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Real-Time Model-Based Quantitative
Ultrasound and Radar
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Abstract—Ultrasound and radar signals are highly beneficial
for medical imaging as they are non-invasive and non-ionizing.
Traditional imaging techniques have limitations in terms of con-
trast and physical interpretation. Quantitative medical imaging can
display various physical properties such as speed of sound, density,
conductivity, and relative permittivity. This makes it useful for a
wider range of applications, including improving cancer detection,
diagnosing fatty liver, and fast stroke imaging. However, current
quantitative imaging techniques that estimate physical properties
from received signals, such as Full Waveform Inversion, are time-
consuming and tend to converge to local minima, making them
unsuitable for medical imaging. To address these challenges, we
propose a neural network based on the physical model of wave prop-
agation, which defines the relationship between the received signals
and physical properties. Our network can reconstruct multiple
physical properties in less than one second for complex and realistic
scenarios, using data from only eight elements. We demonstrate
the effectiveness of our approach for both radar and ultrasound
signals.

Index Terms—Deep learning, full waveform inversion, medical
imaging, model-based, quantitative imaging, radar, ultrasound.

I. INTRODUCTION

M EDICAL imaging constitutes a non-invasive method to
see inside the human body and improve diagnoses, treat-

ment and monitoring of diverse medical conditions. Ultrasound
(US) and radar are two primary signals for this purpose allowing
non-ionizing, non-invasive, and accessible medical imaging [1].
The image is created based on the received signals, referred to as
Channel Data (CD), created from reflections from the medium
by the transmitted US or radar signals. Standard imaging is based
on beamforming algorithms such as Delay-And-Sum (DAS)
beamforming that applies a weighted sum over the receiving
signals, after an appropriate delay based on the receiving array
geometry [2], [3]. These methods often have limited resolution
and contrast, and lack physical interpretation.

Quantitative imaging displays different physical properties of
each pixel of the scanned medium. For instance, since malignant
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tumor cells have higher Speed of Sound (SoS) values than benign
cells [4], a quantitative image of the SoS values of the scanned
medium may allow better cancer detection. Additionally, density
quantitative imaging is beneficial for fatty liver disease treatment
as it allows better quantification of the fat percentage of the
liver [5]. Previous studies [6], [7], [8] also highlighted the
importance of quantitative imaging of the brain, specifically for
cost-effective and fast stroke imaging and classification.

In order to achieve quantitative imaging, a non-linear In-
verse Scattering Problem (ISP) needs to be solved which is
the problem of determining the characteristics of an object,
based on data that is scattered from it. There are known iterative
optimization methods, based on gradient descent, such as the
Full Waveform Inversion (FWI) and the Nonlinear Waveform
Inversion (NWI) for solving the ISP [9], [10]. However, these
techniques are time-consuming and tend to converge to local
minima [11]. In addition, these algorithms often diverge for
nonhomogeneous background of the scanned medium (large
disparity in the physical values), making them unsuitable for
medical imaging [12].

Recently deep learning methods were suggested for solving
the ISP to achieve real-time results and avoid converging to local
minima [1]. To succeed in learning the complex relation between
the CD and the physical properties mappings, it was suggested
to use model based deep learning approaches which combine
a known model in the training or network design [13], [14].
Model-based approaches are known to lead to more accurate
networks while requiring fewer learned parameters [15], [16].
To address the ISP, we can incorporate the known model of the
wave propagation equation, which calculates the CD given the
physical properties of the medium. However, previous works
have several limitations which have precluded their adoption in
real-time systems, as we explain in the next subsection. Here, we
present a neural network based on the physical model of wave
propagation that reconstructs in real-time physical properties
mappings from either radar or US signals, using only eight
elements and for diverse transmission setups.

A. Literature Review

Various model-based deep-learning approaches have been
used to solve the ISP and can be classified into three categories
based on their design [13]. The first category consists of net-
works that enhance the reconstructed images produced by con-
ventional physical methods [17]. The second involves networks
that impose physics constraints, such as in the training loss [18],
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[19]. The third category comprises networks that are designed
based on the physics model itself. This type of network benefits
from the known physics model, as the network only needs to
learn the unknown relationships between physical properties
and the CD, rather than learning the physics model from scratch.
Examples of these networks include the method proposed in [20]
which uses a U-Net to reconstruct SoS maps for seismic data.
The network’s input in each layer includes the SoS estimation
map and a set of gradient calculations for each source. However,
this approach tends to lead to errors due to implementation
approximations of the multiple gradient calculations and incurs
long computational time. Furthermore, the network needs 200
elements for the received CD. In [21] the authors use a CNN to
learn the proximal operator in the Primal-Dual Hybrid Gradient
(PFHG) method, and a U-Net based frequency-to-image domain
network to replace the adjoint operator calculations. However,
the network is based on the paraxial approximation which as-
sumes that the elements are around the object in a circle, and
therefore are not suitable for different transmission setups such
as a linear probe. Transmission setups of elements in different
sides or surrounding the object are assumed in most of the works
for radar or US signals, which created symmetries in the received
signals and simplified the reconstruction process [8], [19], [22],
[23], [24], [25], [26], [27].

Other techniques for solving the ISP involve defining the
reconstructed physical property as a learned property in a wave
propagation model, such as SWINet for the reconstruction of
SoS for seismic data [28] or in [29] for relative permittivity.
These methods may be less stable due to the dependency on
the Partial Differential Equation (PDE) in the backpropagation
calculations and require a significant number of elements (for
instance, 384 receivers’ data for SWINet). Moreover, these
algorithms need to be trained for each example, making them
unsuitable for real-time imaging.

For radar signals, there are works that used the Supervised De-
scent Method (SDM) to learn a set of descent directions instead
of computing the Fréchet derivative and gradients for each itera-
tion [27]. However, these techniques suffer from relatively slow
prediction due to multiple calculations of the forward model in
the prediction. Other approaches unroll and learn simultaneously
the forward and inverse models [26]. However, the background
medium (the Green’s function) needs to be known a priori, and
for medical imaging, the properties are not known precisely in
advance.

