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Purpose: In many clinical MRI scenarios, existing imaging information can be used to significantly
shorten acquisition time or to improve Signal to Noise Ratio (SNR). In this paper the authors present
a framework, referred to as FASTMER, for fast MRI by exploiting a reference image.
Methods: The proposed approach utilizes the possible similarity of the reference image to the
acquired image, which exists in many clinical MRI imaging scenarios. Examples include similarity
between adjacent slices in high resolution MRI, similarity between various contrasts in the same scan
and similarity between different scans of the same patient. To account for the fact that the reference
image may exhibit low similarity with the acquired image the authors develop an iterative weighted
reconstruction approach, which tunes the weights according to the degree of similarity.
Results: Experimental results demonstrate the performance of the method in three different clinical
MRI scenarios: The first example demonstrates SNR improvement in high resolution brain MRI,
the second scenario exploits similarity between T2-weighted and fluid-attenuated inversion recovery
(FLAIR) for fast FLAIR scanning and the last application utilizes similarity between baseline and
follow-up scans for fast follow-up acquisition. The results show that FASTMER outperforms image
reconstruction of existing state-of-the-art methods.
Conclusions: The authors present a framework for fast MRI by exploiting a reference image. Recov-
ery is based on an iterative algorithm that supports cases in which similarity to the reference scan is
not guaranteed. This extends the applicability of the FASTMER to different MRI scanning scenarios.
Thanks to the existence of reference images in various clinical imaging tasks, the proposed framework
can play a major role in improving reconstruction in many MR applications. C 2016 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4962032]

Key words: rapid MR, compressed sensing, reference based MRI

1. INTRODUCTION

Magnetic resonance imaging (MRI) data is sampled in the
spatial Fourier transform (a.k.a. k-space) domain of the object
under investigation. In many cases, the k-space is sampled
below the Nyquist rate due to implementation constraints on
the k-space trajectory that control the sampling pattern (e.g.,
acquisition duration and smoothness of gradients). Mostly,
prior assumptions on the nature of the data are taken into
account in the reconstruction process, to overcome imaging
artifacts due to insufficient sampling. We can roughly divide
MRI reconstruction approaches from undersampled k-space
into two families: single- and multiple-image based recovery.

The first family of methods exploits prior assumptions on a
single MR image, in order to improve its reconstruction from
undersampled data. Since the introduction of Compressed
Sensing (CS)1–4 to the field of MRI,5 many MRI reconstruction
approaches exploit the fact that MR images are highly
compressible, by formulating the image reconstruction prob-
lem as an ℓ1 minimization problem. Wavelet transform sparsity
has been widely used as a sparsifying transform for brain MRI.
Total Variation (TV) is often used for MR images which are
sparse in the image domain, such as angio-MRI.5,6 Several

works use a-priori information to improve reconstruction of
single-contrast MRI.24–27 Other approaches focus on learning
the sparsifying transform or using a dictionary developed
exclusively for MRI.7–9

The second family of techniques exploit similarity to a
single reference image or within a series of MR images. In
Table I we present a concise review of prior art in methods that
take advantage of reference images to speed-up acquisition
or to improve image reconstruction. Most algorithms were
applied to dynamic or Diffusion MRI, where multiple images
are acquired at a single imaging session. This allows the
exploitation of similarity along the temporal dimension,
assuming that only parts of the field-of-view (FOV) change
over time. State-of-the-art approaches use temporal similarity
in various ways. They can be roughly divided into methods
based on generalized reconstruction schemes,10–14 Bayesian-
based approaches,15 CS-based methods16–20 and techniques
using low-rank properties.21–23

Additional works that exploit similarity in a series of
MR images focus on structural MRI. In multiple-contrast
MRI, structural similarity between different contrasts in
the same scan is assumed and can be used to enhance
reconstruction.28–31 Another approach taken by several authors
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T I. Summary of related methods that exploit a reference image for fast MRI. Our proposed method is last in the table. Abbreviations used: DCE: dynamic
contrast enhanced, CS: compressed sensing, DWI: diffusion weighted imaging, TV: total variation, fMRI: functional MRI.

Author Description Imaging application tested

Liang and Lauterbur
(Ref. 44)

Exploiting temporal similarity in dynamic MRI using generalized scheme
imaging

Dynamic MRI (dynamic T1-weighted and
diffusion MRI)

Hanson et al. (Ref. 11) Exploiting two high resolution reference images to improve dynamic imaging
in a generalized scheme

Dynamic MRI (DCE MRI)

Hess et al. (Ref. 12) Exploiting reference image for generation of basis functions, used to improve
dynamic MRI

Dynamic MRI (MR angiography)

Tsao et al. (Ref. 32) Incorporating reference image and prior on changed regions for improved
reconstruction

Longitudinal MRI

Tsao et al. (Ref. 45) Exploiting spatiotemporal correlations for dynamic MRI (training-based
approach)

Dynamic MRI (cardiac imaging)

Lustig et al. (Ref. 16) Random sampling in k-t space, reconstruction based on wavelet-Fourier
sparsity

Dynamic MRI (cardiac imaging)

