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Abstract—Wireless communication systems to date primarily
rely on the orthogonality of resources to facilitate the design and
implementation, from user access to data transmission. Emerging
applications and scenarios in the sixth generation (6G) wireless
systems will require massive connectivity and transmission of a
deluge of data, which calls for more flexibility in the design
concept that goes beyond orthogonality. Furthermore, recent
advances in signal processing and learning, e.g., deep learning,
provide promising approaches to deal with complex and pre-
viously intractable problems. This article provides an overview
of research efforts to date in the field of signal processing and
learning for next-generation multiple access, with an emphasis on
massive random access and non-orthogonal multiple access. The
promising interplay with new technologies and the challenges in
learning-based NGMA are discussed.

I. INTRODUCTION

THE fifth generation (5G) wireless systems are currently
reaching commercial maturity, and next-generation wire-

less networks are expected to support extremely high data
rates and radically new applications, which require massive
connectivity, such as Internet of Everything (IoE), metaverse,
augmented reality and industry 4.0. The International Data
Corporation (IDC) forecasts that by 2025 there will be 55.7
billion connected devices, most of which will be Internet of
Things (IoT) devices, generating 73.1 zettabytes (ZB) of data
[1].

Motivated by these demands, substantial breakthroughs
must be achieved by the sixth generation (6G) communication
systems [2], [3], including i) one terabit per second (Tbps)
peak data rate to satisfy the data rate requirements of emerging
applications and Augmented Reality (AR) / Virtual Reality
(VR) communication, ii) higher spectral efficiency (SE) for
massive connectivity, e.g., Internet of Things (IoT) devices
that are ten times greater than that of 5G, with low latency and
low cost, iii) hyper reliable and low-latency communication,
e.g., in an industrial environment for full automation, control,
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and operation, iv) the support of distributed compute and
AI-powered applications, which requires integrated AI and
communication, v) the demand for multiple functions, e.g.,
sensing and navigation [4]. To date, wireless communication
systems primarily rely on the orthogonality of resources to
facilitate design and implementation, from user access to data
transmission. The challenging new requirements in 6G call for
more flexible design principles that go beyond orthogonality.
Especially, breakthroughs in physical-layer random access and
multiple-access technologies are critical, in order to provide
effective support to all upper-layer services. It is desired to
design new techniques beyond the frequency division multiple
access (FDMA) in the first generation (1G), time division
multiple access (TDMA) in the second generation (2G), and
orthogonal frequency division multiple access (OFDMA) in
the fourth generation (4G) and 5G. To achieve high SE and
high energy efficiency (EE) in the next-generation wireless
networks, next generation multiple access (NGMA) technolo-
gies will likely deviate from orthogonality as the design
principle.

In orthogonal multiple access (OMA) techniques, such as
TDMA, FDMA, and OFDMA implemented in 1G through 5G
systems, each resource block is allocated to a single user. In
contrast to conventional multiple-access techniques, the key
concept of NGMA is to intelligently accommodate multiple
users in the allotted resource blocks, e.g., time slots, frequency
bands, spreading codes and beams, in the most effective
manner for different applications. By integrating with other
advanced transmission concepts, the performance of multiple
access can be further enhanced. Such advanced transmission
concepts include RISs [5], [6], cell-free massive MIMO [7]–
[12], full duplex relaying, heterogeneous networks, mmWave
communications [13]–[15], and THz communications [16].
More specifically, by properly integrating NGMA with these
advanced concepts, synergy effects can be realized, providing
extra benefits for network performance. For example, RISs can
provide additional channel paths to build stronger combined
channels with apparent strength differences and also artificially
re-align users’ combined channels to obtain more gain [17].
RIS-assisted medium access control protocol is designed,
analyzed and optimized in [18]–[20] to improve the system
throughput for NGMA. In [21], a joint active and passive
beamforming scheme is designed in distributed RIS-aided
massive access multiple-input single-output systems with sup-
porting non-orthogonal multiple access (NOMA) and OMA
transmissions simultaneously. In cell-free massive MIMO,
since access points (APs) serve all users on the network,
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colliding users located far away can also be detected by some
APs based on the distinction of the pilot powers received [22].

The goals of what people envision being possible within
the communication bands are expanding. In particular, there
is a goal to use communication signals to perform sensing (or
at least assist in sensing). In this case, signal waveform and
signal processing are normally jointly designed, e.g., to enable
integrated sensing and communication (ISAC) and integrated
navigation and communication (INAC). The superposition of
the communication and sensing signals in ISAC is a kind
of non-orthogonal resource sharing, which shares a similar
idea with NOMA. The prominent features of NOMA in
efficient interference management and flexible resource allo-
cation inspire sensing interference cancellation for ISAC [23]–
[25]. Moreover, our goal in communicating might not be to
communicate raw data, but might be to communicate meaning.
Recently, with the rapid development of machine learning and
artificial intelligence, semantic communications have emerged
as a hot research topic, which addresses the semantic- and
effectiveness-level communication problems [26]–[31]. Effi-
cient multiple access schemes designed for semantic commu-
nication are required to accommodate the new semantic users
given the limited radio resources.

Massive random access (MRA) and NOMA1 are key tech-
nologies in NGMA. Random access is a necessary process
for establishing wireless links between terminals and net-
works, which is extremely challenging in the scenario of a
large number of devices, i.e., MRA. On the other hand, by
employing superposition coding [32] at the transmitter and
successive interference cancellation (SIC) [36] at the receiver,
NOMA allows more users to be served than conventional
multiple access techniques. Advances in computing and digital
signal processing technologies now enable us to deal with
some complex and previously intractable problems arising in
NGMA [37]–[41]. Recent research has shown improvements
in connectivity [37]–[39], system capacity (and SE) [40],
[42], [43] and reduction in overall latency [44], [45]. In
particular, artificial intelligence and machine learning (AI /
ML) have become one of the main flagship activities in the 3rd
generation partnership project (3GPP), which includes a wider
use of AI / ML for optimizing radio access networks (RAN)
and air interfaces [46]–[48]. AI-empowered multiple access
for spectrum sensing, protocol designs, and optimizations is
reviewed in [49]. The mining, classification, recognition, pre-
diction, and learning capabilities of advanced signal processing
technology make wireless networks more intelligent, and it is
also essential to study the implementative and interpretative
nature of technology to improve the performance of the
NGMA.

The organization of this article is as follows. Section II
reviews the background of MRA and NOMA for NGMA,
including both fundamental limits and practical schemes. We
provide an overview of the current research contributions using

1In this paper we will use the acronym “NOMA” to denote the class of
non-orthogonal communication techniques that employ a single transmission
codebook per user and SIC at the receiver. Some other classes of non-
orthogonal techniques use multiple codebooks for each user, including time-
sharing schemes [32] and rate-splitting schemes [33]–[35].

advanced signal processing and machine learning for MRA
and NOMA in Section III and Section IV, respectively. The
interplay between NGMA and other new next-generation tech-
nologies and scenarios, e.g., age of information (AoI), near-
field communications (NFC), ISAC, simultaneously transmit-
ting and reflecting surfaces (STARS) and semantic communi-
cations, is discussed in Section V. In Section VI, we highlight
several implementation challenges in using learning-based
methods for NGMA. Finally, Section VII concludes the paper.
Table I provides a list of acronyms used in this paper.

II. BACKGROUND OF MASSIVE RANDOM ACCESS AND
NON-ORTHOGONAL MULTIPLE ACCESS

In this section, we introduce the background of MRA
and NOMA, with the focus on the non-orthogonal use of
wireless resources to enhance massive connectivity and data
transmission.