Most of previous methods reconstruct only one property, such
as SoS for US or relative permittivity for radar. Reconstruction
of multiple properties is challenging due to the trade-off effects
between different parameters and different orders of amplitudes
in the wave-field, which make the inversion ill-conditioned [24].
In addition, some model-based networks were based on a model
in the network design which relates only to a specific property
such as SoS in [30], where the authors use the coherency
measure which needs to be calculated for multiple windows and
for each possible discrete SoS. Many techniques also assume
only one transmission, which limits the input data and network
performance. In the radar domain, previous approaches mainly
used a time-harmonic transmission setup, which is not suitable
for pulse transmission setups as used in US imaging [8], [26],

[27]. Finally, previous methods were typically tested on simple
synthetic tests such as MNIST or various circular shapes [8],
and not on realistic clinical settings, or needed specific hard-
ware [31].

In summary, prior studies utilizing model-based deep learning
methods to address the ISP in medical imaging are not applica-
ble to broader transmission setups, such as non-time-harmonic
transmissions or setups with elements that do not encompass the
objects, such as linear probe setups. Moreover, these previous ap-
proaches typically use a large number of elements, often dozens
or hundreds, and mainly reconstruct only a single property.

B. Contribution

We introduce MB-QRUS, which stands for Model-Based
Quantitative Radar and US, a model-based deep learning method
for real-time reconstruction of multiple physical properties map-
pings from either US or radar signals. Our method is based on
an unfolding mechanism [16] of FWI with learned gradients
according to a U-Net based block. We use the residuals between
the measured CD and the predicted CD, according to physical
property estimation and the physical model of wave propagation,
to learn the gradients which are often used to update the physical
properties estimation. We also introduce a new time-domain and
tensor representation of the input measured CD which captures
the spatial representation of the CD. We compare our network
results to FWI [9]. To the best of our knowledge, this is the
only available method in the literature currently that allows
recovering multiple quantitative physical properties mapping,
for general transmission setups in US and radar.

Our approach leads to good reconstruction of two physical
properties with lower NRMSE (56% for US, 67% for radar),
higher SSIM (7.5% for US, 11% for radar), and higher PSNR
(7.1% for 433% for radar) compared to FWI. It means that the
network succeeds in reconstructing the pixels values, besides the
shape and positions of the objects. Moreover, our algorithm uses
data from only eight elements in contrast to previous approaches
which need dozens or hundreds of elements. Our network pro-
duces real-time results in less than one second for complex
scenarios including noise in the input CD or nonhomogenous
medium background, and realistic data. Finally, our approach
allows using diverse transmission setups such as elements that
surround the object or a linear probe.

The rest of the paper is organized as follows. Section II formu-
lates the ISP we aim to solve and presents an iterative algorithm
based on FWI which is used for comparison. In Section III we
present our deep learning approach, based on the wave prop-
agation model, to achieve real-time reconstruction of multiple
physical properties from either US or radar signals. Section IV
demonstrates the performance of our method, compared to FWI,
for both radar and US signals. Discussion, future directions, and
conclusions are presented in Section V.

II. PROBLEM FORMULATION AND BACKGROUND

A. Problem Formulation

We aim to reconstruct multiple physical properties of a
scanned medium from radar or US signals. The transmission
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Fig. 1. Illustration of the grid setup and data creation. (a)–(c) show an example
of the grid setup of a brain with a stroke and 8 antennas surrounding the brain,
while (d)–(f) show an example of a US setup with a linear probe and two circles
with different physical properties. (b) and (c) demonstrate the wave propagation
from one antenna over the grid for two successive time samples, similarly to
(e)–(f) for US. (g) displays the creation process of the data, when the CD is
created from the simulated physical properties, a known pulse (that defines
S(t, x, z)), and utilizing the wave propagation (3) and (5).

setup includes nc elements in a known position (antennas for
the radar case and piezoelectric elements for the US case), and
np known non-interfering pulses, see Fig. 1(a)–(f). We focus
on a setup where each element transmits one pulse and the rest
of the elements receive the scattered field. The next pulse is
transmitted after a time interval of T nano-seconds, where T is
determined to ensure that the pulse traverses the grid and returns
to the elements before transmitting the next pulse. Specifically,

T =
2L
C

, (1)

whereL is the grid length andC is the average speed of sound of
the medium for US signals, or the speed of light for radar signals.
All the pulses transmission from each element were identical.
This setup is suitable for the transmission process in medical
imaging applications that employ radar or US technology [2],
[3].

The scattering field, denoted by u(t, x, z), changes in space
and time and is related to the physical properties of the scanned
medium by the wave propagation equation. For US, the wave
propagation equation is expressed as:

c20ρ0

(
∂

∂x

(
1
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∂u
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)
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∂
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(
1
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∂u
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+D2 u, (2)

where S(t, x, z) represents the source pulse, c0(x, z) is the SoS
of the medium, ρ0(x, z) is the density of the medium, and
D(x, z) is the artificial additional damping term to decrease the
needed size of the reconstructed space, called Perfectly Matched
Layers (PMLs) [32]. For brevity, in (2), we omitted the brackets
in S, c0, ρ0 and D.

To obtain a discrete version of (2) we use a discrete grid with
size nx × nz (Fig. 1(a), (d)) and a discrete form of the time
and spatial derivatives [9], [32]. The discrete-time derivative

is given by a weighted average of the past time samples, and
the discrete-spatial derivative is given by a convolution with
the Laplacian or gradient kernel. We denote U,S ∈ Rnx×nz×nt

as the discrete scattering field and source pulse, respectively,
where nt =

T
dt and dt is the inverse of the sampling rate. We

define, U [t] ∈ Rnx×nz as the discrete scattering field for the
t’th time step (similarlyS[t]). The discrete US wave propagation
equation, after organizing the equation such that the scattering
U [t] is dependent on the previous time steps, is given by
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. (3)

Here � is element-wise multiplication, * is the convolution
operator, ∇D is the discrete gradient filter, ∇2

D is the discrete
Laplacian filter,1 ∈ Rnx×nz is a matrix of all ones,2 ∈ Rnx×nz

is a matrix of all twos,Δ2
t ∈ Rnx×nz is a matrix with the value dt

for each entry,C,Q,D ∈ Rnx×nz are the discrete SoS, density,
and damping, respectively.

For radar signals, we get a similar expression with slight
changes due to the electromagnetic wave propagation instead
of sound waves:

∇2 u =
εr
c20

∂2 u

∂t2
+ σμ0

∂u

∂t
+ S, (4)

where εr(x, z) is the relative permittivity of the medium, σ(x, z)
is the conductivity of the medium, c0, and μ0 are the velocity
of light and the permeability of the medium (which are constant
over the grid), respectively. For brevity, in (4), we omitted the
brackets in S, u, c0, μ0, εr and σ.