Haldar et al. (Ref. 46) Using anatomical priors to improve SNR via penalized ML Single-contrast MRI
Lang and Ji (Ref. 17) Exploiting similarity to a reference image in a CS framework Dynamic MRI (brain DCE)
Gamper et al. (Ref. 18) Exploiting sparsity in the x-f space for dynamic MRI Dynamic MRI (cardiac imaging)
Jung et al. (Ref. 19) Exploiting sparsity of residuals in dynamic MRI Dynamic MRI (cardiac imaging)
Yun et al. (Ref. 13) Exploiting a reference image for basis functions generation used to improve

dynamic MRI
Dynamic MRI (brain fMRI)

Samsonov et al. (Ref. 33) Exploiting sparsity of gradient of difference between baseline and follow-up
scans

Longitudinal MRI

Chen et al. (Ref. 20) Exploring the exploitation of a reference frame in x-t and x-f domains in
dynamic MRI

Dynamic MRI (cardiac imaging)

Wu et al. (Ref. 24) Using noisy reconstruction as a reference for sorting in parallel imaging Single-contrast MRI
Peng et al. (Ref. 25) Exploiting reference image for sparsifying transform generation Single-contrast MRI
Bilgic et al. (Ref. 28) Exploit similarity of spatial derivatives in multicontrast MRI Multicontrast MRI
Du and Lam (Ref. 26)
and Lam et al. (Ref. 27)

Exploiting similarity to a reference image in a CS-based hybrid
reconstruction and registration scheme

Single-contrast MRI

Nguyen and Glover
(Ref. 14)

Exploiting a reference image for generation of basis functions used for
generalized series reconstruction of dynamic MRI

Dynamic MRI (brain fMRI)

Haldar et al. (Ref. 15) Using structural MRI for SNR improvement of DWI in an ML scheme Diffusion MRI
Qu et al. (Refs. 29 and 30) Exploiting similarity of image patches within and between multicontrast MRI

in CS framework
Multicontrast MRI

Huang et al. (Ref. 31) Joint TV and group wavelet based reconstruction for multicontrast MRI Multicontrast MRI
Chiew et al. (Ref. 21) Low-rank based reconstruction Dynamic MRI (brain fMRI)
Li et al. (Ref. 34) Using nonreference-based reconstruction as a prior for reference-based

reconstruction
Longitudinal MRI

Adluru et al. (Ref. 22) Exploiting TV-based reconstruction for improved low-rank based
reconstruction

Dynamic MRI (cardiac imaging)

Otazo et al. (Ref. 23) Low-rank based reconstruction Dynamic MRI (cardiac imaging, MR angiography)
Our method (FASTMER) Exploiting reference image in an adaptive-weighted CS scheme Single- and Multicontrast MRI, Longitudinal MRI

is to exploit similarity in longitudinal MRI, where images were
acquired at different time points.32–34 Finally, the use of refer-
ence images to improve reconstruction has also been tested
in other imaging modalities, such as Magnetic Resonance
Spectroscopy (MRS),10,35 Positron Emission Tomography
(PET)36–38 and X-Ray Computed Tomography (X-Ray CT).39

Taking a closer look at the rightmost column of Table I,
we observe that multiple-image based reconstruction is
application specific; since similarity between multiple images
takes on different forms, a separate reconstruction approach
was developed for each MRI application, exploiting its specific
nature. No general sampling and reconstruction scheme which
fits a variety of multiple-image MRI applications has been
developed so far. Moreover, most of the methods rely on the
assumption that there is substantial similarity between the

images in the series (e.g., dynamic imaging), in the image or
in some transform domain. Assuming similarity of intensity
between the reference image and the current scan may not
always be valid (e.g., when a different imaging contrast is
used as a reference or due to misalignment between images)
and therefore may lead to undesired reconstruction results.

Recently, we introduced an iterative approach for sampling
and reconstruction of multiple MRIs of the same patient by
exploiting similarity between the images.40 We considered the
acquisition of a follow-up MRI, given the baseline scan of the
same patient. Taking into account that baseline and follow-
up images may not always exhibit similarity we developed a
solution based on an iterative weighted mechanism. It adjusts
the reconstruction parameters and the sampling locations
during real-time scanning. While the idea of optimizing the
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sampling locations has been previously proposed by others,41

it suffers from practical difficulties due to the necessity to
solve many computationally heavy ℓ1 minimization problems
during the acquisition process. In related work,42 we have
shown that enforcing similarity between adjacent, low SNR,
thin MRI slices, can lead to significant improvement in SNR
that obviates the need for multiple excitations in order to
achieve high SNR.

In a recent conference paper we presented the initial
concept of applying a reference-based approach for multiple
MRI applications.43 The conference paper includes an earlier
version of the model described in this paper, with preliminary
results obtained via retrospective two dimensional random
sampling.

In this paper we present a framework to exploit a reference
image that is applicable to various MRI applications. The ma-
jor contributions of this paper are: (a) exploiting similarity of
intensity values to a reference scan is performed in an adaptive
and weighted fashion, taking into account that the reference
may exhibit major gray-level differences with respect to the
current scan and; (b) testing several MRI imaging applications
(single-contrast high resolution MRI, multicontrast MRI, and
longitudinal MRI), with 2D radial sampling.