A. Massive Random Access

Massive machine-type communication (MMTC) is one of
the three major application scenarios in 5G. It is still of signifi-
cant importance in Beyond 5G (B5G) and 6G, making it one of
the most popular research directions in recent years. Conven-
tional communication systems are mainly designed for human-
type communication (HTC), with the goal of supporting the
transmission of a large amount of data for a small number
of users at high data rates. MMTC has distinct characteristics
from existing HTCs, such as uplink dominant, massive user
access, sporadic communication, small packet transmission,
low communication rate and low cost devices. The indicator
for access devices in 5G is 106 users per square kilometer,
while the number of devices that need to be supported in 6G
has been increased to 107 users per square kilometer [50].
If the number of users is large, there are issues related to
pilot collision for reliable channel estimation. Some NOMA
schemes have been extensively studied in 5G standards [51].
This is still a huge challenge for the design of next-generation
communication systems, as the existing access mechanism for
5G MMTC is not sufficient to efficiently and reliably support
the transmission of small data packets for massive devices. As
shown in Fig. 1, the goal of MRA is to detect a few active
devices from a large number of devices, and then NOMA can
be used to support those multiple active devices. Due to the
complexity of SIC in NOMA, it is advisable to divide users
into groups with orthogonal resources, and apply NOMA for
each group independently.

Various coordinated multiple access technologies, e.g.,
FDMA, TDMA, CDMA2, OFDMA, space division multiple
access (SDMA), and NOMA, require specific protocols to effi-
ciently manage communication among users with access to the
same systems, whose fundamental limits are usually character-
ized as the classical multiple-access channel (MAC) capacity.
With an increasing number of randomly activated users, the
overhead of coordinating active users would overwhelm the
system. Uncoordinated multiple access allows a set of users

2Here we mean the synchronous CDMA case.
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TABLE I: LIST OF ACRONYMS

AA-MF-SIC Activity-Aware Low-Complexity Multiple Feedback Suc-
cessive Interference Cancellation MAP Maximum A Posteriori

ADMM Alternating Direction Multiplier Method MC-NGMA Multi-Concept-Oriented Next Generation Multiple Access

AI Artificial Intelligence MF-NGMA Multi-Functional-Oriented Next Generation Multiple Ac-
cess

AMP Approximate Message Passing MIMO Multiple-Input Multiple-Output
ANOMA Asynchronous Non-Orthogonal Multiple Access ML Machine Learning
AP access point MLE Maximum Likelihood Estimation
AR Augmented Reality MMSE Minimum Mean Squared Error
AUD Active User Detection MMTC Massive Machine-Type Communication
AWGN Additive White Gaussian Noise MMV Multiple Measurement Vector
BC Broadcast Channel mmWave Millimeter-wave
BCS Bayesian Compressive Sensing MnAC Many-Access Channel
BER Bit Error Rate MPA Message Passing Algorithm
BS Base Station MRA Massive Random Access
BOMP Block Orthogonal Matching Pursuit MRC Maximum Ratio Combining

BSAMP-CP Backward Sparsity Adaptive Matching Pursuit with Check-
ing and Projecting MS Mode Switching

BSBL block sparse Bayesian learning M-SP Modified Subspace Pursuit
CCS Code Compressed sensing MT-NGMA Multi-Tool-Oriented Next Generation Multiple Access
CDMA Code Division Multiple Access NFC Near-Field Communications
CD-NOMA Code-Domain Non-Orthogonal Multiple Access NGMA Next Generation Multiple Access
CE Channel Estimation NN Neural Network
CF mMIMO Cell-Free massive Multiple Input Multiple Output NOMA Non-Orthogonal Multiple Access
C-NOMA Cooperative Non-Orthogonal Multiple Access OAMP Orthogonal Approximate Message Passing
CRAN Cloud Radio Access Network OFDMA Orthogonal Frequency Division Multiple Access
CS Compressed Sensing OLS Orthogonal Least Square
CSA Coded Slotted Aloha OMA Orthogonal Multiple Access
CSI Channel State Information OMP Orthogonal Matching Pursuit
CS-MUD Compressive Sensing based Multi-User Detection PDMA Pattern Division Multiple Access
CTSMA Coded Tandem Spread Spectrum Multiple Access PD-NOMA Power-Domain Non-Orthogonal Multiple Access
DDPG Deep Deterministic Policy Gradient PtrNet Pointer Network
DL Deep Learning PUPE Per-User Probability of Error
DL Downlink RAN Radio Access Networks
DNN Deep Neural Network RAR Random Access Response
DoFs Degrees-of-Freedom RIS Reconfigurable Intelligent Surface
DQN Deep Q-Network RL Reinforcement Learning
DRL Deep Reinforcement Learning SBL Sparse Bayesian Learning
EE Energy Efficiency SC Spatial Coupling
ELAA Extremely Large-scale Antenna Array SCA Successive Convex Approximation
ES Energy Splitting SCMA Sparse Code Multiple Access
FDMA Frequency Division Multiple Access SDMA Space Division Multiple Access
FISTA Fast Iterative Shrinkage-Thresholding Algorithm SE Spectral Efficiency
FMCW Frequency Modulated Continuous Wave SI Side Information
GGAMP Gaussian Generalized Approximate Message Passing SIC Successive Interference Cancellation
GGSO Group Gram-Schmidt Orthogonalization SISD Structured Iterative Support Detection
GOMP Group Orthogonal Matching Pursuit SISO Single-Input Single-Output
HTC Human-Type Communication SMV Single Measurement Vector
ICT Information and Communication Technology SNR Signal-to-Noise Ratio
IDC International Data Corporation SSM Structured Sparse Model
INAC Integrated Navigation And Communication STARS Simultaneously Transmitting And Reflecting Surfaces
IoE Internet of Everything T&R Transmission and Reflection
IoT Internet of Things TA-BSASP Threshold Aided Block Sparsity Adaptive Subspace Pursuit
ISAC Integrated Sensing And Communication TBM Tensor-Based Modulation
ISI Inter-Symbol Interference TDMA Time Division Multiple Access
ISTA Iterative Shrinkage-Thresholding Algorithm THz Terahertz
IUI Inter-User Interference TS Time Switching
LDMA Location-Division Multiple Access UAV Unmanned Aerial Vehicle
LDPC Low-Density Parity-Check UL Uplink
LDS-CDMA Low-Density Signature Code Division Multiple Access USL Unsupervised Learning
LIP Linear Inverse Problem VAE Variational Autoencoder
LoS Line of Sight VAMP Vector Approximate Message Passing
LSTM Long Short-Term Memory VR Virtual Reality
MAC Multiple-Access Channel ZB Zettabytes
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Fig. 1: Illustration of the MRA and NOMA scenarios.

to transmit over a common wireless medium opportunistically
and independently, resulting in different theoretical analyses.

1) Basic Principles: From the perspective of information
theory, the fundamental limits of MRA have been character-
ized in various settings. The many-access channel (MnAC) is
studied in [52], which provides the asymptotic regime where
the total number of users n increases as the blocklength m
tends to infinity. Given the stability requirement, the total
number of users n increases with the frame length [53], [54].
In [55], the age of information for random access is derived,
revealing its relation with the number of total nodes and
their activation probability. Finite-blocklength achievability
bounds for the random access channel under average-error
and maximal-power constraints are presented in [56]. Non-
asymptotic random coding achievability bounds with the cri-
terion of per-user probability of error (PUPE) are derived [57],
[58]. Under the PUPE criterion, non-asymptotic achievability
and converse bounds on the minimum required energy per bit
for MRA in MIMO quasi-static Rayleigh fading channels are
established.