The discrete version of (4), similar to the discretization of the
wave propagation equation for the US case, is given by:
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(5)

Here C ∈ Rnx×nz is a matrix consisting of the value co in each
entry, εr,σ ∈ Rnx×nz are the discrete relative permittivity and
conductivity, respectively.

We define the measured CD for the p’th transmission as
M [p] ∈ Rnt×nc which consists of nt time samples and nc

receiving channels. It is obtained by a linear mapping, from
the scattering field U using a mapping R̃ from the spatial signal
space to the CD space as follows:

M [p] = R̃U . (6)

This mapping can be used for each transmission to obtain the
measured CD M ∈ Rnp×nt×nc .
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Fig. 2. Inference time. The goal of the network is to reconstruct the physical
properties mapping from the CD signals.

Our goal is to reconstruct from the measured CD M, which
is related to the scattering field U according to (6), the physical
properties mappings θj ∈ Rnx×nz for j = 1, . . ., nm where nm

is the number of physical properties. In our case nm = 2 and
θj represent the SoS and density for the US case, or relative
permittivity and conductivity for the radar case, see Fig. 2.
We aim to design a neural network for this purpose with an
unfolding mechanism, that will learn the gradient directions in
FWI, based on predicted channel data according to the physical
model (3) or (5). Using this architecture we not only reconstruct
the location and shape of the scanned objects but also achieve
precise imaging of their physical properties values.

B. Full Waveform Inversion

Full Waveform Inversion (FWI) is an iterative optimization
algorithm based on gradient descent to solve the ISP and recon-
struct the physical properties mappings from the measured CD,
using knowledge of the wave propagation (3), (5). We denote
the predicted CD as M̂ = F ({θi}nm

i=1), where F (·) represents
the forward wave propagation (3) or (5), and θi ∈ Rnx×nz is
the i-th physical property. FWI (and similar algorithms such as
NWI [9]) try to minimize the loss between the predicted and
measured CD, given by:

L =
1

2
||M̂ −M ||22. (7)

The loss function in (7) depends on the predicted physical prop-
erties of the scanned medium. In some cases, a regularization
term is added to the loss function to improve its performance
resulting in:

L({θi}nm
i=1) =

1

2
||M − F ({θi}nm

i=1)||2 + λR({θi}nm
i=1). (8)

Here, {θi}nm
i=1 are the predicted physical properties, and

R({θi}nm
i=1) is the regularization with weight λ. For the reg-

ularization, some previous works used Sobel and Robert regu-
larization to ensure smooth objects [9], Total Variation [33], or
Tikhonov regularization [34]. See [12] for a review of different
regularizations used in FWI.

At each iteration, the FWI algorithm computes the derivatives
of the loss function with respect to the physical properties and
uses this information to update the estimation of the physical

properties. The derivative calculation can be done using methods
explained in [9].

FWI based approches are time consuming because of their
iterative nature and can take more than 20 minutes and up to
hours, depending on the grid size and the CD size. Additionally,
FWI algorithms tend to converge to local minima as a result
of the high dependency on the choice of the initial guess. The
methods also tend to diverge when applied on nonhomoge-
neous background, meaning when there is large disparity in the
physical properties pixels values θ. This phenomenon is due
to the use of the wave propagation PDE model in (8) which is
sensitive to small changes in the input physical properties [12],
[21]. Therefore, these techniques are generally not suitable for
medical imaging applications and are currently not implemented
in medical imaging systems.

III. MODEL-BASED QUANTITATIVE RADAR AND ULTRASOUND

We present MB-QRUS, a model-based deep learning method
to reconstruct multiple real-time physical properties mappings
from radar or US signals. Our network is designed to learn
the gradient ∂L

∂θi
based on the FWI loss (7). We denote G =

∂L
∂θi

∈ Rnm×nx×nz and learn it using an U-Net based block, as
in Fig. 3. Our network incorporates in its design the physical
model of wave propagation (3) to calculate a predicted CD
M̂ ∈ Rnp×nt×nc and uses the differences between the measured
and predicted CD, M − M̂ , as input to the U-Net block to
learn G. To calculate the predicted CD, a set of initial mappings
{θ0

j}nm
j=1 ∈ Rnx×nz fornm physical properties are given as input

to our network, as well as the measured CD. The initial guesses
were chosen, similarly to FWI initialization, to be the average
physical properties of the background medium, which is suitable
for medical applications.

By adopting this particular architecture, we replicate the func-
tionality of known optimization methods such as FWI. However,
rather than computing the gradient tensor for the loss during each
iteration, which entails calculating the difference M − M̂ , we
learn the tensor G related to this loss, enabling convergence in
fewer steps and with less data, and to a more accurate solution.

An additional novelty in our architecture is a spatial repre-
sentation of the CD tensor in the time domain, inspired by FWI.
We work with a three-dimensional CD, in contrast to a flattened
vector used in previous works, and we utilize the time domain
instead of using discrete multi-frequency data as in previous
works [8], [21], [26], [27]. This allows us to refer to the time
samples nt and receiving channels nc dimensions as spatial
dimensions in the convolution layers, whereas the transmission
dimension np is equivalent to the channels in the convolution
layers. The time and receiving channels represent information
from different pixels in the grid, therefore referring to them as
spatial dimensions enables us to benefit from known methods in
convolution networks for images, such as stride convolution for
learning the grid properties from the overall CD information.

The U-Net block for learning the tensor G is composed of
stride convolution, batch normalization, dropout layers, and skip
connection, each with unique benefits for processing CD for
medical imaging. The stride convolutions increase the receptive
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Fig. 3. An Example of MB-QRUS architecture for US case. The inputs to the network are initial guesses for the properties and the measured CD. The input to
the U-Net block is the CD differences and the output is the gradient tensor G. The output channels number after each convolution is presented.

field of the network, allowing it to have a global view of the
input. This enhances the network’s ability to learn the grid
properties from the overall CD information by analyzing data
from non-neighboring receiving channels and time samples.
Batch normalization is a powerful technique that addresses the
problem of exploding and vanishing gradients when training
networks that involve PDEs [35]. We used dropout layers with
0.5 probability to avoid overfitting which can occur when the
network learns the statistical noise of the training data. Skip
connections help the network learn from a global view while
preserving fine details and can also mitigate the problem of
vanishing gradients, making them beneficial for learning com-
plex relations between input CD and output physical properties
mappings.