More specifically, we introduce a framework, called FAST
MRI by Exploiting a Reference scan (FASTMER) which is
based on two main elements: (a) taking advantage of both
sparsity in the wavelet domain and similarity to a reference
scan and (b) weighted reconstruction by adaptive selection of
weights during the reconstruction process, taking into account
the degree of similarity to the reference image. The adaptive
weights adjust the reconstruction to the actual similarity be-
tween the scans. Therefore, it fits a variety of clinical imaging
applications that can be improved with supplemental imaging
information, which is often neglected due to its low fidelity.

Experimental results demonstrate the applicability of the
proposed method in three different MRI applications that
utilize similarity to a reference image. The first application
exploits similarity between two different imaging contrasts
for fast scanning of one of them. The second example utilizes
similarity between different scans of the same patient for fast
scanning of follow-up scans, and the third application takes
advantage of similarity between adjacent slices to improve
SNR within the same imaging contrast.

The paper is organized as follows. Section 2 presents the
proposed reference-based MRI approach. Section 3 develops
an extension of the approach for improving SNR in adjacent,
low SNR MRI slices. Section 4 describes experimental results.
Section 5 discusses theoretical aspects and implementation
details of FASTMER and Sec. 6 concludes by highlighting
the key results.

2. REFERENCE-BASED MRI
2.A. Compressed Sensing MRI

The application of CS for MRI (Ref. 5) exploits the
fact that MRI scans are typically sparse in a transform
domain, which is incoherent with the sampling domain.

Nonlinear reconstruction is then used to enforce both sparsity
of the image representation in some transform domain and
consistency with the acquired data. A typical formulation of
CS MRI recovery aims to solve the following unconstrained
optimization problem (in a so-called Lagrangian form):

min
x

∥Fux−y∥2
2+λ∥Ψx∥1, (1)

where x ∈ CN is the N-pixel complex image to be recon-
structed, represented as a vector, y ∈CM denotes the k-space
measurements, Fu is the undersampled Fourier transform
operator, Ψ is a sparsifying transform operator and λ is a
properly chosen regularization parameter. We focus on brain
MRI, known to be sparse in the wavelet domain. Therefore,
we will assume throughout that Ψ is an appropriately chosen
wavelet transform.

This fundamental CS MRI formulation is the basis for many
MRI reconstruction applications, where the sparse transform
domain varies depending on the particular setting.16–19 We note
that this formulation does not take into account any image-
based prior information, that exists in many MRI applications.

2.B. Reference-based compressed sensing MRI

In many MRI imaging scenarios, an a-priori image that
may exhibit similarity to the acquired image, is available.
This image is coined hereinafter the “reference image” and
represented by x0. A reference image could be a different
imaging contrast in the same scan, an adjacent image slice or
a previous scan of the same patient.

In some imaging applications, we may assume that x0
and x are similar in most image regions.18 Therefore the
difference x−x0 can be modeled as sparse, and a CS based
optimization may utilize the reference image for improved
reconstruction, via ℓ1 minimization. Such reference-based CS
takes into account the fidelity of the measurements and the
similarity to the reference scan, as follows:

min
x

∥Fux−y∥2
2+λ∥x−x0∥1. (2)

This optimization problem assumes high degree of similarity
between x0 and x, and is therefore suitable for some specific
MRI applications, such as dynamic MRI. However, many
MRI applications do not utilize available reference imaging
information [for instance, by solving Eq. (2)] due to the
fact that the similarity to the acquired image is partial, not
guaranteed or unknown.

We introduce a framework for reference based MRI, which
takes into account the fact that x0 may exhibit differences
versus x. We also account for the fact that the vector y may
represent multiple images that are contaminated with noise at
different levels; we want to prioritize images with low noise
standard deviation over ones with high noise standard devia-
tion in the reconstruction process. Our approach is based on
enforcing similarity between x and x0 via a weighted ℓ1 norm:

min
x

∥A(Fux−y)∥2
2+λ1∥W1Ψx∥1+λ2∥W2(x−x0)∥1 (3)

where A is a diagonal matrix that controls the weight given
to the fidelity of certain measurements (used to prioritize
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samples taken from images with low noise standard devi-
ation). The matrices W1 and W2 are weighting matrices,
Wk = diag([w1

k
,w2

k
,. . .,wN

k
]) with 0 ≤ w i

k
≤ 1, that control the

weight given to each element in the sparse representation. In
particular, W1 is used to weight specific wavelet atoms in the
reconstruction process and W2 is used to weight image regions
according to their similarity level with the reference scan. The
parameters λ1 and λ2 are regularization parameters that control
the weight given to each term in the optimization problem.

In most cases, the expected noise level of the acquired data
is known and the matrix A can be determined in advance. As
to W1 and W2, there are cases in which neither the similarity to
the reference image nor the support in the wavelet domain are
known in advance. Therefore, we suggest determining these
matrices during the recovery process, as described in the next
section.

