PGM for massive random

access. We first mapped PGM as an unfolding neural network to reduce the computational

complexity. In order to further improve the convergence rate, we embedded momentum into

the unfolding neural network, and proved accelerated convergence theoretically. Based on the

convergence analysis, we developed an adaptive network that generalizes well to different device

active ratios and SNRs by adjusting its network parameters. Simulation results showed that the

proposed unfolding framework achieves greater recovery performance, faster convergence, and

better adaptivity than the baselines.

21

APPENDIX

A. Proof of Theorem 1

We assume that the noise level ε satisfies

ε ≤ min

(
µx

3µB
,
µx(1− cφs)
6µB(1 + s)

,

√
sµx(1− cφs)(cφs)K0

(1 + s+
√
s)µB

)
, (42)

where β̂, C0, and K0 are defined as

β̂ ,
1

2s

(
1−

√
1− cφs

)2

, (43)

C0 , max

(
sµx,

8µxs
√
s(1 + β̂)

cφs

√
4β̂ − (β̂ + φs− φ)2

)
, (44)

K0 ,

⌈
log(µx)− log(6C0)

log(cφs)

⌉
+ 1. (45)

Then, we set the specific conditions of parameters {βk, ηk} as follows

βk =

0, if k ≤ K0,

β̂, if k ≥ K0 + 1,
(46)

ηk


<

1

2θk
, if k ≤ K0 − 1,

=
1

2θk
, if k ≥ K0.

(47)

1) Proof of no-false-positive property: When k = 0 and X̃0 = 0, we have supp(ψ(X̃0)) =

∅ ⊆ S. We fix k ≥ 0 and assume X t
i,: = 0,∀ i /∈ S, 0 ≤ t ≤ k. For ∀ i /∈ S, we have

‖ −Bi,:S̃:,S(X̃k
S,: − X̃∗

S,:)‖2 = ‖ −
∑
l∈S

Bi,:S̃:,l(X̃
k
l,: − X̃∗

l,:)‖2

≤
∑
l∈S

‖Bi,:S̃:,l(X̃
k
l,: − X̃∗

l,:)‖2 ≤
∑
l∈S

|Bi,:S̃:,l|‖X̃k
l,: − X̃∗

l,:‖2

(a)

≤
∑
l∈S

φ‖X̃k
l,: − X̃∗

l,:‖2 ≤ φ‖X̃k − X̃∗‖2,1, (48)

where (a) is due to φ ≥ |(DTD)i,l| = |Bi,:S̃:,l|. Since ‖B‖F ≤ ‖B‖2,1 ≤ µB and ‖Z̃‖F ≤ ε,

we have

‖Bi,:Z̃‖2 ≤ ‖Bi,:‖2‖Z̃‖F ≤ ‖B‖F‖Z̃‖F ≤ µBε. (49)

By combining (48) and (49), we obtain the lower bound for the threshold parameter θk
1

2ηk
> θk ≥ φ‖X̃k − X̃∗‖2,1 + µBε

22

≥ ‖ −Bi,:S̃:,S(X̃k
S,: − X̃∗

S,:)‖2 + ‖Bi,:Z̃‖2

≥ ‖ −Bi,:S̃:,S(X̃k
S,: − X̃∗

S,:) + Bi,:Z̃‖2. (50)

From the update formula of ALPGM-MM, for ∀ i /∈ S, we have

X̃k+1
i,: = Pθk,fηk

(
X̃k

i,: −Bi,:(S̃X̃
k − Ỹ) + βk(X̃k

i,: − X̃k−1
i,:)

)
= Pθk,fηk

(
X̃k

i,: −Bi,:S̃:,S(X̃k
S,: − X̃∗

S,:) + Bi,:Z̃ + βk(X̃
k
i,: − X̃k−1

i,:)

)
. (51)

As X t
i,: = 0,∀ i /∈ S, 0 ≤ t ≤ k, we obtain

X̃k+1
i,: = Pθk,fηk

(
−Bi,:S̃:,S(X̃k

S,: − X̃∗
S,:) + Bi,:Z̃

)
= P̂θk,fηk (‖v‖2)

v

‖v‖2
, (52)

where v = −Bi,:S̃:,S(X̃k
S,: −X∗

S,:) + Bi,:Z̃. According to (50) and (11), we obtain X̃k+1
i,: =

0,∀ i /∈ S. By induction, we complete the proof.