A fundamental problem in MRA is to detect the activity
of users. Assume that there are in total n users sharing a
wireless channel, and both the transmitter and the receiver have
a single antenna. Each user can be assigned a unique dedicated
codeword represented by an m-dimensional vector in A,
leading to a way of coordinated multiple access. Alternatively,
user could randomly select codewords from the codebook A to
transmit, leading to uncoordinated multiple access. The signal
at the BS contributed by codeword aj can be modeled as xjaj
where xj is a complex scalar that represents the product of
the transmitted symbol and channel gain. If the codeword is
not transmitted, xj = 0. The total received signal at the BS
can be expressed as

y =

n∑
j=1

xjaj + z = Ax+ z, (1)

where z represents noise and A = [a1, . . . ,an] denotes the

codebook. Note that this is a general mathematical model,
and can be easily solved if m ≥ n. In the case of users
with unique codewords, active users and their corresponding
channel are obtained according to the estimated x. For users
randomly selecting codewords from the common codebook,
some collisions may occur if multiple users select the same
codeword, and further collision resolution techniques are re-
quired to correctly identify all access users. When m ≪ n,
i.e., the total number of observations is much smaller than
the total number of codewords, it is not possible to solve
for a unique x even if the noise term is equal to zero, as
there is a large number of solutions satisfying equation (1).
We are interested in this case, as it is desired to support a
large number of potential users with limited resources. Since
most codewords are inactive, a suitable sparsity constraint on
x may rule out all solutions except the one that is expected.
Therefore, the activity detection problem in MRA is equivalent
to the sparse recovery problem in compressed sensing (CS),
and the identities of active users are obtained according to
the activated codewords. Furthermore, with some variation of
assumptions, different problems in MRA boil down to the
same sparse recovery problem in equation (1). For example,

• if all users transmit with the unit power, recovering x in
equation (1) leads to joint activity detection and channel
estimation;

• for the Gaussian MAC channel, the message of user j can
be carried by xj and recovering x decodes the messages
of active users.

Searching for an x in equation (1), that has these sparsity
properties, leads to the problem of minimizing the number
of selected codewords that could have generated the received
signal y, which involves minimizing the “0-semi-norm” of
x. It is an ill-posed sparse linear inverse problem, which
has a non-continuous objective function and is NP-hard [59].
An alternative approach is to employ a smoothed objective
function, e.g., the ℓ1 norm of x, and the CS theory claims
that x can be recovered with a very high possibility when the
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length of the codeword satisfies

m = O
(
s log

n

s

)
, (2)

where s denotes the number of active users. The above results
assume a single BS antenna. Multiple antennas at the BS can
bring additional improvements in MRA [60], [61]. In addition
to these CS-based methods, structured access protocols, e.g.,
coded tandem spread spectrum multiple access (CTSMA) [62],
which solve the access problem from the coding perspective,
have also attracted considerable attention.

From a signal processing standpoint, there are two primary
approaches to improving the performance of MRA. One is
to employ advanced signal processing techniques that extract
and leverage various prior information or structures embedded
in the signal. More details will be presented in Section III.A.
Another way is to employ the power of data-driven methods,
or namely, machine learning methods. Plenty of empirical
evidence has shown that deep learning can significantly in-
crease convergence speed and accuracy in solving optimization
problems, and even exploit knowledge embedded in complex
problems that is usually difficult to model. More research
results along this line will be presented in Section III.B.

2) Grant-Free Random Access: Most of the wireless com-
munication systems currently in operation use a grant-based
random access mechanism. Each active device utilizes a
preamble sequence to notify the BS that it has become active,
after which the BS sends a response in the form of a grant
for transmitting the device’s data. Therefore, active devices
must engage in multiple signaling interactions with the BS to
establish connections and allocate specific resources for data
transmission. However, due to the majority of small data pack-
ets transmitted in MMTC, the negligible signaling overhead in
large data packet transmission accounts for a relatively large
proportion in MMTC, which cannot be ignored and often leads
to an excessive proportion of signaling overhead, resulting in
low EE and SE for the transmission of small data packets.
Furthermore, the cumbersome handshake process in grant-
based random access inevitably leads to significant latency,
which makes the grant-based mechanism unsuitable for low
latency applications.

A promising technology to support MMTC is grant-free
random access, where channel resources are accessed by active
devices without obtaining permissions from the BS. The grant-
base random access and grant-free random access schemes
are illustrated in Fig. 2. Grant-free random access brings
significant benefits in reducing the signaling overhead and
access latency. It has the potential to be applied in many
emerging scenarios. A comprehensive review of grant-free
random access protocols and techniques in satellite-based IoT
networks is showed in [63]. A typical grant-free random access
scheme is to assign a unique codeword, also called preamble,
pilot or signature in the literature, to each device. To support
massive devices with limited resources, non-orthogonal code-
words need to be employed. Active devices initiate access by
sending their codewords, and the BS conducts activity detec-
tion via detecting these codewords from the received signal.
Another type of grant-free random access is unsourced random

access, also called uncoordinated multiple access, in which
all devices share the same codebook to transmit messages
directly and the BS does not have the identity information
of the active device. The goal of unsourced random access
is to decode the information transmitted by the devices. If
the device needs to be identified, the identity information can
be included in the transmitted message. The benefits brought
by grant-free random access comes at an increased likelihood
of collisions resulting from uncoordinated channel access
and inter-user interference due to the non-orthogonal access
resources. Therefore, novel reliability enhancement techniques
are needed.

B. Non-Orthogonal Multiple Access

In OMA, a single wireless resource can be allocated to
only one user, such as by frequency division or time division.
However, with the development of 5G, B5G, and the arrival
of 6G, there will be an explosive increase in data traffic and
access demand and traditional OMA cannot meet a series
of challenging indicators, such as connectivity density and
spectral efficiency. NOMA is proposed to improve spectrum
efficiency and access capacity and may encompass a variety of
use cases or deployment scenarios [51]. Compared to OMA,
different NOMA users are multiplexed without the constraint
of strict orthogonal radio resource allocation. With the help
of optimized resource allocation and advanced receivers, the
overall throughput of the system can be greatly improved.

1) Basic Principles: The capacity region of the multiaccess
fading uplink channel is characterized in [64], [65]. Mola-
vianJazi and Laneman establish the second-order achievable
rate regions for the Gaussian MAC in [66], and Yavas et
al. give the finite-blocklength achievability bounds for the
Gaussian MAC and random access channel (RAC) under
average-error and maximal-power constraints in [56]. The
achievable rate region of OMA is a subset of the capacity
region for single-input single-output (SISO) Gaussian MACs
and broadcast channels (BCs), since each user can only use
a portion of the resource blocks in OMA [32]. NOMA can
achieve reliable communication at Synchronous a larger set
of rates in the SISO cases. Consider synchronous power-
domain NOMA (PD-NOMA), where users’ signals are su-
perimposed via superposition coding and then receivers adopt
SIC techniques for interference cancellation. Fig. 3 illustrates
the downlink and uplink signal transmission and processing
of PD-NOMA. For downlink transmission with two users, the
transmitted signal of the BS using superposition coding can
be expressed as

x =
√
p1s1 +

√
p2s2, (3)

where s1 and s2 are the transmitted signals for the two users,
and p1 and p2 are the corresponding transmit power. Let h1

and h2 denote the channel coefficients of User 1 and User
2, respectively, and σ2 denote the noise power. Under the
assumption of |h1|2 > |h2|2, User 1 first decodes the signal
of User 2 and subtracts it from the received signal through
SIC and then decodes its intended signal. On the other hand,
User 2 directly decodes its intended signal by treating User
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Fig. 3: An illustration of downlink and uplink PD-NOMA.