2.C. Adaptive weighting for reference based MRI

Since the similarity of x to x0, as well as the support
of x in the wavelet domain, are unknown, we estimate the
matrices W1 and W2 from the acquired data, in an adaptive
fashion. Inspired by Weighted-CS,47 we propose an iterative
reconstruction algorithm, where in each iteration a few k-
space samples are added to the reconstruction process, based
on their distance from the origin of the k-space (samples
closer to the origin of the k-space are added first). The
rationale lies in the structure of the minimization problem
(3). Due to the fact that Eq. (3) is a nonconvex minimization
problem, we would like to avoid convergence to local minima.
Experimentally we observed that gradually adding k-space
samples at each iteration leads to more rapid convergence and
improved results. At the end of each iteration, x̂ is estimated,
and serves as the basis for estimating the weighting matrices
in the next iteration.

The motivation for the iterative computation of Wk is as
follows. For W1, we would like to relax the demand for sparsity
on elements in the support of Ψx. For W2, we would like to
enforce sparsity only in spatial regions where x≈ x0. When one
of the weights takes on a small value, for instance, w i

2→ 0, then
the sparsity on the corresponding image pixel, xi, is relaxed,
and vice-versa; when w i

2→ 1, sparsity is enforced on xi (i.e.,
the ℓ1 minimization will prefer solutions where xi→ 0).

Since x is unknown, x̂, updated in every iteration, is used
instead. The elements of the weighting matrices are then
chosen as follows:

w i
1 =

1
1+ [|Ψx̂|]i

w i
2 =

1
1+ [|x̂−x0|]i (4)

where [·]i denotes the ith element of the vector in brackets.
Note that the weights in Eq. (4) vary between 0 and 1. The
values for w i

1 and w i
2 are inversely proportional to those of

the corresponding elements in the vectors Ψx and x̂− x̂0,
respectively. Therefore, since we expect the reconstruction
quality to improve at each consecutive iteration, we obtain
w i

2→ 1 in regions where x∼ x0, thereby enforcing sparsity of

A I. Fast MRI by Exploiting Reference (FASTMER).

Input:
Number of iterations: NI

Reference image: x0

Sampled k-space: z
Tuning constants: λ1, λ2

Number of k-space samples added at each iteration: Nk

Expected fidelity of measurements: A
Output: Estimated image: x̂
Initialize:

W1= I, W2= 0
Reconstruction:

for l = 1 to NI do
Add Nk new samples to y from z according to distance from center of

k-space
Weighted reconstruction: Estimate x̂ by solving Eq. (3)
Update weights: Update W1 and W2 according to Eq. (4)
end for

the difference x−x0 in those regions. The same analysis applies
to W1 and the representation of the image in the wavelet
domain.

The proposed algorithm is coined FAST MRI by Exploit-
ing a Reference scan (FASTMER) and is summarized in
Algorithm I. Note that in the first iteration of the algorithm
we do not assume similarity with the reference image (i.e., we
set W1= I and W2= 0). This is done in order to prevent the
algorithm from convergence to an incorrect solution in cases
where similarity between scans does not exist.

To solve the ℓ1-minimization problem (3) in the weighted
reconstruction phase, we use an extension of SFISTA.48 The
extended algorithm is summarized in Algorithm II, where the
notation ∥ · ∥2 for matrices denotes the largest singular value.
The operator Γλµ(z) is the soft shrinkage operator, which is
applied element-wise on z and is defined as (for complex

A II. SFISTA algorithm for FASTMER.

Input:
k-space measurements: y
Sparsifying transform operator: Ψ
An N ×N k-space undersampling operator: Fu

Reference image: x0

Expected fidelity of measurements: A
Tuning constants: λ1, λ2, µ

An upper bound: L ≥ ∥AFu∥2
2+

∥W1Ψ∥2
2+∥W2∥2

2
µ

Output: Estimated image: x̂
Initialize:

x1= z2=F∗uy, t2= 1
Iterations:

Step k:(k ≥ 2) Compute
∇ f (zk)=A∗(F∗u(A(Fuzk−y)))
∇g1µ(W1Ψxk−1)= 1

µ W1Ψ
∗(W1Ψxk−1−Γλ1µ(W1Ψxk−1))

∇g2µ(W2(xk−1−x0))= 1
µ W2(W2(xk−1−x0)−Γλ2µ (W2(xk−1−x0))

xk = zk− 1
L (∇ f (zk)+∇g1µ(W1Ψxk−1)+∇g2µ(W2(xk−1−x0)))

tk+1=
1+


1+4t2
k

2
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valued zi):

Γλµ(zi)=



|zi |−λµ
|zi | zi, |zi | > λµ

0, otherwise.
(5)

Algorithm II minimizes Eq. (3), where the trade-off
between the two sparsity assumptions is controlled by the
ratio between λ1 and λ2, via Γ(·), and the overall convergence
is controlled by µ.

3. FASTMER FOR SNR IMPROVEMENT

In MRI, SNR is proportional to the number of protons
involved in generating the measured signal. As a result,
thick slices provide better SNR than thin ones. However, the
thinner the slice, the better the image resolution in the z-axis.
Therefore, to obtain high quality MRI for clinical evaluation
purposes, high SNR MRI that consists of thin slices is required.
The common approach today for SNR improvement of MRI
with thin slices consists of averaging over several excitations
(usually three or four), which extends the scanning time by
the same amount.