2) Convergence analysis: Firstly, we analyze the convergence when βk = 0. When βk = 0 and

k ≤ K0, ALPGM-MM reduces to ALPGM. By the definition of multivariate proximal operator,

for ∀ i ∈ S, we have

X̃k+1
i,: = Pθk,fηk

(
X̃k

i,: −Bi,:S̃:,S(X̃k
S,: − X̃∗

S,:) + Bi,:Z̃ + βk(X̃
k
i,: − X̃k−1

i,:)
)

=arg min
Ũi,:

1

2
‖Ũi,:−(X̃k

i,:−Bi,:S̃:,S(X̃k
S,:−X̃∗

S,:)+Bi,:Z̃+βk(X̃
k
i,: − X̃k−1

i,:))‖22 + θkgηk(‖Ũi,:‖2).

(53)

According to the optimality condition, we have

0 ∈ X̃k+1
i,: −

(
X̃k

i,: −Bi,:S̃:,S(X̃k
S,: − X̃∗

S,:) + Bi,:Z̃ + βk(X̃
k
i,: − X̃k−1

i,:)
)

+ θk∂gηk(‖X̃k+1
i,: ‖2),

(54)

where ∂gηk(‖X̃k+1
i,: ‖2) is the subgradient of gηk(‖X̃k+1

i,: ‖2).

Recalling the definition of gη(·), we have

gηk(‖X̃k+1
i,: ‖2) =

(
‖X̃k+1

i,: ‖2 − ηk‖X̃k+1
i,: ‖22

)
1‖X̃k+1

i,: ‖2≤
1

2ηk

(‖X̃k+1
i,: ‖2)

+

(
1

4ηk

)
1‖X̃k+1

i,: ‖2>
1

2ηk

(‖X̃k+1
i,: ‖2). (55)

One can easily check that

∂gηk(‖X̃k+1
i,: ‖2) =

(
∂‖X̃k+1

i,: ‖2 − 2ηkX̃
k+1
i,:

)
1‖X̃k+1

i,: ‖2≤
1

2ηk

, (56)

23

where

∂‖X̃k+1
i,: ‖2 =


X̃k+1

i,:

‖X̃k+1
i,: ‖2

, if X̃k+1
i,: 6= 0,

{h ∈ R1×M |‖h‖2 ≤ 1}, otherwise.

(57)

Hence, we obtain

‖∂gηk(‖X̃k+1
i,: ‖2)‖22

=

(
‖h‖22

)
1‖X̃k+1

i,: ‖2=0(‖X̃
k+1
i,: ‖2) +

(∥∥∥∥ X̃k+1
i,:

‖X̃k+1
i,: ‖2

− 2ηkX̃
k+1
i,:

∥∥∥∥2
2

)
10<‖X̃k+1

i,: ‖2≤
1

2ηk

(‖X̃k+1
i,: ‖2)

≤ 1‖X̃k+1
i,: ‖2=0(‖X̃

k+1
i,: ‖2) + 10<‖X̃k+1

i,: ‖2≤
1

2ηk

(‖X̃k+1
i,: ‖2) = 1. (58)

From (54), we have

X̃k+1
i,: − X̃∗

i,: = X̃k
i,: − X̃∗

i,: −Bi,:S̃:,S(X̃k
S,: − X̃∗

S,:) + Bi,:Z̃ − θk∂gηk(‖X̃k+1
i,: ‖2)

= −
∑

j∈S, j 6=i

Bi,:S̃:,j(X̃
k
j,: − X̃∗

j,:) + Bi,:Z̃ − θk∂gηk(‖X̃k+1
i,: ‖2), (59)

where the last equality follows from the constraint (DTD)i,i = Bi,:S̃:,i = 1.