1’s signal as noise. Since User 1’s channel is stronger, User
1’s achievable rate is larger than that of User 2 and User 1 can
decode User 2’s signal and cancel it. Therefore, the achievable
rates of User 1 and User 2 are given by

R1 = log2

(
1 +

p1|h1|2

σ2

)
(4)

and

R2 = log2

(
1 +

p2|h2|2

p1|h2|2 + σ2

)
, (5)

respectively. For synchronous uplink NOMA transmission, the
two users send their signals to the BS. At the BS, users 1’
signal which experiences stronger channel is first decoded and
then users 2’ signal. In both the downlink and the uplink, OMA

is only able to achieve some specific points on the unicast
capacity region, e.g., the points where only one user is active,
while NOMA is more flexible [67]. For example, NOMA with
joint decoding achieves the “corner points” of the multiple
access region in the two-user single-antenna uplink case, and
points on the “dominant face” can be achieved by time sharing
between the two “NOMA with sequential decoding” schemes
or rate splitting [68]. For the Gaussian single antenna downlink
channel, the standard superposition coding approach is indeed
a NOMA scheme, and can achieve an arbitrary point on the
boundary of the unicast capacity region. For the multiple
antenna case, the channel is not degraded, and one needs
a more sophisticated form of transmission, e.g., dirty-paper
coding [69].

Although NOMA has advantages such as high bandwidth
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efficiency and connectivity, there are still many challenges to
be tackled. As mentioned above, SIC is the key technology
for demodulating superimposed signals. However, if errors
occur during the demodulation of weak user’s signals in the
first stage, it will subtract the wrong modulated symbol from
the received superimposed signal and cause a decrease in the
performance of the demodulation in the second stage. Accurate
channel state information (CSI) is crucial in NOMA. Error in
estimating the CSI may lead to user grouping, ordering, and
decoding errors. The increasing number of connected users and
larger scale antennas in the next generation wireless networks
will make the acquisition of CSI more challenging. Another
challenge in NOMA is the security issue. Existing research on
secure communication to avoid untrusted users and external
eavesdroppers usually assumes the availability of full, partial,
or statistical CSI. However, it is difficult to obtain CSI in the
case of passive eavesdropping. Some interesting techniques,
e.g., multi-dimensional directional modulation, cyclic feature
suppression-based techniques, and channel-based inter-leaving
may be potential solutions for enhancing security [70].

2) Asynchronous NOMA: Because of the distributed nature
of multi-user networks and the effects of multipath and propa-
gation delays, signals from different users experience different
time delays to the receiver [71]. Perfect symbol synchroniza-
tion requires feedback and coordination, which complicates
the system greatly. Having multiple antennas at the receiver
makes it even more complicated. Assuming a multiple antenna
receiver in uplink NOMA, one can only synchronize the
symbols of the received signals perfectly at one of the receive
antennas and the rest of antennas may experience imperfect
timing synchronization among received signals. Even if such
a complete symbol synchronization is possible, it is not clear
if it is desirable. In fact, the MAC’s capacity-region for a
system with time asynchrony and rectangular waveforms in
CDMA is larger than that of a perfectly synchronized system
[72]. Also, intentionally adding symbol-level timing offsets
to make the signals asynchronous has shown advantages in
managing interference in MIMO [71], [73], [74] and in differ-
ential decoding for MACs [75], [76]. The possible advantages
along with the difficulties in achieving perfect synchronization
motivate a thorough analysis and design of NOMA systems
under imperfect timing synchronization.

For uplink asynchronous NOMA (ANOMA), the capacity-
region for two users utilizing different pulse shaping methods
has been derived in [77]. The analysis shows that the asyn-
chronous transmission enlarges the capacity-region. In fact, not
only does asynchronous transmission, i.e., timing mismatch,
improve the performance of NOMA systems, but also SIC is
not optimal for asynchronous NOMA [77]. Let us assume User
k transmits

√
Pksk[n], where sk[n] denotes the nth normalized

transmitted symbol and Pk denotes the transmit power. Then,
under imperfect timing synchronization among different users,
the received signal at the BS is given by

y(t) =

N∑
n=1

K∑
k=1

hk

√
Pksk[n]p(t− nT − τkT ) + η(t), (6)

where N represents the frame length, K is the number

of users, T is the symbol interval, τk denotes the relative
time delay at User k, p(.) is the pulse-shaping filter, and
η(t) denotes the normalized additive white Gaussian noise
(AWGN). The set of sufficient statistics can be found by proper
filtering at the receiver and over-sampling K times, each time
synched with one of the users [71]. The resulting input-output
model is

y = RHs+ η, (7)

where y,R,H, s, and n represent the set of samples, the
timing offsets matrix, the effective channel matrix, the trans-
mited symbols, and the noise vector, respectively. Note that
the perfect synchronization results in the conventional system
model of y[n] =

∑K
k=1 hk

√
Pksk[n] + n[n].

In a perfectly symbol-synchronized NOMA system, at each
time instant, only the inter-user interference (IUI) degrades the
performance. In an asynchronous NOMA, not only IUI but
also inter-symbol interference (ISI) degrades the performance.
Therefore, the conventional SIC is not optimal anymore and
efficient joint detection methods may be needed. In addition,
because of the timing asynchrony, sufficient statistics results
in over-sampling and the corresponding sampling diversity
[71] can improve the overall performance. While the conven-
tional wisdom suggests that the imperfect timing increases the
overall interference and the overall performance is degraded,
surprisingly, imperfect timing in fact decreases the overall
interference, because of the benefits of sampling diversity [77],
as the reduction in IUI outweighs the addition of ISI [78].

For downlink asynchronous NOMA, the superposition
is performed at the transmitter and the transmitted signal
is received by the intended users [79], [80]. Adding in-
tentional time delays at the transmitter can in fact im-
prove the performance. The transmitted signal, including the
added intentional time delays, can be written as s(t) =∑N

n=1

∑K
k=1

√
Pksk[n]p(t− nT − τkT ), and the received

signal by User k is represented as

yk(t) = hks(t) + ηk(t). (8)

Similar to the case of uplink ANOMA, the set of sufficient
statistics can be found by proper filtering and over-sampling
as

yk = hkRks+ ηk, (9)

where yk,Rk, hk, and ηk represent the set of samples, the
timing offsets matrix, the effective channel coefficient, and
the noise vector at User k, respectively. Note that the perfect
synchronization results in the conventional system model of
yk[n] = hk

∑K
j=1

√
Pjsj [n] + nk[n]. Note that any User j

with |hj | < |hk| will have a smaller capacity compared with
that of User k. Therefore, its transmission rate will be chosen
lower than the capacity of User k and from an information
theoretical point of view, User K can decode the signal of
a weaker user with no error. Using SIC, each user decodes
all signals from weaker users and removes them from the
received signal. Then, it considers the remaining interference
from the stronger users as noise and decodes its own message.
Downlink ANOMA has to deal with similar imperfect timing
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issues discussed for uplink ANOMA; however, it can perform
coordinated resource management. For instance, power allo-
cation can be performed globally with collective CSI from
all users. More importantly, because of the virtual-MIMO
nature of the system model in (9), enhanced joint processing
can be performed at the transmitter to exploit the virtual-
MIMO structure. The joint processing at the transmitter can
be realized by intelligent correlated precoding and circumvents
the need for SIC, as done in referece [80]. The idea of adding
intentional time delays have been extended to intentionally
adding frequency offsets in NOMA multi-carrier and OFDM
systems [81], [82].