In this application, where thin slices are acquired, one may
consider shortening scanning time by reducing the number of
excitations and exploiting similarity between thin slices. In
addition, similarity to a thick, high SNR image slice that over-
laps the thin slices can also be utilized for SNR improvement.

We will consider a specific implementation, where a single
excitation is used to acquire two thin adjacent slices with low
SNR, x1 and x2, and a single thick slice, x3 that spatially
overlaps x1 and x2. Our goal is to improve the SNR of x1 and
x2 taking into account the similarity between them and the
high-SNR, thick slice, x3. In this specific example we perform
a total of three acquisitions for high SNR reconstruction of
two adjacent slices, instead of 8 acquisitions (4 excitations for
each thin slice) in the conventional, multiple excitations-based
approach.

To introduce the method within our framework, let

y=



y1

y2

y3



, x=



x1

x2

0.5(x1+x2)



(6)

where y represents the k-spaces of two thin slices and the
corresponding thick one, respectively, and x represents the two
thin slices and their average, which corresponds to the
overlapping thin slice. The matrix A is determined by the
estimated noise level of the elements in y, such that A
= diag(1/σ1IN ,1/σ2IN ,1/σ2IN) where {σi}3

i=1 are the noise
standard deviations of {yi}3

i=1, respectively and IN is an
identity matrix of size N . Similarity is enforced between the
thin slices, and Eq. (3) is reformulated as:

min
x

∥A(F3x−y)∥2
2+λ1∥W1Ψ3x∥1+λ2∥W2Bx∥1. (7)

Here F3= diag([F,F,F]) is a block diagonal matrix, with three
Fourier matrices on the main diagonal, Ψ3 = diag([Ψ,Ψ,Ψ])
and B= [IN −IN 0].

Similarity between the thick slice to the average between
the thin slices is enforced in the Fourier domain, via the
leftmost term of Eq. (7). Adapting Algorithms I and II to
solve Eq. (7) is straightforward; the final method appears in
Appendix A.

4. EXPERIMENTAL RESULTS

To demonstrate the performance of our reference based
MRI approach we examine three MRI applications, all of
which exploit a reference scan for improved reconstruction.
For high quality ground truth reconstruction, the k-space was
fully sampled with Cartesian sampling. Where relevant, partial
acquisition was simulated by interpolation of radial k-space
data (with angles selected randomly) from the fully sampled
Cartesian k-space data. Nonuniform sampling and reconstruc-
tion was performed using the nonuniform Fourier transform
(NUFFT) package of Fessler et al.49 A Daubechies-4 wavelet
transform was chosen as the sparsifying transform. Different
values of λ1, λ2 in the range of [0, 0.9] were examined, and the
best result in terms of image quality is presented in each case
(see Sec. 4.D). We used µ= 10−3(λ1+λ2/2)−1 in our experiments.
The number of iterations used in Algorithm II for the results
obtained in this section is between 30 and 50.

All scans were performed on a GE Signa 1.5 T HDx scan-
ner, using a 8-channel head coil with matrix size 320×320 and
FOV of 20 cm for each in-plane direction. High SNR images
reconstructed from fully sampled, multiple excitations data
serve as the gold standard. The source code and data required
to reproduce the results presented in this paper can be down-
loaded from: http://www.technion.ac.il/∼weizmanl/software.

To provide a quantitative measure for the results, we
examine the peak signal-to-noise ratio (PSNR) of each
experiment, defined as: PSNR = 10log10(M2/Vs), where M
denotes the maximum possible pixel value in the image and Vs

is the Mean Squared Error (MSE) between the original image,
x and the reconstructed image, x̂. The resulting weighting
matrices (W1 and W2) are presented in Appendix B, as well
as the similarity maps between the reference image and the
reconstructed image.

Since the proposed approach is based on the difference
between the reference image from the reconstruction, we need
to verify that both images are aligned and have matched inten-
sities. In the experiments presented hereinafter we conducted a
wavelet-based reconstruction first [according to Eq. (1)] using
the acquired data, to get a rough estimate of the alignment
parameters and the gray-level range of the reconstructed
image. Then, we embedded the extracted parameters in
our reconstruction process for successful reference-based
recovery. This issue is further discussed in Sec. 5.C.

4.A. Utilizing similarity between T2-weighted
and FLAIR

In this experiment, our goal is to reconstruct a FLAIR
image, x, from undersampled measurements, utilizing simi-
larity to a T2-weighted image. Images were acquired with
slice thickness of 4 mm. FLAIR acquisitions parameters
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F. 1. FASTMER used within the same scan: reconstruction results utilizing similarity between T2 and FLAIR contrasts. The two leftmost images are the T2
and FLAIR images reconstructed from 100% of k-space data. The three rightmost images show reconstruction results from 25% of k-space FLAIR data, for
wavelet+TV based reconstruction, the method of Bilgic et al. for multicontrast reconstruction using Bayesian-CS (Ref. 28) and our proposed, reference-based
approach (FASTMER). The numbers in brackets are the PSNR values vs the FLAIR gold standard.

were: TE = 123 ms, TR = 8000 ms and TI = 2000 ms, and
T2-weighted acquisition parameters were: TE= 68.4 ms and
TR = 6880 ms. We sampled only 25% of the FLAIR k-
space with radial sampling and utilized the fully sampled T2-
weighted scan as the reference image x0. Since all samples
were acquired with similar noise level, A= I.