We take norm on both sides of (59) and obtain

‖X̃k+1
i,: − X̃∗

i,:‖2 ≤
∑

j∈S, j 6=i

|Bi,:S̃:,j|‖X̃k
j,: − X̃∗

j,:‖2 + ‖Bi,:Z̃‖2 + θk‖∂gηk(‖X̃k+1
i,: ‖2)‖2

≤ φ
∑

j∈S, j 6=i

‖X̃k
j,: − X̃∗

j,:‖2 + ‖Bi,:Z̃‖2 + θk. (60)

Due to the no-false-positive property, we obtain ‖X̃k+1 − X̃∗‖2,1 = ‖X̃k+1
S,: − X̃∗

S,:‖2,1 and

‖X̃k+1 − X̃∗‖2,1 ≤ φ(|S| − 1)‖X̃k − X̃∗‖2,1 + µBε+ |S|θk. (61)

By taking supremum on both sides of inequality (61), we obtain

sup
(X̃∗,Z̃)∈X (µx,µx,s,ε)

‖X̃k+1 − X̃∗‖2,1 ≤ φ(s− 1) sup
(X̃∗,Z̃)∈X (µx,µx,s,ε)

‖X̃k − X̃∗‖2,1 + µBε+ sθk.

(62)

By plugging the definition of θk into (62), we obtain

sup
(X̃∗,Z̃)∈X (µx,µx,s,ε)

‖X̃k+1 − X̃∗‖2,1

≤φ(s− 1) sup
(X̃∗,Z̃)∈X (µx,µx,s,ε)

‖X̃k − X̃∗‖2,1+µBε+φs sup
(X̃∗,Z̃)∈X (µx,µx,s,ε)

‖X̃k − X̃∗‖2,1 + sµBε

24

= (2φs− φ) sup
(X̃∗,Z̃)∈X (µx,µx,s,ε)

‖X̃k − X̃∗‖2,1 + (1 + s)µBε. (63)

We denote ek = sup(X̃∗,Z̃)∈X (µx,µx,s,ε)
‖X̃k − X̃∗‖2,1. If (2s− 1)φ < 1, we obtain

ek+1 ≤ (cφs)e
k + (1 + s)µBε

≤ (cφs)
k+1e0 +

(k∑
t=0

(cφs)
t

)
(1 + s)µBε

≤ (cφs)
k+1e0 +

(1 + s)µBε

1− cφs
. (64)

As X̃0 = 0, we obtain

e0 = sup
(X̃∗,Z̃)∈X (µx,µx,s,ε)

‖X̃∗‖2,1 ≤ sµx ≤ C0. (65)

Since ‖X‖F ≤ ‖X‖2,1, we conclude with

‖X̃k − X̃∗‖F ≤ C0(cφs)
k +

(1 + s)µBε

1− cφs
, ∀ k ≤ K0 + 1. (66)

Secondly, we analyze the convergence when βk = β̂. We define X̄S,: = X̃∗
S,: + δX̃S,:, where

δX̃S,: = (BS,:S̃:,S)−1BS,:Z̃. Then, we obtain

‖(BS,:S̃:,S)−1‖F
(a)

≤
√
|S|‖(BS,:S̃:,S)−1‖2 =

√
|S|

σmin(BS,:S̃:,S)

(b)

≤
√
|S|

1 + φ− φ|S|
≤

√
s

1 + φ− φs
,

(67)

where (a) is due to ‖A‖2F =
∑n

i=1 σ
2
i (A) ≤ nσ2

max(A) = n‖A‖22 with σi(A) denoting the

singular value of the matrix A ∈ Rn×n, and (b) follows by Gershgorin circle theorem [Chapter

7] [44]. Hence, we obtain

‖δX̃S,:‖F ≤ ‖(BS,:S̃:,S)−1‖F‖BS,:Z̃‖F ≤
√
sµBε

1 + φ− φs
. (68)

From (54), for k ≥ K̃0 + 1, we have

X̃k+1
S,: = X̃k

S,: −BS,:S̃:,S(X̃k
S,: − X̄S,:) + βk(X̃

k
S,: − X̃k−1

S,:)− θk∂gηk(‖X̃k+1
S,: ‖2), (69)

where ∂gηk(‖X̃k+1
2N,:‖2) is defined as

∂gηk(‖X̃k+1
2N,:‖2) =

[
∂gηk(‖X̃k+1

1,: ‖2)T, . . . , ∂gηk(‖X̃k+1
2N,:‖2)

T
]T

. (70)

By substracting X̄S,: from both sides of (69), we obtain

X̃k+1
S,: − X̄S,: =

(
(1 + βk)IS −BS,:S̃:,S

)
(X̃k

S,: − X̄S,:)−βk(X̃k−1
S,: −X̄S,:)− θk∂gηk(‖X̃k+1

S,: ‖2).