III. MASSIVE RANDOM ACCESS

In this section, we introduce model-based methods, using
advanced signal processing, and learning empowered methods
for MRA.

A. Model-Based Methods for MRA

For active user detection in MRA, model- methods are clas-
sified into sparse recovery based methods, structured sparse
recovery based methods, and low-rank matrix/tensor recovery
based methods, as shown in Fig. 4.

1) Sparse Recovery Based Methods for MRA: As discussed
in the previous section, the grant-free access scheme is at-
tractive in MMTC, where active devices directly transmit
their pilot and data to the BS without grant. Simultaneously
conducting accurate active user detection (AUD) and CE with
non-orthogonal pilots is critically important and challenging
for device to successfully establish reliable communication
with the BS. Fortunately, the sporadic nature of MMTC traffic
results in sparse user activity patterns. By using sparsity, the
non-orthogonal pilot detection and CE problem can be mod-
eled as a sparse linear inverse problem (LIP), thus reminiscent
of the application of CS. By solving the LIP, not only do
we realize highly reliable AUD and accurate CE, but also we
alleviate the multi-user interference problem.

CS Based Typical Methods: Various CS based algorithms
could be used to solve the AUD and CE problem, e.g.,
iterative shrinkage-thresholding algorithm (ISTA) [83], fast
ISTA (FISTA) [84], orthogonal matching pursuit (OMP) [85],
message passing [86], and sparse Bayesian learning (SBL)
[87], [88].

• OMP: Schepker and Dekorsy used OMP [89] and or-
thogonal least squares (OLS) for MUD, which iteratively
selected the most probable active users and subsequently
estimated their data [90]. Group orthogonal matching
pursuit (GOMP) was further exploited to deal with the
asynchronicity case, where chips are not received at the
same time [91]. As CS based methods have high com-
putational complexity, most literature considers ≤ 104

devices in their experiments. To achieve good scalability,
a contention-based MRA scheme was proposed in [92]
to support massive access, e.g., ≥ 106, within a certain
time-frequency resource, and a one-step access scheme
was adopted to save energy and spectrum resources.

• AMP: The approximate message passing algorithm
(AMP) [86] is attractive in AUD and CE owing to its high
computational efficiency. Reference [93] considered two
cases depending on whether the large-scale component
of channel fading is known in the BS and designed the
minimum mean squared error (MMSE) denoiser for AMP
according to the channel statistics. It also provided an an-
alytical characterization of the probabilities of false alarm
and missed detection through state evolution. Although
AMP is an iterative algorithm with high computational
efficiency, it is sensitive to the distribution of the pilot.
Small deviations from the independent and identically
distributed (i.i.d.) sub-Gaussian random variable model
of the pilot can cause the algorithm to diverge. To
address this issue, reference [94] developed a vector
AMP algorithm (VAMP) and proved that VAMP has strict
scalar state evolution, which is applicable to a wider class
of pilot distributions.

• SBL: SBL is a popular approach for single sparse
signal recovery from a Bayesian perspective, and has
empirically shown superior recovery performance [95],
[96]. Gaussian generalized approximate message passing
(GGAMP) is incorporated into SBL in [87], and the
approach is further extended from the single measure-
ment vector (SMV) to the multiple measurement vectors
(MMV). Numerical experiments show that the proposed
algorithm has great robustness and computational advan-
tages. Moreover, in [88] considered a general joint-sparse
model and provided a Bayesian approach that extends the
SBL for the joint-sparse model.

• Other CS-based methods: Taking advantage of the total
squared coherence of pilot sequences and convex re-
laxation, a novel pilot design approach was proposed
for joint AUD and CE in [97]. The proposed design
exhibits superior performance in relation to the ran-
dom pilot design and the design based on tight frames
[98]. According to CS theory, the overhead of CS-based
methods highly depends on the sparsity and the number
of devices. A more sparse representation of the active
device’s channel can be obtained by using dictionary
learning. In view of the distinct wireless propagation
environments in different cells, a dictionary-learning-
enhanced AUD and CE method for massive MIMO
systems was proposed in [99], which uses a dictionary
learned from the historical channel information of the
specific cell. A dictionary learning-based uncoordinated
access method was proposed to jointly identify the set
of active devices and detect data symbols embedded in
signals transmitted by active devices in [100].

CS-Based Methods Using Additional Information: Ad-
ditional information has been used for AUD and CE to
achieve better performance. Various additional information
could be exploited, including constellation information, active
user temporal correlation, channel spatial correlation, and so
on.

• Use prior information: Devices might have different
service requirements, which in turn leads to different data
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Fig. 4: Advanced signal processing for MRA.

lengths for transmission. The data length diversity was
exploited in [101] to enhance AUD and CE. In [102],
different prior information was used simultaneously to
improve the performance of MRA. In specific, the joint
sparsity between the channel and the data was used to im-
prove the accuracy of pilot detection, and the modulation
information and the cyclic redundancy check were used
for channel correction to improve the performance of data
recovery. Reference [103] improved the performance of
AUD and CE using side information (SI) brought from
data recovery, and improved the performance of data
recovery in SIC using the SI brought from AUD.

• Use temporal correlation: Modified subspace pursuit (M-
SP) was proposed to exploit a prior support and the prior
support quality information in massive MIMO CE [104].
Instead of blindly using the prior support, the proposed
approach utilizes it adaptively by taking the quality in-
formation into account. Taking advantage of the temporal
correlation of the channel, the required pilot overhead
was further reduced. Moreover, they proved that an
appropriate prior support can lead to better CS recovery
performance and further propose some robustness designs
to combat incorrect prior support quality information.
The channel response estimated in the previous slots was
used as SI when estimating the channel response for the
current slots in [105]. An algorithm called AMP-SI was
proposed to embed the SI into the denoiser design under
the SMV-AMP framework for single-antenna systems.
In [106], it was proposed to leverage the SI of the
temporal correlation in the activity of the device, that
is, the explicit quantification of the correlation between
the activity mode estimated by the AMP algorithm in the
former coherent block and the actual activity mode in the
current coherent block. The SI was applied to the AMP
denoiser design, and a new SI-aided AMP framework

was derived. Numerical results showed that the proposed
method can significantly improve the performance of
AUD and CE.