The contracting and expansive parts of the U-Net use different
activation functions. Leaky ReLU activation is applied in the
contracting part to gradually reduce negative values, while ReLU
activation is used in the expansive part for the convolution layers.
The last convolution layer in the U-Net block has a 1× 1 kernel
to sum over the different transmission channels and output the
gradient tensorG for multiple physical properties. Additionally,
We focus on a square grid (nx = nz), and since nt > nx while
nc < nx, we first apply a bilinear interpolation rescaling oper-
ator to achieve square spatial dimensions for the input to the
U-Net block, which leads to square output spatial dimensions
for the gradient tensor G. The update step for iteration i+ 1 is
calculated for each property θj according to:

θi+1
j = ReLU(θi

j −Gj), (9)

where Gj ∈ Rnx×nz is the gradient matrix for the j-th physical
property. We repeat (9) for L layers. We used a loss combined
from the Mean-Squared Error (MSE) between the Ground Truth
(GT) physical properties and the predicted ones and a Sobel

regularization for each predicted property [9]:

Loss =
nm∑
j=1

αj ||θj − θ̂j ||22 + βjR(θ̂j), (10)

where θj and θ̂j are the GT and predicted j-th physical property,
respectively. Here R(θ̂j) is a Sobel regularization on the j-th
predicted property. A scaling factor for each property to achieve
a similar influence effect in the back-propagation process is
denoted as αj , and βj is a scaling factor for the influence of
the regularization of each property. Additionally, we normalized
the training set of the input-measured CD according to the
mean and standard deviation of the flattened vector to achieve
better performance in the learning process. The training process
is summarized in Algorithm 1 and the inference process is
summarized in Algorithm 2.

IV. NUMERICAL RESULTS

In this section we evaluate the performance of our method,
using US and radar. The training set consists of normalized CD
from 1000 images for each dataset, and the validation set consists
of CD from 200 images, normalized according to the mean and
variance of the training set. We used the loss function as in (10)
with nm = 2. For the US case, j = 1 and j = 2 respectively
correspond to SoS and density whereas for the radar case j = 1
and j = 2 respectively correspond to conductivity and relative
permittivity. Additionallyβj = 0 for the radar scenario. We train
all models on a single NVIDIA Quadro RTX8000 GPU with
45 GB of memory, and all the experiments are implemented
in Pytorch 1.11.0. For both US and radar cases the ADAM
optimizer is used, with a learning rate of 0.0001, and a CosineAn-
nealingLR scheduler with Tmax = 20 and ηmin = 0. We use a
batch size of 8 for US cases and 16 for radar cases. Each epoch
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Algorithm 1: Training MB-QRUS.
Initialization of UNet weights and biases
Initialization of αj , βj for j = 1, . . ., nm

for epoch=1 to epochs do
Inputs:

M ∈ Rnp×nt×nc the measured CD
θ0
j ∈ Rnx×nz for j = 1, . . ., nm initial properties

for i = 1 to L do
M̂ = F ({θi−1

j }nm
j=1) predicted CD from physical

model
G = UNet(M − M̂)
θi
j = ReLU(θi−1

j −Gj) for j = 1, . . ., nm

end for
Loss =

∑nm

j=1 αj ||θL
j − θ̂j ||22 + βjR(θL

j ) where θ̂j is
the GT property
Update Unet weights and biases using an optimizer.

end for
Output: trained MB-QRUS model

Algorithm 2: MB-QRUS Inference.
Inputs:

M ∈ Rnp×nt×nc the measured CD
θ0
j ∈ Rnx×nz for j = 1, . . ., nm initial properties

for i = 1 to L do
M̂ = F ({θi−1

j }nm
j=1) predicted CD from physical

model
G = UNet(M − M̂)
θi
j = ReLU(θi−1

j −Gj) for j = 1, . . ., nm

end for
Output: {θL

j }nm
j=1

takes approximately 70 seconds for training and we train each
network until convergence and without overfitting.

We compare our method to the non-learning optimization
based FWI algorithm with loss defined in (8) with Sobel reg-
ularization operator that enforces soft edges as defined in [9].
The FWI was initialized with the same values as MB-QRUS of
the average scanned medium background. In addition, we used
150 iterations for the algorithm to converge. We did not compare
our method to other neural networks because, to the best of
our knowledge, there is no such network that can reconstruct
multiple properties and is suitable for different transmission
setups including a linear probe.

Three different numerical metrics are used to evaluate our
method performance, compared to FWI. First we calculate the
Normalized Root Mean Squared Error (NRMSE) to evaluate
the accuracy of our physical properties reconstruction, follow-
ing previous works on SoS estimation [9], [36]. Second, we
examined the Peak Signal-to-Noise Ratio (PSNR) between the
reconstructed and GT images to evaluate the quality of the recon-
structed properties mapping. Finally, we consider the Structural
Similarity Index Measure (SSIM), to evaluate the reconstruction
of the shape and size of the scanned objects. The NMRSE is

defined as

NRMSE
(
θ̂
)
=

√∣∣∣θ̂ − θGT

∣∣∣2
F
/ (nxnz)

θmax − θmin
, (11)

where θGT , θ̂ are the GT and reconstructed physical properties,
respectively. Here θmax and θmin are the upper and lower bounds
on the property values, respectively. The PSNR is defined as

PSNR
(
θ̂
)
= 20 log10(θmax)− log10 ||θ̂ − θGT ||2F , (12)

where θmax is the maximum physical property value in the GT
image. The SSIM is defined as

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
, (13)

where μx is the pixel sample mean of x, μy is the pixel sample
mean of y, σ2

x is the variance of x, σ2
y is the variance of y, σxy is

the covariance ofx and y, c1 = (k1 L)
2, c2 = (k2 L)

2 whereL is
the dynamic range of the pixels values and k1 = 0.01, k2 = 0.03
by default.

A. Radar Results

For the radar cases, a 30[cm]× 30[cm] grid is used and
discretized into 50× 50 pixels. A PML of 9 pixels is used to
prevent reflections from the grid’s edges. The permeability is set
to μ0 = 1.255× 10−6 H

m and the speed of light, c0 = 3× 108
m
s , 800 times samples are used with dt=0.005 s and the Courant-

Friedrichs-Lew (CFL) [37] is verified to ensure convergence of
the numerical equation to a valid PDE solution.