(71)

25

By plugging βk = β̂ with k ≥ K0 + 1 into (71), we obtainX̃k+1
S,: − X̄S,:

X̃k
S,: − X̄S,:


︸ ︷︷ ︸

zk

=

 (1 + β̂)IS −BS,:S̃:,S −β̂IS
IS 0


︸ ︷︷ ︸

M

 X̃k
S,: − X̄S,:

X̃k−1
S,: − X̄S,:


︸ ︷︷ ︸

zk−1

−θk

∂gηk(‖X̃k+1
S,: ‖2)

0

 .
(72)

There exist a nonsingular matrix T ∈ C2|S|×2|S| and a diagonal matrix ΛM ∈ C2|S|×2|S| such

that matrix M can be factorized as M = TΛMT−1. The matrices T and ΛM satisfy

‖ΛM‖F =

√
2|S|β̂ ≤

√
2sβ̂, (73)

‖T ‖F =

√
|S|(2 + 2β̂) ≤

√
2s(1 + β̂), (74)

‖T−1‖F ≤

√
|S|(2 + 2β̂)

4β̂ − (β̂ + φs− φ)2
≤

√
2s(1 + β̂)

4β̂ − (β̂ + φs− φ)2
. (75)

The proof follows the idea in [31] with some modifications according to the problem that we

consider.

Before we estimate the recovery error ‖X̃k+1−X̃∗‖F , we use induction to prove ∂gηt(‖X̃ t+1
S,: ‖2)

= 0 for all t satisfying K0 ≤ t ≤ k (k ≥ K0).

(i) We prove that ∂gηK0
(‖X̃K0+1

S,: ‖2) = 0. According to the definition of K0 (45), it holds

that C0(cφs)
k < µx/6 for ∀ k ≥ K0. Based on the assumption of ε (42), it follows that (1 +

s)µBε/(1− cφs) ≤ µx/6. According to (66), when k = K0 + 1, for ∀ i ∈ S, we have

‖X̃K0+1
i,: − X̃∗

i,:‖2 ≤ ‖X̃K0+1 − X̃∗‖F ≤ C0(cφs)
K0+1 +

(1 + s)µBε

1− cφs
<
µx

3
< µx. (76)

Then, we prove that ‖X̃K0+1
i,: ‖2 > 0,∀ i ∈ S. If ‖X̃K0+1

i,: ‖2 = 0, then we have X̃K0+1
i,j =

0,∀j ∈ [M]. Hence, we obtain ‖X̃K0+1
i,: − X̃∗

i,:‖2 = ‖X̃∗
i,:‖2 < µx, which contradicts with the

assumption ‖X̃∗
i,:‖2 ≥ µx > 0. Therefore, we obtain ‖X̃K0+1

i,: ‖2 > 0.

The definition of ηk in (47) implies that ηk = 1
2θk

when k ≥ K0. Hence, the univariate proximal

operator P̂θk,fηk (·) becomes a hard thresholding function, i.e.,

P̂θk,fηk (x) =

0, if |x| ≤ θk,

x, if |x| > θk.
(77)

With (59), (77), and ‖X̃K0+1
i,: ‖2 > 0, we obtain ∂gηK0

(‖X̃K0+1
i,: ‖2) = 0. Hence, we prove that

∂gηK0
(‖X̃K0+1

S,: ‖2) = 0.