To provide a baseline for comparison, we compared
FASTMER to two methods. The first is reconstruction based
on sparsity in the wavelet domain and enforces total-variation
(wavelet+TV)5 using undersampled FLAIR data only. The
second is the algorithm of Bilgic et al.28 which exploits the
similarity of gradients between different contrasts.

Figure 1 shows the fully sampled T2 and FLAIR images,
the wavelet+TV based reconstruction, reconstruction using
the method of Bilgic et al.28 and the result of FASTMER. In
addition, the PSNR values of each method vs the gold-standard
are provided. It can clearly be seen that FLAIR reconstruction
with FASTMER outperforms the two other methods, using
only 25% of the data.

4.B. Utilizing similarity between baseline
and follow-up scans

Repeated brain MRI scans of the same patient every few
weeks or months are very common for follow-up of brain
tumors. Here, our goal is to use a previous scan in the time
series as a reference scan for reconstruction of a follow-
up scan. In this application we need to take into account
that similarity between the reference and current scans is
not guaranteed (e.g., due to pathology changes), and prior
information on spatial regions that may exhibit differences is
not available. These obstacles are discussed thoroughly in our
previous publication40 and in Sec. 5.C and Appendix C of this
paper. Since all samples are acquired with similar noise level,
we set A= I.

We compared FASTMER to two methods. The first is
wavelet+TV based reconstruction. The second is the algorithm
of Samsonov et al.33 which exploits the gradient images
similarity between a follow-up scan and a baseline scan using
Bayesian-CS, in a nonweighted approach.

Figure 2 shows reconstruction results of a follow-up
contrast enhanced T1-weighted brain scan utilizing the
baseline scan as reference (TE= 11.5 ms, TR= 520 ms slice
thickness: 1 mm for both scans). Results were obtained using
only 25% of k-space data. It can be seen that FASTMER
reveals imaging features that are hardly visible in both of the
methods it is compared against. In addition, the PSNR values
of each reconstruction algorithm vs the gold-standard are
provided. The superiority of our approach is achieved thanks
to the iterative mechanism that adapts the reconstruction to
match actual similarity.

4.C. Utilizing similarity between adjacent slices

In our final application we examine the extension of fast
reference based MRI detailed in Sec. 3 to improve SNR of thin
MRI slices. We acquired a brain T2-weighted scan with slice
thickness of 0.8 mm followed by an additional acquisition with
slice thickness of 1.6 mm (TE= 68.4 ms and TR= 6880 ms
for all scans). In all scans a single excitation was used. As a
result, we obtained a low SNR scan consisting of thin slices,
and high SNR scan consisting of thick slices where each thick
slice overlaps two thin ones. Our goal is to reconstruct a high
SNR scan comprised of thin slices from this data.

Figure 3 shows thin slices acquired using 4 excitations
(NEX = 4), used as our gold standard in this experiment,
and the noisy input images that were acquired with a single
excitation (NEX = 1). Here, we compare our method to a
wavelet+TV based approach, which has been tested previously
to improve SNR in MRI.6

In terms of scanning time, 4 excitations are required to
obtain thin slices with SNR comparable to SNR of data
reconstructed with FASTMER. Therefore, without additional
acceleration techniques (parallel imaging etc.), our approach
requires scanning 3 slices once versus scanning 2 slices 4 times
in conventional scanning, yielding a speed-up factor of 2.6.

4.D. Parameter sensitivity analysis

In this analysis we examine the sensitivity of FASTMER
to changes in the regularization parameters of the algorithm.
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F. 2. FASTMER used in longitudinal studies: reconstruction results from 25% of k-space data. Bottom left: ground truth follow-up image reconstructed
from 100% of k-space data. The rectangle defines the region-of-interest explored in this figure. Upper row: Enlarged versions of the region-of-interest in
the ground truth image (leftmost image), followed by the results of wavelet+TV based reconstruction, the method of Samsonov et al. for longitudinal
studies (Ref. 33) and our proposed, reference-based approach (FASTMER). The numbers in brackets are the PSNR values vs the gold standard. It can
be seen that FASTMER exhibits results which are very similar to the gold standard, and reveals imaging features that are blurred or not visible in other
recoveries.

Figure 4 shows the PSNR results as λ1 and λ2 vary. The values
shown for the adjacent slices experiment were averaged over
the two thin slices used. Generally, we observe that lower
values of λ1 and λ2, with λ1 < λ2 provide reasonable PSNR.
This can be explained by the fact that over-promoting sparsity
versus consistency to measurements degrades the reconstruc-
tion quality. In addition, we see that the T2-FLAIR experiment
provides a lower range of PSNR values in comparison to other
experiments. This can be explained by the fact that similarity
is not enforced over the entire image in this case, due to many
regions of differences between FLAIR and T2.

5. DISCUSSION
5.A. Theoretical justification

The algorithm presented in our paper generalizes the
reweighted ℓ1 minimization method by Candès, Wakin,
and Boyd47 to the case where there is side information
(the reference-image in FASTMER). Their algorithm is
intuitive, works very well in practice, and comes with
analytical performance guarantees. In recent work, we
have extended their theoretical analysis to our setting.50

In particular, we developed a bound on the number of
measurements required for perfect reconstruction of x with
high probability in the presence of a reference. We also

show that adding weights highly improves the results in
comparison to other nonweighted ℓ1-minimization based
solutions.