• Use channel spatial correlation: An alternating direction
multiplier method (ADMM) using prior information on
second-order statistics, that is, spatial channel covariance
of each user channel, was proposed to improve perfor-
mance in [107]. In specific, the original problem of AUD
and CE can be formulated as:

min
X

1

2
∥SX−Y∥2F + β1 ∥X∥2,1 , (10)

where Y, S and X denote the received signal matrix,
the pilot matrix/sensing matrix and the effective channel
matrix, respectively. ∥·∥F represents the Frobenius norm.
∥ · ∥2,1 is a matrix norm that sums up the ℓ2 norm of
all rows in the matrix. β1 denotes a trade-off between
the fidelity term and the row-sparsity level of X. By
using the information embedded in the estimated channel
covariance matrix, the problem can be reformulated as:

min
X

1

2
∥SX−Y∥2F + β1∥X∥2,1

+ β2

N∑
i=1

I (xi)
∥∥∥xix

H
i − R̃i

∥∥∥2
F
, (11)

where R̃i is the estimated scaled covariance matrix, xix
H
i

is the sample covariance matrix, and β1 and β2 are
parameters that control the trade-off. I (xi) is defined as
follows:

I (xi) =

{
1, ∥xi∥2 > 0,
0, ∥xi∥2 = 0,

∀i ∈ N (12)

where N = {1, . . . , N}. The extra channel space cor-
relation in (11) improves the AUD and CE performance
with lower signaling overhead.
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• Using constellation information: Constellation informa-
tion has been used to improve AUD and CE performance
in literature. In [108], a low complexity detection al-
gorithm for MMTC is proposed, namely, activity-aware
low complexity multiple feedback successive interference
cancelation (AA-MF-SIC). The main idea of this method
is to evaluate the reliability of each estimated symbol. If
the current estimate fails to satisfy some given constraint,
other possible constellation points are then considered
with the cost of increased computational complexity. In
[101], backward sparsity adaptive matching pursuit with
checking and projecting (BSAMP-CP) was proposed to
jointly carry out sparsity level estimation, AUD, CE and
data recovery in two phases. Specifically, in the first
phase, it conducted the sparsity level estimation in a
backward manner, exploiting the data length diversity of
active users. In the second phase, it jointly conducted
AUD, CE and data recovery, taking the joint sparsity
information of pilot and data symbols, the error checking
information and the modulation constellation information
into account. Using the prior information, the problem
formulated in [101] can be expressed as:

min
H,D

∥Y − SX∥F (13a)

s.t. ∥X∥row ,0 ≤ K, (13b)
X = H[P,D], (13c)
∀k = 1 . . . N, (13d)

g
(
D({k},:)

)
= 1, (13e)

D({k},:) ∈ (A ∪O)nd , (13f)

where ∥ · ∥row ,0 represents ℓrow ,0-semi norm that outputs
the number of non-zero rows of the input matrix, and
K denotes the number of active users. H denotes the
channel coefficients of all devices, and P and D denote
the pilot matrix and data matrix of device k, respectively.
The constraints (13b) and (13c) describe the joint sparse
characteristics of pilot and data. The constraint (13e)
describes the checking mechanism when data recovery is
implemented, where the function g(·) denotes the error
checking procedure. The constraint (13f) uses constel-
lation point information, where A, O and nd denote the
transmitted symbol set, the set of zeros and the maximum
number of transmitted data symbols, respectively. By
exploiting backward activity level estimation that exploits
data length diversity, this method achieved superior per-
formance.

Methods Using Structured Access Protocols: Reference
[109] exploited coded slotted aloha (CSA) and proposed the
paradigm of coded random access, in which the structure
of the access protocol can be mapped to a structure of an
erasure-correcting code defined on a graph. This provided
the possibility of designing efficient random access protocols
using coding theory. A novel grant-free NOMA method called
CTSMA was proposed in [62]. This method divides each
user’s data packet into multiple segments for processing, so
that conflicts occur only on segments using the same extension
code, which can be resolved with redundant segments. For the

MMTC scenario in industrial IoT, a multislot design scheme
was proposed with joint CTSMA and CSA to further promote
collision resolution capability [110]. Performance analysis has
shown the superiority of multislot design in the short uplink
contention period. A coded CS (CCS) was proposed in [111],
in which each active device divides its data into several
subblocks and then adds redundancy using system linear block
codes. CS was used to restore the order of the subblocks
and splice them together to obtain the original information.
A pilot-based coherent scheme was proposed in [112] for
unsourced random access in the MIMO scenario, where the
user messages are divided into two parts. Specifically, several
bits are used to select a shorter code word from the codebook,
and then encode the remaining message bits. The receiver uses
the MMV-AMP algorithm to estimate the channel from the
pilot part, and then decodes the second part with the maximum
ratio combining (MRC). A signal scrambling based joint blind
channel estimation, activity detection, and data decoding (SS-
JCAD) scheme is proposed for coded massive random access
in [113]. Signal scrambling technique is used and treated as
the user-specific signature. A simple yet efficient receiver is
designed which integrates the blind CSI estimation module
with the forward error correction decode to achieve joint blind
channel estimation, activity detection, and data decoding. The
authors of [114] propose a high-efficiency massive uncoupled
unsourced random access scheme for 6G wireless networks
without requiring extra parity check bits. A low-complexity
Bayesian joint decoding algorithm was designed to implement
codeword detection and stitching based on channel statistical
information.

A summary of existing work on sparse recovery based
methods for MRA is given in Table II.

2) Structured Sparse Recovery-Based Methods for MRA:
Unlike traditional sparse recovery methods that focus solely
on identifying individual sparse elements, structured sparse
recovery goes a step further by exploiting the inherent struc-
tures or patterns presented in the signal. Structured sparse
recovery-based methods represent a compelling alternative that
harnesses the power of structures to unlock deeper insights and
achieve superior performance for MRA. Moreover, it enhances
the efficiency of the recovery algorithm, reduces computational
complexity, and enables scalable solutions for MRA problems.

Methods Using Row Sparsity: For the BS equipped with
a single antenna, the joint AUD and CE can be expressed as
an SMV problem in CS. In the case of the BS with multiple
antennas, the joint AUD and CE turns into an MMV problem.
The user activity pattern is the same for all signals received
by different BS antennas, which results in a row sparsity
structure in the joint AUD and CE problem. In [60], [93],
[115], AMP algorithms were applied to the multi-antenna
scenario. AMP with vector denoiser and parallel AMP-MMV
were used for joint AUD and CE in [93], with simulation
results that demonstrate a significant performance improve-
ment caused by the deployment of multiple antennas in BS.
According to the theoretical analysis in [60], [115], when the
number of BS antennas tends to infinity, perfect AUD can
be achieved, which indicates that the sparse signal recovery-
based method is suitable for the MRA problem. Reference
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TABLE II: Summary of Existing Work on Sparse Recovery Based Methods for MRA

Category Algorithm Characteristics Ref.

CS-based typical methods

ISTA,FISTA Classic method for solving LIP [83], [84]
SBL Provide an efficient algorithm that extends SBL for a joint-sparse model [88]
OMP Using OMP algorithm for sparse signal recovery [89]
OMP Use OMP and orthogonal least squares (OLS) for MUD [90]

GOMP Use GOMP to deal with asynchronous case [91]
OMP Propose a contention-based MRA scheme to support massive access [92]
AMP Use AMP algorithm for AUD and CE and provides analytical characterization [93]

VAMP VAMP has strict state evolution and stronger robustness compared with AMP [94]
Pilot design
algorithm Propose a novel pilot design approach for joint AUD and CE [97]

Dictionary learning Use dictionary learning to enhance AUD and CE in massive MIMO system [99]

Dictionary learning Propose dictionary learning-based uncoordinated access method to reduce the pilot
overhead [100]

CS-based methods of using
additional information

M-OMP Use various prior information to enhance performance [102]
FSP-RIC Use SI brought from the data recovery [103]

M-SP Use channel time correlation to reduce pilot overhead [104]

AMP-SI Use channel response in the previous slots as SI to estimate the cerrent channel
response [105]

AMP Use the temporal correlation in device activity as SI and apply SI into AMP denoiser
design [106]

ADMM Utilize prior information on the second-order statistics to improve performance [107]
AA-MF-SIC Use constellation point information to evaluate the reliability of the estimation [108]
CSAMP-CP Divide AUD, CE and data recovery into two phases [101]