26

(ii) We assume that ∂gηt(‖X̃ t+1
S,: ‖2) = 0 for K0 ≤ t ≤ k. According to (72) and M =

TΛMT−1, we have

zt = TΛMT−1zt−1, K0 + 1 ≤ t ≤ k. (78)

Then, we obtain

zk = T (ΛM)k−K0T−1zK0 . (79)

By taking norm on both sides of (79), we have

‖zk‖F ≤ ‖T ‖F‖ΛM‖k−K0
F ‖T−1‖F‖zK0‖F ≤

2s(1 + β̂)‖zK0‖F√
4β̂ − (β̂ + φs− φ)2

(√
2sβ̂

)k−K0

. (80)

Next, we bound ‖zK0‖F . Based on (71), βK0 = 0 and ∂gηK0
(‖X̃K0+1

S,: ‖2) = 0, we have

X̃K0+1
S,: − X̄S,: = (IS −BS,:S̃:,S)(X̃K0

S,: − X̄S,:). (81)

Due to the definition of φ, we know that the elements of matrix BS,:S̃:,S except the diagonal

elements are not larger than φ, and the diagonal elements are zero. Thus, we have ‖IS −

BS,:S̃:,S‖F ≤
√
|S|(|S| − 1)φ ≤

√
s(s− 1)φ.

By taking norm on both sides of (81), we have

‖X̃K0+1
S,: − X̄S,:‖F ≤ ‖IS −BS,:S̃:,S‖F‖X̃K0

S,: − X̄S,:‖F

≤
√
s(s− 1)φ‖X̃K0

S,: − X̄S,:‖F

≤ (2s− 1)φ‖X̃K0
S,: − X̄S,:‖F ≤ ‖X̃K0

S,: − X̄S,:‖F . (82)

Recalling that zK0 = [(X̃K0+1
S,: − X̄S,:)

T, (X̃K0
S,: − X̄S,:)

T]T, we have

‖zK0‖F ≤ 2‖X̃K0
S,: − X̄S,:‖F ≤ 2‖X̃K0

S,: − X̃∗
S,:‖F + 2‖δX̃S,:‖F

≤ 2
√
sµx(cφs)

K0 +
2(1 + s)µBε

1− cφs
+

2
√
sµB

1 + φ− φs
ε

≤ 2
√
sµx(cφs)

K0 +
2(1 + s+

√
s)µBε

1− cφs

≤ 2
√
sµx(cφs)

K0 + 2
√
sµx(cφs)

K0 = 4
√
sµx(cφs)

K0 , (83)

where the last inequality follows from (42).

Combining with (80), we obtain

‖X̃k+1
S,: − X̄S,:‖F ≤‖zk‖F ≤

8µxs
√
s(1 + β̂)(cφs)

K0√
4β̂ − (β̂ + φs− φ)2

(√
2sβ̂

)k−K0

≤C0(cφs)
K0+1

(√
2sβ̂

)k−K0

.

(84)

27

Subsequently, by defining X̂k+1
S,: = X̃k+1

S,: −BS,:S̃:,S(X̃k+1
S,: − X̄S,:) + βk+1(X̃

k+1
S,: − X̃k

S,:) and

ẑk = [(X̂k+1
S,: − X̄S,:)

T, (X̃k+1
S,: − X̄S,:)

T]T, we have ẑk = Mzk and X̃k+2
S,: = Pθk+1,fηk+1

(X̂k+1
S,:).

Following the same idea of proving (84), we obtain

‖X̂k+1
S,: − X̄S,:‖F ≤ ‖ẑk‖F ≤ C0(cφs)

K0+1

(√
2sβ̂

)k+1−K0

. (85)

Since the inequality
√

2sβ̂ = 1−
√

1− cφs ≤ cφs holds when cφs < 1, we have

‖X̂k+1
S,: − X̄S,:‖F ≤ C0(cφs)

k+2 < µx/6. (86)

Recalling that X̄S,: = X̃∗
S,: + δX̃S,:, for ∀ i ∈ S, we obtain

‖X̂k+1
i,: − X̃∗

i,:‖2 ≤ ‖X̂k+1
S,: − X̃∗

S,:‖F ≤ ‖X̂k+1
S,: − X̄S,:‖F + ‖δX̃S,:‖F < µx/6 + µx/6 = µx/3.