5.B. Adaptive sampling and NUFFT

In our approach all data is acquired at once. Several
recent publications suggest that prior knowledge can also be
used to optimize data acquisition.51–53 However, since in our
framework the similarity between scans is not guaranteed,
we avoid using prior information during sampling. Another
way of utilizing the reference image in the sampling stage
would be to acquire a small number of samples in each
iteration based on the reconstruction results, in an adaptive
manner.41,54–57 This approach, which requires image recon-
struction at each iteration as part of the sampling process,
has been tested in our previous work.40 It was shown to be
time consuming leading to substantial increase of scanning
time if not programmed in hardware or accelerated by other
means.

Another issue related to sampling in our approach is the
off grid sampling performed in our simulations. As opposed
to our previous publications40,42,43 that dealt with sampling
locations on the k-space grid and FFT for reconstruction,
in this paper we used radial sampling and the NUFFT for
reconstruction. Although radial sampling reflects a realistic
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F. 3. FASTMER used within the same imaging contrast: reconstruction results from low SNR data. Each row corresponds to a single slice, from two adjacent
slices. It can be seen that high similarity exists within adjacent slices, which can be exploited to improve SNR. The left most column shows the gold standard,
acquired using four excitations (NEX=4). The input to our approach is presented as the original noisy images, acquired with single acquisition (NEX=1),
followed by the result of a Total-Variation (TV)-based reconstruction. The rightmost column shows FASTMER recovery. The numbers in brackets are the PSNR
values vs the gold standard (values were averaged over the two slices used in the experiment).

scenario for 2D, using NUFFT in the reconstruction requires
increasing the sampling ratio to obtain results comparable
to those obtained via Cartesian sampling and FFT. While
only 15% of data was required in our previous publication43

for adequate results in the T2-FLAIR experiment, the radial
trajectories and NUFFT in this paper require 25% of the data
for similar results. In addition, we need to take into account
that NUFFT requires gridding and weighting processes, which
increase the complexity of the transformation from O(nlogn)
in FFT, to O(n2) and more, depending on the algorithm used.58

5.C. Practical limitations

FASTMER provides the best results when the reference
scan and the acquired scan are spatially aligned and exhibit

a similar range of gray-level intensities. While these assump-
tions are mostly valid within the same imaging contrast (our
slice similarity application), they may not be valid for different
contrasts or scans acquired at different times.

The solution to both issues can be obtained by gray-level
normalization and realigning after acquisition. Since all data
is acquired prior to reconstruction, a wavelet based recovery
using all samples can be performed first. Although it may
exhibit poor reconstruction of fine details (as presented in
our experiments), it was found to be sufficient for gray-level
normalization and alignment parameter extraction. Then, the
extracted parameters are used for normalization and realign-
ment of the data to improve reconstruction performance. An
additional approach that is currently left for future research is
to examine more complex similarity measures (in contrast

F. 4. Sensitivity analysis: PSNR results of T2-FLAIR (left), follow-up (middle) and adjacent slice similarity (top) applications for various values of λ1 and
λ2. Each line represents a different value of λ2, according to the legend on the left.
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to the gray-level subtraction proposed in this paper), e.g.,
nonlinear similarity measures or measures that also take
into account misalignment and intensity variation between
the images. However, the solution to the corresponding ℓ1
minimization problem with a nonlinear constraint might be
more complex than FASTMER.

It is worth noting here that if the alignment and normaliza-
tion processes fail, then our iterative approach will detect low
similarity between the scans. As a result, the reference image
will not be taken into account and the reconstructed image will
converge to a wavelet-based reconstruction. This statement is
supported by experiments presented in Appendix C.

6. CONCLUSIONS

In this paper we introduced a new framework: fast MRI by
exploiting a reference image (FASTMER). We developed an
iterative reconstruction approach that supports cases in which
similarity to the reference scan is not guaranteed. While the
issue of embedding prior images in MRI reconstruction to
accelerate acquisition and improve SNR has been examined
in the past, in this paper the similarity to the reference image
is learned during reconstruction. As a result, data that is
not similar is ignored in the reconstruction process, which
enables the applicability of the method to a variety of MRI
applications.

We demonstrate the performance of our framework in
three clinical MRI applications: Reconstruction of noisy,
single-contrast data, multicontrast recovery and longitudinal
reconstruction. Results exhibit significant improvement versus
wavelet+TV based reconstruction and other MRI application-
specific approaches.