We position 8 antennas equally on an ellipse, as can be seen
in Fig. 1(a). Each antenna emits a Gaussian pulse as the trans-
mission source, with a central frequency f of 1 GHz according
to [38]:

Src(t) = N × sin(2πft)e−
2πt2

0.32 , (14)

with an offset of 10 time samples,
Additionally, the network has only one learned layer (L = 1),

but we repeat the update step (9) twice (with the same learned
tensorG). We used the MNIST data set [39] when the digits were
placed randomly inside the grid. The digits represented scattered
objects that mimic blood with a conductivity of 1.582900 S

m and
relative permittivity of 61.065, while the background mimics
air with physical properties of conductivity 0.025 S

m and rela-
tive permittivity 1.0006. The second dataset for the radar case
consists of a simulated real brain slice using MRI scans [40]
generated with a random hemorrhagic stroke, see Fig. 1(g).
This complex dataset had a nonhomogeneous background and
simulated a real medical application [38], [41]. The FWI algo-
rithm and MB-QRUS were initialized with background average
values.

1) Brain Slices Dataset Results: Fig. 4 depicts the recon-
struction results of MB-QRUS compared to FWI and GT, given
4 test cases of a realistic brain slice with a random stroke and
different orientations. Our method successfully reconstructs the
stroke position, shape and values, in addition to the brain values
and structures, using data from only 8 antennas for different
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Fig. 4. Radar properties reconstruction, by MB-QRUS and FWI compared to the GT for 4 test cases of a realistic brain slice with different orientations and a
random stroke.

Fig. 5. Radar properties reconstruction by MB-QRUS and FWI compared to the GT for 4 cases of a scatter object using MNIST digits shapes (0, 1, 6, and 5),
using fixed initialization method.

positions and orientations. The stroke was reconstructed even
when it was placed in the middle of the brain and not near the
skull, where the skull causes a significant decrease in signal
quality. Our approach outperforms FWI for both conductivity
and relative permittivity properties for all the cases and metrics.
Overall, our method attains lower NRMSE values by 83.53%
for conductivity reconstruction, and by 79.72% for relative
permittivity reconstruction. In addition, our network achieves
higher PSNR and SSIM values by 24.61% and 1150.35% for
the conductivity reconstruction, respectively, and by 3.91% and
467.33% for the relative permittivity reconstruction, respec-
tively. Our method achieved better reconstruction of physical
properties mappings both in shape, position, and values in less
than 0.3 seconds compared to more than 13-31 minutes for the
competing FWI method.

2) MNIST Dataset Results: Fig. 5 presents visualization of
our method reconstruction compared to FWI and with respect to
the GT. We show our network’s ability to reconstruct different
scatter objects with undefined and complex shapes such as the
digits 0, 1, 6 and 5 from data of only 8 antennas. It can be seen

in Fig. 5 that the competitive FWI method could not reconstruct
any significant results and got only artifacts near the antennas’
positions. Our approach takes less than 0.3 seconds to recon-
struct the mappings, while FWI takes more than 900 seconds (15
minutes). Overall, our method achieves lower NRMSE values
by 62.09% for conductivity reconstruction, and by 34.19% for
relative permittivity reconstruction. In addition, our network
attains higher PSNR and SSIM values by 13.15% and 1777.58%
for the conductivity reconstruction, respectively, and by 1.17%
and 309.00% for the relative permittivity reconstruction,
respectively.

B. US Results

For the US cases, a 5[cm]× 5[cm] grid is used and discretized
into 100× 100 pixels. A PML of size 10 pixels is applied to
the grid to prevent reflections from the edges. The CFL [37] is
checked to ensure convergence of the numerical equation to a
valid PDE solution, and 240 time samples are used with dt of
1.4077× 10−7 s.
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Fig. 6. US properties reconstruction, by MB-QRUS compared to GT, reconstruction fron a end-to-end UNet and FWI for 4 test cases: 1. single object - noisy
background, 2. noisy CD, 3. two objects, 4. one object for linear probe. For the first 3 cases the network was trained on one random object for each sample with
uniform background and elements surrounding the object. For the 4’th case the network was trained with a linear probe setup.

A simulated transducer array with only 8 elements is used
with two different transmission setups: equally spaced elements
on an ellipse and a linear probe. The transmission source pulse
waveform from each element is a Gaussian pulse centered at the
tc time step, according to the expression:

Src(t) = N × e−f2((t−tc)dt)
2

. (15)

The central frequency of the acoustic pulse, f , is set to 3 MHz
and the shifting of the source time function, tc, is 30 time steps.
The pulse amplitude is multiplied by a normalization factor, N
which is equal to the inverse of the maximum absolute value of
the source pulse, divided by dt2.

We used as a medium synthetic datasets to represent biological
organs in terms of size and shape, see Fig. 1(g). The first dataset
is of random ovals for a fatty liver scenario. We used physical
properties that mimic liver tissue (density of 1060 kg

m3 and a
SoS of 1570 m

s ), while the background properties represent
water (density of 1000 kg

m3 and a SoS of 1480 m
s ). We initialize

the FWI algorithm and MB-QRUS with the water values. The
network has only one layer (L= 1). The second dataset is based
on MNIST dataset [39] when the digits are placed randomly
inside the grid (without the PML and additional 5 pixels for each
direction). The digits shape represents scatter objects that mimic
liver tissue with a SoS of 1570 m

s and density of 1060 kg
m3 , while

the background mimics water with physical properties of SoS
of 1480 m

s and density of 1000 kg
m3 . The last dataset is based on

segmentation masks derived from authentic CT scans of patients,
procured from Kaggle [42]. We choose layers from different
patients where there is a liver mask, and then upsample them
to be in the grid size. After that we assign a physical properties