(87)

Hence, for ∀ i ∈ S, we have

‖X̂k+1
i,: ‖2 ≥ ‖X̃∗

i,:‖2 − ‖X̂k+1
i,: − X̃∗

i,:‖2 > µx − µx/3 = 2µx/3. (88)

With (68), we obtain

‖δX̃S,:‖F ≤
√
sµBε

1 + φ− φs
≤

√
sµBε

1 + φ− 2φs
≤
µx

6

√
s

s+ 1
≤
µx

6
. (89)

By the definition of β̂, we have

‖X̃k+1
i,: − X̄∗

i,:‖2 ≤ ‖X̃k+1
S,: − X̄S,:‖F ≤ C0(cφs)

K0+1

(√
2sβ̂

)k−K0

≤ C0(cφs)
k+1 ≤ µx/6.

(90)

Thus, we obtain

‖X̃k+1
i,: − X̃∗

i,:‖2 ≤ ‖X̃k+1
i,: − X̄∗

i,:‖2 + ‖δX̃k+1
i,: ‖2 ≤ µx/6 + µx/6 = µx/3. (91)

On the other hand, according to the definition of θk, we have

θk+1 = φ sup
(X̃∗,Z̃)∈X (µx,µx,s,ε)

‖X̃k+1 − X̃∗‖2,1 + µBε

= φ sup
(X̃∗,Z̃)∈X (µx,µx,s,ε)

|S|∑
i=1

‖X̃k+1
i,: − X̃∗

i,:‖2 + µBε

≤ φsµx/3 + µBε ≤ µx/3 + µx/3 = 2µx/3. (92)

28

Because of X̃k+2
S,: = Pθk+1,fηk+1

(X̂k+1
S,:) and the inequality ‖X̂k+1

i,: ‖2 > 2µx/3 ≥ θk+1, we

obtain X̃k+2
i,: = X̂k+1

i,: ,∀ i ∈ S. Thus, we prove that ‖X̃k+2
i,: ‖2 > 0. Finally, we can obtain

∂gηk+1
(‖X̃k+2

S,: ‖2) = 0.

We have proved ∂gηt(‖X̃ t+1
S,: ‖2) = 0 for all t satisfying K0 ≤ t ≤ k (k ≥ K0) by induction.

According to (84), we have

‖X̃k+1 − X̃∗‖F ≤ ‖X̃k+1
S,: − X̄S,:‖F + ‖δX̃S,:‖F

≤ C0(cφs)
K0+1

(
1−

√
1− cφs

)k−K0

+
sµB

1 + φ− φs
ε, ∀ k ≥ K0 + 1. (93)

REFERENCES

[1] Y. Zou, Y. Zhou, Y. Shi, and X. Chen, “Learning proximal operator methods for massive connectivity in IoT networks,”

in Proc. IEEE Global Commun. Conf. (Globecom), Dec. 2021.

[2] S. K. Sharma and X. Wang, “Toward massive machine type communications in ultra-dense cellular IoT networks: Current

issues and machine learning-assisted solutions,” IEEE Commun. Surveys Tuts., vol. 22, no. 1, pp. 426–471, 2019.

[3] L. Liu, E. G. Larsson, W. Yu, P. Popovski, C. Stefanovic, and E. De Carvalho, “Sparse signal processing for grant-free

massive connectivity: A future paradigm for random access protocols in the Internet of Things,” IEEE Signal Process.

Mag., vol. 35, no. 5, pp. 88–99, Sept. 2018.

[4] Y. C. Eldar and G. Kutyniok, Compressed sensing: theory and applications. Cambridge university press, 2012.

[5] Y. C. Eldar and M. Mishali, “Robust recovery of signals from a structured union of subspaces,” IEEE Trans. Inf. Theory,

vol. 55, no. 11, pp. 5302–5316, 2009.

[6] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: Uncertainty relations and efficient recovery,” IEEE

Trans. Signal Process., vol. 58, no. 6, pp. 3042–3054, 2010.

[7] Z. Qin, K. Scheinberg, and D. Goldfarb, “Efficient block-coordinate descent algorithms for the group LASSO,” Math,

Program. Comput., vol. 5, no. 2, pp. 143–169, 2013.

[8] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped variables,” J. R. Stat. Soc. B, Statist,

Methodol., vol. 68, no. 1, pp. 49–67, 2006.