Methods using structured
access protocols

CSA Propose the paradigm of coded random access [109]
CTSMA Divide data packet into multiple segments for processing [62]

CTSMA Propose a scheme joint CTSMA and CSA to promote the collision resolution
capability [110]

CCS Divide the data into subblocks and use algorithms to recover and splice it [111]
MMV-AMP Split the user messages into two parts and use MMV-AMP and MRC for decoding [112]
SS-JCAD Use the scrambling pattern as a user-specific signature [113]

OAMP Implement codeword detection in the case of unknown priors and codeword stitching
with the assistance of channel statistics [114]

[116] considered joint AUD and CE in uplink cloud radio
access network (CRAN) systems with few active users and
proposed a modified Bayesian compressive sensing algorithm
(BCS), which exploits not only the sparsity of the active users,
but also the prior channel information of path loss effects
and the joint sparsity structures. Moreover, in [117], Cheng et
al. proposed an MMV-based orthogonal AMP (OAMP), and
derived the group Gram-Schmidt orthogonalization (GGSO)
procedure to implement OAMP. It has been shown that OAMP
is superior to AMP when pilot sequences are generated using
the Hadamard pilot matrix. Most previous work considered
narrow-band MRA scenarios assuming single-carrier transmis-
sion. Reference [118] investigated grant-free MRA in massive
MIMO-OFDM systems and proposed a Turbo-GMMV-AMP
algorithm running in an alternating manner for joint AUD
and CE, which jointly exploits the space-frequency-angular-
domain sparsity of the MRA channel matrix to enhance
performance. In [119], Chen et al. proposed a contention-
based joint AUD and CE method for massive MIMO systems
with angular domain enhancement. The problems of AUD
and CE were presented as LIP with simultaneous row sparse
and cluster sparse structures, in which angle of arrival (AOA)
information was used to enhance AUD and CE. They used
SBL to formulate the optimization problem, which is given

as:

min
x

∥y − Sx∥22 + λf(x)

s.t. f(x) = min
ω≥0

xTΩx+ log |Σ|,
(14)

where λ denotes the variance of Gaussian noise, Ω ≜
diag (ω1, . . . , ωN ) ∈ RN×N , ω is a vector of hyperparameters
governing the prior variance of the elements in signal and
Σ = λI+SΩST . By solving the bilevel optimization problem
in (14), multiple active users can be detected successfully,
together with accurate CE, even when they use the same
time-frequency-code resource for random access. For bilevel
optimization, interested readers may refer to [120].

Methods Using Block/Group Sparsity: Block/group spar-
sity generalizes the standard sparse signal model by separating
the elements into a number of blocks/groups. By combining
CS based multi-user detection (CS-MUD) with multi-carrier
access schemes, a new solution was proposed to leverage
the group sparsity structure through the GOMP [121]. In
[122], the joint AUD and CE in grant-free NOMA systems
was formulated as a block CS-based sparse signal recovery
problem. The authors made explicit use of the block sparsity
inherent in the equivalent block-sparse model and proposed
two enhanced block CS-based greedy algorithms, namely,
threshold aided block sparsity adaptive subspace pursuit (TA-
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BSASP) and cross-validation aided block sparsity adaptive
subspace pursuit (CVA-BSASP). In [123], the authors pro-
posed block orthogonal matching pursuit (BOMP) algorithm
for AUD and CE. The algorithm transforms the original model,
and then exploit the block sparsity of matrix X. Based on the
maximal Euclidean norm, the objective function in the l-th
iteration of the algorithm was given as:

Il = argmax
IB∈IBlock

∥∥∥PH

[IB ]rl−1

∥∥∥
2
, (15)

where Il is the selected index set, IBlock is the union of
all block indices, P is obtained from X through a series of
transformations and rl−1 is the residue of the (l − 1)-th iter-
ation. Furthermore, a block sparse Bayesian learning (BSBL)
algorithm was proposed, which outperformed BOMP in terms
of computational complexity and recovery performance. As
AMP is sensitive to the choice of pilot sequence while having
low complexity, AMP-BSBL algorithm was proposed in [124],
which retains the advantages of AMP and is robust to the
choice of pilot sequence. In [125], [126], a goal-oriented
detection approach is proposed to exploit the continuous
angular group sparsity feature of massive MIMO wireless
channels. For stationary users with known angular information,
their activity can be identified according to the active angular
signals without reconstructing the corresponding channels and
messages.

Methods Using Other Structures: There are methods that
use other structures to reduce the degree of freedom in the
problem. A low-complexity multiuser detector based on struc-
tured CS, namely, the structured iterative support detection
(SISD) algorithm, utilized the inherent structural sparsity of
user activities in a NOMA system to realize joint AUD and
CE [127]. Simultaneous SBL for joint sparse approximation
with two structured sparse models (SSMs) were proposed in
[128], where one is row-sparse with embedded element-sparse
and the other one is row-sparse plus element-sparse, which can
be extended for AUD and CE in some special cases. Taking
advantage of a more accurate prior distribution to characterize
the structured sparsity of access signals, efficient joint activity
and data detection algorithms, namely, the OAMP MMV algo-
rithm with simplified structure learning and accurate structure
learning, were proposed in [129]. Furthermore, it can be ex-
tended to SIC-based detection with channel coding to achieve
highly reliable random access. An expectation-maximization-
aided generalized AMP algorithm with a Markov random field
support structure, namely, EM-MRF-GAMP, was proposed in
[130], which captures the inherent clustered sparsity structure
of the angular domain channel. Then, message reconstruction
in the form of a clustering decoder was performed by rec-
ognizing slot-distributed channels of each active user based
on similarity. The proposed scheme achieved better error
performance compared to traditional CS-based random access
schemes.

3) Low-Rank Matrix/Tensor Recovery-Based Methods for
MRA: Low-rank matrix/tensor recovery-based methods, lever-
aging the inherent structure and sparsity present in the channel,
offer a highly effective way to address the challenges in MRA.
In [131]–[135], by exploiting the low rank and statistical char-

acteristics of the signal, covariance-based methods for grant-
free MRA were used in AUD. The sparse activity detection
problem was formulated as a large scale fading estimation
problem. Let an ∈ {1, 0} denote the activity of device n,
hn denote the channel vector between device n and the BS,
where hn ∈ CM×1 include both Rayleigh fading component
and large scale fading component, M denotes the number
of antennas and L is the pilot length. The received signal
Y ∈ CL×M at the BS can be expressed as

Y =

N∑
n=1

ansnh
T
n + Z ≜ SΓ

1
2H+ Z, (16)

where S ≜ [s1, s2, · · · , sN ] ∈ CL×N , Γ ≜
diag (γ1, . . . , γN ) ∈ RN×N with γn = (angn)

2 is a diagonal
matrix and H ≜

[
h1/

√
g1,h2/

√
g2, · · · ,hN/

√
gN
]T ∈

CN×M is the normalized channel matrix with gn is the
large scale fading component. The user activity detection can
be formulated as a maximum likelihood estimation (MLE)
problem. After normalization and simplification, the objective
function can be written as follow:

min
γ

log |Σ|+ tr
(
Σ−1Σ̂

)
s.t. γ ≥ 0,

(17)

where Σ̂ ≜ 1
MYYH = 1

M

∑M
m=1 ymyH

m is the average
sample covariance matrix of the received signal on different
antennas, Σ = SΓSH + σ2

wI is the covariance matrix,
γ = [γ1, . . . , γN ]

T is the indicator of activity and large-scale
fading of all devices. The coordinate descent method can be
used to find good solutions of this optimization problem. An
effective active set algorithm was proposed following reference
[132], [133] to reduce the computational complexity in [136].
Furthermore, in [132], [133] it was shown that covariance-
based methods can significantly shorten the minimum pilot
sequence length for AUD when CE is not required. In [137],
[138], tensor-based modulation (TBM) was introduced to
unsourced random access, where data decoding exploits low-
rank tensor structure and tensor decomposition. A dimension
reduction method was proposed to use the sparse and low-
rank structure to project the original device state matrix into
a low-dimension space in [139]. Then an optimized design
framework with coupled full column rank constraints was
developed to reduce the size of the search space, leading to a
shorter pilot sequence than the original sparse recovery-based
methods.