for water background with SoS of 1480 m
s and density of 1000

kg
m3 and liver object tissue with a SoS of 1570 m

s and density of
1060 kg

m3 .
1) Random Ovals Dataset Results: Fig. 6 depicts the recon-

struction results of our method compared to FWI and GT, given 4
test cases: one object with nonhomogeneous background, noisy
CD with additive white noise with a maximum amplitude of
1% of the maximum value of the signal, 2 objects with uniform
background, and one object for a linear probe transmission setup.
For the first three cases the network was trained on one random
object for each sample and transmission setup of elements that
surround the object. The network succeeds to reconstruct the
objects from data of only 8 elements even for the nonhomoge-
neous background or noisy input CD. Moreover, the network
was able to generalize and reconstruct two objects even though
it was trained on only one object for each sample. Additionally,
our network succeeds in reconstructing the object with a more
difficult transmission setup of a linear probe when there is no
information about the differences between absorption or regular
continuous propagation of the signals due to different medium
properties. In contrast, FWI was not able to reconstruct any
meaningful image due to the small amount of data. Our network
outperforms the competitive approach for all the cases, proper-
ties, and metrics. Overall, our method attains compared to FWI
lower NRMSE values by 56.33% for SoS reconstruction, and
by 55.43% for density reconstruction. In addition, our network
achieves higher PSNR and SSIM values by 1.93% and 8.15%
for the SoS reconstruction, respectively, and by 13.15% and
6.10% for the density reconstruction, respectively. Our method
achieved accurate reconstruction in less than a second compared
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Fig. 7. An example of reconstruction SoS and density mapping of random
oval with liver properties in a water background with different added noise level
to the input CD signals.

to more than 32 minutes for FWI. In addition, we train an
end-to-end network consists of only the UNet block part which
takes as input the measured CD and output the reconstructed
physical properties maps themselves. The training parameters of
the end-to-end UNet and MB-QRUS were the same, including
the use of data from only 8 elements. The UNet only network was
not able to learn the complex relation between the CD signals
and the physical properties mappings and output similar noise
mappings as can be seen in Fig. 6.

We demonstrate our method’s ability to reconstruct physical
properties mapping, from different level of noise added to the
input channel data signal. We added each time a different per-
centage of the maximum value in the overall channel data tensor
to the input signals to the network. This value can be quite large
due to recording of the transmission pulse in nearby elements.
An example of reconstruction results is depicted in Fig. 7 which
shows reconstruction results up to 4% of noise.

2) MNIST Dataset Results: Fig. 8 demonstrates our network
performance compared to FWI with respect to GT. Our method
successfully reconstructs undefined shapes that are suitable to
describe human organs, using data from only 8 elements. Our
approach takes less than 0.2 seconds to reconstruct the mappings,
while FWI takes more than 1200 seconds (20 minutes). For
the MNIST dataset, we used a transmission setup of elements
around the objects. FWI results in artifacts around the positions
of the elements as depicted in Fig. 8. Additionally, it is worth
noting the change in scale when comparing the reconstructed
values using FWI, which failed to produce meaningful data
and instead yielded a grid of pixels with slight perturbations
from the initial guesses around the elements’ locations. Overall,
our method achieves lower NRMSE values by 32.39% for SoS
reconstruction, and by 25.22% for density reconstruction. In
addition, our network attains higher PSNR and SSIM values by
0.56% and 5.09% for the SoS reconstruction, respectively, and
by 4.14% and 1.96% for the density reconstruction, respectively.

3) Real Liver Segmentation Maps Dataset Results: We in-
corporated a realistic more complex evaluation for the US case,
employing liver segmentation masks derived from authentic CT
scans of patients, procured from Kaggle [42]. We trained a
model using linear probe transmission setup and a model with
elements in a circle around the liver, both using only 8 elements.
The results show a 65.08% reduction in the NRMSE, a 1.64%
elevation in the PSNR, and a 12.11% increase in SSIM for the
SoS reconstruction. Correspondingly, the density reconstruction
exhibited a reduction of 65.47% in the NRMSE, a 37.38%
increase in PSNR, and a 19.68% increase in SSIM compared to

FWI. In addition, we achieved real-time results by less than 0.15
seconds, compared to FWI which took more than 1778 seconds
(almost 30 minutes). A visual comparison of the reconstructed
images is presented in Fig. 9. This dataset provides a realistic
scenario for liver scan reconstruction, encompassing both the
physical properties’ values and the authentic liver shapes. Our
network was able to reconstruct the undefined shapes of real
patients’ livers with high accuracy for both SoS and density
mappings, while the FWI did not output any meaningful results
and only some artifacts (notice the significant difference in
scales).

4) Random Ovals Objects With Changing Liver Values: To
demonstrate further the reconstruction ability of different chang-
ing nonhomogeneous objects values, we create a dataset with
random ovals with a distribution of liver values. The object
was placed on a water background and was created using a
Gaussian filter with different sigma acting on the homogeneous
liver properties object, to create a distribution of values around
the known average physical values. Fig. 10 shows examples of
the reconstruction results using 8 elements around the object
in a circle. From the left, the first two examples were created
using a Gaussian filter with sigma of 1.5 for the velocity and
1.8 for the density, and used for inference of a model that was
trained using the same distributions. The third example from
the left, was created using a Gaussian filter with sigma of 3 for
the velocity and density properties, and added Gaussian noise
over all the grid of 1%. A model that was trained using sigma
of 1.5 for the velocity and 1.8 for the density properties was
used for inference. The forth example from the left, was created
using a Gaussian filter with sigma of 3 for the velocity and
density, and used for inference of a model that was trained using
sigma of 1.5 for the velocity and 1.8 for the density properties.
The last example from the left was created using a Gaussian
filter with sigma of 1.5 for the velocity and 1.8 for the density
properties, and used for inference of a model that was trained
using sigma of 3 for the velocity and density. A transmission
setup of 8 elements that surround the object in a circle was used.
The results show a 65.10% reduction in the NRMSE, a 1.57%
elevation in the PSNR, and a 3.59% increase in SSIM for the
SoS reconstruction. Correspondingly, the density reconstruction
exhibited a reduction of 66.74% in the NRMSE, a 18.17%
increase in the PSNR, and a 6.34% increase in SSIM compared
to FWI. In addition, we achieved real-time results by less than
0.15 seconds, compared to FWI which took almost 30 minutes.
Our network was able to reconstruct the changing values objects,
with different distributions, while the FWI did not output any
meaningful results and only some artifacts (notice the significant
difference in scales).

C. Comparison to UNet and FWI With 60 Elements

We conducted additional experiments to evaluate the role of
using the model of wave propagation equation in our method as a
model-based deep-learning method. We compare our approach,
using data from 8 elements, to an end-to-end UNet and FWI,
both using data from 60 elements. For the end-to-end UNet
method, we took only the UNet block part and increased the
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Fig. 8. US properties reconstruction by MB-QRUS and FWI compared to the GT, for 4 cases of a scatter object using MNIST digits shapes (2 zeros and 2 ones
with different orientations).