Thanks to the existence of reference images in various
clinical imaging scenarios, the proposed framework can
play a major part in improving reconstruction in many MR
applications. In future work it would be interesting to apply the
method to a wider range of medical imaging settings, such as
low dose CT and fMRI, as well as to explore the combination
of CS for parallel imaging and the proposed approach.
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APPENDIX A: ADAPTATION OF ALGORITHM I
AND II FOR REFERENCE-BASED SNR
IMPROVEMENT

The SNR improvement in Sec. 3 requires the solution of
Eq. (7) in an iterative manner. For this purpose, we define the
weights update as follows:

w i
1 =

1
1+ [|Ψ3x̂|]i

w i
2 =

1
1+ [|Bx̂|]i . (A1)

Below we describe Algorithms III and IV, which are
adaptations of Algorithms I and II to this setting, where
Γλµ(z) is defined in Eq. (5), F∗3 = diag([F∗,F∗,F∗]) and Ψ∗3
= diag([Ψ∗,Ψ∗,Ψ∗].

A III. FASTMER for SNR improvement.

Input:
Fully sampled k-space of x: z; Tuning constants: λ1, λ2

Number of k-space samples added at each iteration: Nk

Expected fidelity of measurements: A
Output: Estimated image: x̂
Initialize:

W1= I, W2= I;
Reconstruction:

while z, ∅ do
Move Nk new samples to y from z according to distance from center of

k-space.
Weighted reconstruction: Estimate x̂ by solving Eq. (7)
Update weights: Update W1 and W2 according to Eq. (A1)
end while

A IV. SFISTA algorithm for solving Eq. (7).

Input:
k-space measurements: y
Sparsifying transform operator: Ψ3

Inverse sparsifying transform operator: Ψ∗3
Fourier operator: F3

Inverse Fourier operator: F∗3
Expected fidelity of measurements: A
Tuning constants: λ1, λ2, µ

An upper bound: L ≥ ∥AF3∥2
2+

∥W1Ψ3∥2
2+∥W2B∥2

2
µ

Output: Estimated image: x̂
Initialize:

x1= z2=F∗3y, t2= 1
Iterations:

Step k: (k ≥ 2) Compute
∇ f (zk)=A∗(F∗3(A(F3zk−y)))
∇g1µ(W1Ψ3xk−1)= 1

µ W1Ψ
∗
3(W1Ψ3xk−1−Γλ1µ(W1Ψ3xk−1))

∇g2µ(W2Bxk−1)= 1
µ W2B(W2Bxk−1−Γλ2µ(W2Bxk−1))

xk = zk− 1
L (∇ f (zk)+∇g1µ(W1Ψ3xk−1)+∇g2µ(W2Bxk−1))

tk+1=
1+


1+4t2
k

2
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F. 5. T2-FLAIR experiment: Normalized difference image between the gold-standard FLAIR image and the reference T2-weighted image, and the resulting
weighting matrices, W1 and W2 of FASTMER.

APPENDIX B: SIMILARITY MAPS AND RESULTING
WEIGHTING MATRICES

In this appendix we present the similarity maps between
each gold-standard to the reference image and the resulting
weighting matrices, W1 and W2 for the cases examined in
this paper. Note that although x is defined as a vector and
the weighting matrices are defined as diagonal matrices,
W1 and W2 are represented in this section as nondiagonal
matrices, used to weight x represented as a 2D matrix, for
convenience. In addition, the difference images refer to the
absolute normalized difference.

Figures 5 and 6 show the maps for the T2-FLAIR and
follow-up experiments and Fig. 7 shows the maps for the
SNR improvement experiment. Here the difference map is
computed between the input noisy adjacent slices. It can be
seen that W1 converges to an inverse image of the wavelet
transform of X and W2 converges to an inverse of the difference
between X and X0, subject to minor changes due to the fact
that Wi is forced to values between 0 and 1 and is based
on computation from undersampled data. This convergence is
successful since image quality improves as iterations progress
(thanks to the addition of samples and the convergence of the
algorithm).

APPENDIX C: METHOD PERFORMANCE
FOR VARYING DEGREES OF SIMILARITY
WITH THE REFERENCE IMAGE

To examine the performance of FASTMER for varying
degrees of similarity between the reference image and the
acquired image we repeated the experiment described in
Sec. 4.A for misregistered reference image. Three scenarios
were examined: 5◦ intraplane rotation, 45◦ intraplane rotation,
and 5 mm interplane translation together with 5◦ rotation.
The results are shown in Table II, while the gold-standard,
wavelet+TV and FASTMER results without misregistration
are given Fig. 1.

It can be seen that the images of FASTMER converge to that
of TV+wavelet when a severe misregistration of 45◦ exists.
This is indeed expected: FASTMER ignores the reference
due to major changes between the reference and the acquired
image. Rotation of 5◦ provides an improved reconstruction
of PSNR = 32 dB, while a minor rotation and a 5 mm
translation provides results which are slightly better than the
wavelet+TV reconstruction. The results of this experiment
support the assumption described in the paper, that high degree
of similarity with the reference image provides better results
and vice versa.

F. 6. Follow up experiment: Normalized difference image between the gold-standard follow-up image and the reference baseline image, and the resulting
weighting matrices, W1 and W2 of FASTMER.
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F. 7. SNR improvement experiment: Normalized difference image between the two adjacent, low SNR input slices, and the resulting weighting matrices, W1
and W2 of FASTMER.

T II. FASTMER results at various degrees of similarity with the reference image.

Misregistration description Image used as a reference FASTMER results PSNR (dB)

Rotation of 5◦ 32

Rotation of 45◦ 28

Rotation of 5◦ + interplane
translation of 5 mm

29
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