[9] T. Jiang, Y. Shi, J. Zhang, and K. B. Letaief, “Joint activity detection and channel estimation for IoT networks: Phase

transition and computation-estimation tradeoff,” IEEE Internet Things J., vol. 6, no. 4, pp. 6212–6225, Aug. 2018.

[10] X. Shao, X. Chen, and R. Jia, “A dimension reduction-based joint activity detection and channel estimation algorithm for

massive access,” IEEE Trans. Signal Process., vol. 68, pp. 420–435, 2019.

[11] X. Shao, X. Chen, C. Zhong, and Z. Zhang, “Exploiting simultaneous low-rank and sparsity in delay-angular domain for

millimeter-wave/terahertz wideband massive access,” IEEE Trans. Wireless Commun., vol. 21, no. 4, pp. 2336–2351, Apr.

2022.

[12] Q. He, T. Q. Quek, Z. Chen, Q. Zhang, and S. Li, “Compressive channel estimation and multi-user detection in C-RAN

with low-complexity methods,” IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 3931–3944, Jun. 2018.

[13] L. Liu and W. Yu, “Massive connectivity with massive MIMO—part I: Device activity detection and channel estimation,”

IEEE Trans. Signal Process., vol. 66, no. 11, pp. 2933–2946, Jun. 2018.

[14] Z. Chen, F. Sohrabi, and W. Yu, “Multi-cell sparse activity detection for massive random access: Massive MIMO versus

cooperative MIMO,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4060–4074, Aug. 2019.

29

[15] S. Xia, Y. Shi, Y. Zhou, and X. Yuan, “Reconfigurable intelligent surface for massive connectivity: Joint activity detection

and channel estimation,” IEEE Trans. Signal Process., vol. 69, pp. 5693–5707, 2021.

[16] S. Rangan, P. Schniter, and A. K. Fletcher, “Vector approximate message passing,” IEEE Trans. Inf. Theory, vol. 65, no. 10,

pp. 6664–6684, 2019.

[17] S. Rangan, P. Schniter, A. K. Fletcher, and S. Sarkar, “On the convergence of approximate message passing with arbitrary

matrices,” IEEE Trans. Inf. Theory, vol. 65, no. 9, pp. 5339–5351, Sept. 2019.

[18] Y. C. Eldar, A. Goldsmith, D. Gündüz, and H. V. Poor, Machine Learning and Wireless Communications. Cambridge

University Press, 2022.

[19] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable, efficient deep learning for signal and image

processing,” IEEE Signal Process. Mag., vol. 38, no. 2, pp. 18–44, Mar. 2021.

[20] J. Scarlett, R. Heckel, M. R. Rodrigues, P. Hand, and Y. C. Eldar, “Theoretical perspectives on deep learning methods in

inverse problems,” 2022. [Online]. Available: https://arxiv.org/abs/2206.14373

[21] K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in Proc. Int. Conf. Mach. Learn. (ICML), 2010,

pp. 399–406.

[22] M. Borgerding, P. Schniter, and S. Rangan, “AMP-inspired deep networks for sparse linear inverse problems,” IEEE Trans.

Signal Process., vol. 65, no. 16, pp. 4293–4308, Aug. 2017.

[23] X. Chen, J. Liu, Z. Wang, and W. Yin, “Theoretical linear convergence of unfolded ISTA and its practical weights and

thresholds,” in Proc. Neural Inf. Process. Syst. (NeurIPS), 2018, pp. 9061–9071.

[24] J. Liu, X. Chen, Z. Wang, and W. Yin, “ALISTA: Analytic weights are as good as learned weights in LISTA,” in Proc.

Int. Conf. on Learn. Rep. (ICLR), 2019.

[25] Y. Shi, H. Choi, Y. Shi, and Y. Zhou, “Algorithm unrolling for massive access via deep neural network with theoretical

guarantee,” IEEE Trans. Wireless Commun., Feb. 2021.

[26] Y. Cui, S. Li, and W. Zhang, “Jointly sparse signal recovery and support recovery via deep learning with applications in

MIMO-based grant-free random access,” IEEE J. Sel. Areas Commun., vol. 39, no. 3, pp. 788–803, Mar. 2020.