Fig. 9. US properties reconstruction by MB-QRUS and FWI compared to the GT, for different realistic livers based on segmentation masks from CT scans. The
first two examples from the left are using linear probe transmission setup, and for the rest, the elements are in a circle around the liver.

Fig. 10. US properties reconstruction by MB-QRUS and FWI compared to the GT, for random ovals with changing liver values distribution.
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Fig. 11. UNet end-to-end architecture.

input channels to 60 as can be seen in Fig. 11. We use the same
tensor and time representation of the input CD to get a spatial
representation of it as in our method MB-QRUS. The input to
the UNet block is the measured CD tensor consisting of 60 pulse
transmissions and 60 receiving channels for the same number
of time samples as in previous experiments for MB-QRUS. The
outputs are the reconstructed physical properties mapping for
radar or US. The same network architecture was used for radar
or US cases. The training parameters of the end-to-end UNet
and MB-QRUS were the same. For comparison to FWI with 60
elements we used the same optimization parameters and loss as
in prior experiments, only for the radar case we exclude Sobel
regularization due to its detrimental impact on results.

Fig. 12 demonstrates comparison results for the US case using
the random oval dataset with transmission and grid parameters
as in Section IV-B. The FWI diverges for a nonhomogeneous
medium even when using 60 elements. In addition, our method
reconstruction of the nonhomogeneous medium is less noisy
with fewer artifacts compared to the end-to-end UNet using 60
elements. Both our approch and the UNet were able to recon-
struct two scattering objects even though the training set consists
of only one object in each example, with a noisier background
reconstruction for the UNet. The noisier background for the
UNet network can be a result of learning from the measured
CD directly and not subtracting a predicted CD according to
initial guesses of the background. The end-to-end UNet can
focus in the learning process also on parts of the signal that
are just noise, therefore adding artifacts. This demonstrates our
approach’s importance of using the wave propagation equation
to calculate a predicted CD before using the learned convolution
layers. Our approach achieved an improved NRMSE by 36.92%
compared to FWI and 3.06% compared to the UNet network. In
addition, our network achieved an improved PSNR by 6.43%

compared to FWI and 0.47% compared to the UNet. Finally,
our method achieved an improved SSIM by 4.2% compared to
FWI and 15.94% compared to the UNet network. We mention
that the FWI took approximately 46.7 minutes to converge using
data from 60 elements.

Fig. 13 demonstrates comparison results for the radar case
using the MNIST dataset and the realistic brain slices dataset
with a random stroke. We use the same transmission and grid
parameters as in Section IV-A. FWI to reconstruct the main
structure of the scattering object using data from 60 elements, but
it is unsatisfactory for all cases and very close to the initial guess
we gave as input for the brain slice. Our method reconstructs
a more accurate value of the background, for example in the
MNIST ‘1’ digit case. Compared to FWI with 60 elements,
our approach achieved an improved NRMSE by 49.3%, and
SSIM by 238.23%, but a slightly worse PSNR by 2.41%. For the
realistic brain slices, our method using data from 8 elements got
slightly worse numeric results compared to the UNet using data
from 60 elements, due to more sharp reconstruction of the stroke
boundaries. This leads to more defined stroke reconstruction
for the simulations but can introduce artifacts and noise for
real cases. For the MNIST dataset, compared to UNet with
60 elements, our network (using data from only 8 elements)
achieved an improved NRMSE by -8.36%, PSNR by 0.78%, and
SSIM by 221.69%. Additionally, the FWI took approximately
115.4 minutes to converge using data from 60 elements.

Using a model-based deep-learning approach, and incorpo-
rating knowledge of the wave propagation equation into the net-
work architecture, we were able to achieve improved reconstruc-
tion results with significantly fewer elements (transmissions
and receiving channels). This allows reconstructing a larger
grid, with more time samples, for fewer resources and memory
usage.
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Fig. 12. US properties reconstruction by MB-QRUS, FWI with 60 elements and UNet with 60 elements compared to the GT for 3 cases: 1 scatter object, a
nonhomogeneous medium and 2 scattering objects.

Fig. 13. Radar properties reconstruction by MB-QRUS, FWI with 60 elements and UNet with 60 elements compared to the GT for 3 cases: the MNIST digits
‘1’ and ‘6’ and a realistic brain slice with a stroke.
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Fig. 14. The pulse waveform from Verasonics workspace which is used for
the phantom experiment.

D. Real CD From a Phantom Scan Results

One of our work’s advantages is multiple quantitative imaging
results from real measured CD. To demonstrate this, we used a
Verasonics research machine for US scans with a P4-2v linear
probe to acquire recorded CD from phantoms. It is important
to mention that the common US machines that are being used
in hospitals today lack the capability to directly access the
receiving scattering signals (the CD), only allowing access to
the standard B-mode US images after post-processing of the
signals. The Verasoncis research platform allows us to acquire
and retain the raw CD signals from the US scans for subsequent
analysis.

In the course of our experimentation, we employed a linear
probe to scan two different phantoms commonly utilized for
human body US research, the 404GS LE and the 403GS LE from
Gammex. The phantom background properties are of a average
human body commonly used for US scans (SoS of 1540 m

s and
density of 1030 kg

m3 ) and targets of a pin with a diameter of
0.1 mm and physical properties of nylon (SoS of 1070 m

s and
density of 1150 kg

m3 ). One phantom has only one such object,
and the second has 3 such nylon objects.

We scan the phantoms with a transmission setup of Raylines
where each element transmits the pulse and the rest record the
scattering field. Then we use the data from only the 8 middle
elements of the probe as input to the network. We decrease
the dt by downsampling the transmission pulse. We used a
downsample of factor 2 (denoted as r) and we checked the pulse
form after the change in sampling rate to ensure the shape was
not corrupted. Additionally, we adjust all the transmission and
network parameters to the ones fitting the Verasoncis scan taken
from the scan workspace. These include f = 2.72e6 Hz, T = 1

f

= 3.6765e-7 s, dt = T
peaks/r = T

16 = 2.2978e-08 s, nt = 520,
dx = 0.0001 m, the piezoelectric elements positions, and the
pulse shape (see Fig. 14). For the dt calculation, we divided T
by 16 as we have 16 samples per period. In addition, we check
the wave propagation simulation and the CFL condition. Finally,
we increase the number of pixels nx to 200 while nz is equal to
100 to ensure enough space for the objects’ positions.

There are some main differences when working with the real
recorded CD signals compared to simulations. First, there are
large reflections at the beginning of the CD time samples from
the lenses in the probe and the first entrance to the phantom,
see Fig. 15(a) and (b). These artifacts are not dependent on the
object and therefore can be cut from the input CD to the network.
It is imperative to bear in mind the necessity of appropriately
realigning the reconstruction position in light of this excision.
For example, if 120 time samples were removed, with dt =
2.2978e-08 s it means that 2.757e-6 seconds were cut, which
are equal to C0 ∗ Tcut = 0.0042m. Given a spatial resolution
of dx = 0.0001 m, a consequent displacement of 42 pixels along
the Z-axis is mandated for accurate position reconstruction of
the object. Retrieval of object reconstruction from this specific
region is unattainable, as the corresponding data is discarded
due to its inherent corruption caused by substantial reflections.
Additionally, Verasonic mentions in their manual that any form
of image is unachievable within this area.

Second, there is much more noise in the real recorded CD
signals. To remove the noise, we perform a low-pass filter (LPF).
We choose the cutoff frequency to be 3.8× 106 Hz and perform
the butter LPF with order 6. Fig. 15(c) presents the filtered signal
after the LPF.

Finally, the simulative CD that were used for training and
the real measured ones have different ranges of intensity, see
Fig. 15(c) and (d). To overcome this difficulty, we normalized
the real recorded CD to be in the same order of ranges as the
simulative ones that were used in training.

The reconstruction results using our approach compared to
FWI and GT are shown in Fig. 16 as a proof-of-concept of our
method’s performances on real recorded CD. We emphasize a
remarkable fact of our findings: our network, trained on data
from a single object per example, demonstrated exceptional
capacity to accurately reconstruct the shapes, positions, and
properties of three distinct objects using real recorded receiving
CD signals. This underscores the versatility and robustness of
our approach. Additionally, for the second phantom with 3 ob-
jects, the competitive FWI approach diverged. At the bottom of
Fig. 16, we plot the conventional B-mode US images generated
by the machine utilizing data from 128 elements. The B-mode
images show only the shape and position of the objects and
not the different physical properties of the scanned medium, as
can be seen using our method, which utilizes data from only
8 elements and not 128. Overall, our method shows promising
reconstruction results using real CD.

E. Ablation Studdies

We performed diverse ablation studies including increasing
the number of elements used to transmit and record the receiving
signals, removing the regularization, or changing the initial
guesses type. First, we analyze the impact of initial guess types
on the network’s performance during both the training and test
phases. The fixed initialization in training generally results in
sharper reconstructions, particularly noticeable in the case of
MNIST digit reconstruction or the stroke itself, irrespective of
the initialization type during test time. In addition, the fixed
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Fig. 15. Examples of the real measured CD after the cutting and LPF compared to an example of the simulative one. (a) displays the recorded signal from one
element for the first transmission, with the large artifact reflection at the beginning. (b) shows the signal after removing of the first 120 time samples. (c) presents
the real measured CD after performing the LPF, and (d) displays an example of the simulative CD for comparison.

Fig. 16. The reconstructed results of SoS and density mappings for two different phantom scans using MB-QRUS and FWI compared to GT. On the bottom row
is the B-mode images using Verasonics algorithm for each case. The objects are circled in red.

TABLE I
US AND RADAR ACCURACY SCORES OF THE PROPOSED MB-QRUS FOR TWO

INITIALIZATION OPTIONS

initialization option appears to be more resilient to noise in
the CD. Numeric results for US and radar cases using the
MNIST dataset are reported in Table I. All the percentages are
improvements of MB-QRUS results compared to FWI using the
same initialization and the best results are in bold.

TABLE II
US NUMERIC METRICS OF MB-QRUS COMPARED TO FWI, WITH SOBEL

REGULARIZATION COMPARED TO WITHOUT THE REGULARIZATION

Additionally, we used the brain slices dataset with radar signal
to examine the influence of the number of elements on the
results. As the number of elements increased the reconstructed
stroke was slightly more defined, and the numerical metrics
improved slightly. However, the changes were not significant.
Regarding Sobel regularization, we noticed slightly improved
reconstruction results for the noisy CD case using the regular-
ization. Numeric metrics using US signals, compared to FWI
are in Table II. The results show the percentage of change
in the numeric metrics using our method compared to FWI.
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We mention that the metric results vary for different examples
and cases and overall, Sobel regularization contributes slight
enhancements but not significantly.

V. DISCUSSION AND CONCLUSION

MB-QRUS provides a real-time method for quantitative phys-
ical properties imaging from different signals. Our approach
integrates the model of wave propagation into the network design
to reconstruct mappings from different transmission setups,
including the use of a linear probe. Additionally, we utilize a
U-Net based block to achieve more accurate values reconstruc-
tion for complex scenarios including realistic brain simulations
and real measured phantom data. By leveraging the power of
wave propagation modeling, spatial time representation, and the
U-Net’s capabilities, our network allows reconstruction from
data of only eight elements. The versatility of our method,
including reconstruction from either radar or US signals and
advanced transmission setups including a linear probe paves the
way for medical quantitative imaging.

Our network mimics the FWI algorithm but learns the gra-
dients from less data. We examine adding to the loss in (10)
also a MSE loss between the measured (input) CD and the
predicted one according to the network properties reconstruction
and the wave (3), (5), similarly to the FWI loss (8). However,
adding this loss to the training process caused a small degrada-
tion in the network performance and even a divergence in the
learning process. This can be a result of the use of the PDE
in the backpropagation due to the calculation of the predicted
CD in the loss, which is unstable and can lead to exploding
values.

Our method can be extended to reconstruction of more phys-
ical properties, by using a different wave propagation equation
that includes those properties. In addition, the method can be
extended to the use of CD from different signals, such as seismol-
ogy and photoacoustics, by adjusting the used wave equations.
For future work, we intend to extend our approach using CD
from real phantom measurements for complex phantoms and
scenarios, including using different transmission setups. Addi-
tionally, we intend to acquire CD from patients’ measurements,
for example, patients who suffer from fatty liver disease.
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