[27] J. Johnston and X. Wang, “Model-based deep learning for joint activity detection and channel estimation in massive and

sporadic connectivity,” IEEE Trans. Wireless Commun., 2022.

[28] W. Zhu, M. Tao, X. Yuan, and Y. Guan, “Deep-learned approximate message passing for asynchronous massive

connectivity,” IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 5434–5448, Aug. 2021.

[29] C. Yang, Y. Gu, B. Chen, H. Ma, and H. C. So, “Learning proximal operator methods for nonconvex sparse recovery with

theoretical guarantee,” IEEE Trans. Signal Process., vol. 68, pp. 5244–5259, 2020.

[30] X. Shao, X. Chen, Y. Qiang, C. Zhong, and Z. Zhang, “Feature-aided adaptive-tuning deep learning for massive device

detection,” IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 1899–1914, Jul. 2021.

[31] X. Chen, J. Liu, Z. Wang, and W. Yin, “Hyperparameter tuning is all you need for LISTA,” Proc. Neural Inf. Process.

Syst. (NeurIPS), vol. 34, pp. 11 678–11 689, 2021.

[32] Z. Chen, F. Sohrabi, and W. Yu, “Sparse activity detection for massive connectivity,” IEEE Trans. Signal Process., vol. 66,

no. 7, pp. 1890–1904, Apr. 2018.

[33] Y. Jiang, J. Su, Y. Shi, and B. Houska, “Distributed optimization for massive connectivity,” IEEE Wireless Commun. Lett.,

vol. 9, no. 9, pp. 1412–1416, 2020.

[34] C.-H. Zhang et al., “Nearly unbiased variable selection under minimax concave penalty,” Ann. Stat., vol. 38, no. 2, pp.

894–942, 2010.

[35] P. Breheny and J. Huang, “Group descent algorithms for nonconvex penalized linear and logistic regression models with

grouped predictors,” Stat. Comput., vol. 25, no. 2, pp. 173–187, 2015.

https://arxiv.org/abs/2206.14373

30

[36] N. Parikh, S. Boyd et al., “Proximal algorithms,” Foundations and trends® in Optimization, vol. 1, no. 3, pp. 127–239,

2014.

[37] A. Beck, First-order methods in optimization. SIAM, 2017.

[38] P. Breheny and J. Huang, “Coordinate descent algorithms for nonconvex penalized regression, with applications to biological

feature selection,” The annals of applied statistics, vol. 5, no. 1, p. 232, 2011.

[39] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods,” Ussr computational mathematics and

mathematical physics, vol. 4, no. 5, pp. 1–17, 1964.

[40] C. Lu, H. Li, and Z. Lin, “Optimized projections for compressed sensing via direct mutual coherence minimization,” Signal

Process., vol. 151, pp. 45–55, 2018.

[41] D. Chu, “Polyphase codes with good periodic correlation properties (corresp.),” IEEE Trans. Inf. Theory, vol. 18, no. 4,

pp. 531–532, Jul. 1972.

[42] J. H. I. de Souza and T. Abrão, “Deep learning-based activity detection for grant-free random access,” IEEE Syst. J., 2022.

[43] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imaging

Sci., vol. 2, no. 1, pp. 183–202, 2009.

[44] G. H. Golub and C. F. Van Loan, Matrix computations. JHU press, 2013.

	I Introduction
	II System Model and Problem Formulation
	II-A System Model
	II-B Problem Formulation
	II-C Conventional Proximal Gradient Method

	III Proposed Unfolding Framework
	III-A ALPGM
	III-B ALPGM-MM
	III-C LPGM-AT
	III-D Training and Testing Strategies
	III-D1 ALPGM and ALPGM-MM
	III-D2 LPGM-AT

	IV Simulation Results
	IV-A Performance Comparison
	IV-B Convergence Performance
	IV-C Performance Comparison Under Different Settings
	IV-D Adaptation Comparison
	IV-E Computation Complexity Comparison

	V Conclusion
	Appendix
	A Proof of Theorem 1
	A1 Proof of no-false-positive property
	A2 Convergence analysis

	References