A summary of existing work on structured sparse recovery-
based methods for MRA is given in Table III.

B. Machine Learning Empowered MRA

Deep learning (DL) is a promising approach to solving
complex optimization problems. In particular, by unfolding
an iterative algorithm into a neural network (NN), we can
learn the parameters of iterative algorithms from training
data, which differs from traditional algorithms that employ
predetermined parameters. This approach is also called deep
unfolding. Using DL for MRA has several advantages. One
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TABLE III: Summary of Existing Work on Structured Sparse Recovery-Based Methods for MRA

Category Algorithm Characteristics Ref.

Methods using the
row sparsity

AMP Employ two different AMP algorithms, namely, the AMP with vector denoiser and the
parallel AMP-MMV [93]

AMP Use AMP algorithm to solve MMV problem, joint AUD, CE and data transmission [60], [115]
BCS Joint sparsity structures in multi-antenna uplink CRAN systems [116]

OAMP Propose the OAMP-MMV form, derive GGSO procedure to implement OAMP [117]
GMMV-AMP Use angular domain sparsity to enhanced performance in MIMO-OFDM system [118]

SBL Use simultaneous row sparse and cluster sparse structures to enhance AUD and CE in
massive MIMO system [119]

Methods using the
block/group sparsity

GOMP Combine CS-MUD with multi-carrier access schemes [121]

BSP Exploit the block sparsity and propose two algorithms, namely, TA-BSASP and CVA-
BSASP [122]

MP-BSBL Combine BSBL with message passing and easily used to data detection [123]
AMP-BSBL Retain the advantages of BSBL and has low complexity [124]
ADMM and
Clustering

Utilize wireless channels’ angular continuous group-sparsity feature and knowledge of
stationary users’ angular information [125]

Methods using other
structures

SISD Exploit the inherent structured sparsity of user activity naturally existing in NOMA
systems [127]

SBL Propose two SSMs based on SBL [128]
OAMP-MMV Exploit a more accurate prior distribution to characterize the structured sparsity of signals [129]

EM-MRF-
GAMP Exploit the inherent clustered sparsity structure in the angular domain in MIMO system [130]

Model error

Original signal
Convergence error

Structure error

Recovery signal

Fig. 5: The decomposition of the error in model-driven ap-
proaches [59].

prominent advantage is the increase in the speed of conver-
gence. A fast DL-based approach for CS-based multi-user
detection in massive MTC systems shows more than a 10-fold
decrease in computing time, compared to traditional iterative
algorithms [140]. Reducing the computing time is critically
important for latency sensitive applications in 5G and 6G.
In addition, appropriately trained DL networks are capable
of increasing the detection/estimation accuracy. As shown in
Fig. 5, the detection/estimation error of the traditional model-
driven approach results is composed of model error, structure
error and convergence error in general. The model error comes
from imperfect modeling of the original engineering problem,
i.e., oversimplification of the real problem. The structure
error comes from approximation of the original objective
function, e.g., using convex relaxation to facilitate algorithm
derivation for complex problems. The optimal solution of the
approximated problem would deviate from the true “optimal”
one of the original problem. The convergence error comes
from iterative algorithms that fall into local optima in the
function landscape. DL-based methods learn the mapping from
the input to the output directly and has the potential to relieve
challenges brought by the model error, the structure error and
the convergence error in model-driven approaches. Reference
[59] provided a comprehensive review of recent progress in
the development of DL for solving linear inverse problems.

Significant efforts have been put into designing a powerful
receiver with the assistance of DL in the past few years. A fast
DL-based approach for AUD in MRA was first proposed in
[140], where a nonlinear block restrictive activation unit was
proposed to capture the block sparse structure in wide-band
wireless communication systems (or multi-antenna systems).
Reference [141] proposed to aggregate two Zadoff-Chu pream-
ble sequences from two different roots to obtain a larger set
of preambles and used DL to decode the aggregate preambles.
DL-based activity detection for cell-free (CF) massive multiple
input multiple output (mMIMO) systems was investigated
in [142], and a transfer learning-based ensemble model was
established in the central processing unit to achieve a better
global detection decision. Various DL-based methods [143]–
[148] have been developed for joint AUD and CE have
been developed. Reference [38] introduced an adaptive tuning
module and designs a feature-assisted adaptive tuning DL
method that includes inner and outer networks to solve the
massive device detection problem. In [145], [148], a deep
unfolding method based on the traditional ADMM algorithm
was developed, where the iteration operation was unfolded into
the network layer. Reference [148] further considered a model-
driven neural network architecture based on vector AMP.
The long short-term memory (LSTM) was exploited for the
detection of active devices and the estimation of the channel
of active devices in [144]. In [146], the joint AUD and CE
problem was formulated as a group-sparse matrix estimation
problem, and a simplified unrolled recurrent neural network
with reduced training parameters was proposed to solve the
problem. Correlated antennas at the BS was considered in the
design of the DL method for MRA in [147]. Joint activity
detection, CE, and data recovery were investigated in [38],
[149]. A novel dual network was proposed in [149] to utilize
the sparse consistency between the channel vector and the data
matrix of all active users. Information distilled from the initial
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data recovery phase was employed as prior information to
improve DL methods for activity detection and CE, which in
turn improves data recovery performance. Theoretical analysis
demonstrated that the proposed method can converge faster
and support more users [38].

Pilot sequences can be jointly designed in DL-based meth-
ods for MRA. In [150], two DL models, using the standard
autoencoder structure in DL, were investigated for the joint
design of pilot sequences and CE methods, and the joint design
of pilot sequences and device activity detection in MIMO-
based grant-free random access, respectively. For small packet
transmission, CE becomes costly and inevitably introduces
a huge amount of overhead. Several existing works have
attempted to investigate non-coherent schemes, which do not
need CSI at the receiver. In [151], the transmitted messages
were embedded in the index of the transmitted pilot sequence
of each active device, and a DL-modified AMP network
was developed to effectively exploit the correlation of pilot
activity. In [152], inspired by the algorithm based on AMP,
a model-driven DL method was proposed for noncoherent
communications to jointly detect user activity and desired data.

DL-based methods have also been investigated for the MRA
problem with imperfect synchronization. In [153], a learned
AMP network was designed for joint user activity detection,
delay detection and CE. Asynchronous access of machine-type
devices that send data packets of different frame sizes, called
data length diversity, was considered in [154]. The composite
problem of AUD, CE, and data recovery was formulated
as a structured sparse recovery problem, and a DL method
unfolding from AMP with a backward propagation algorithm
(AMP-BP) was developed to this end.

The above DL-based methods for MRA consider a fixed
number of layers. However, they ignore a key character in
traditional iterative algorithms, where the number of iterations
required for convergence changes with varying sparsity levels,
i.e., “easy” tasks should be solved with fewer iterations. In
MRA, the number of active users is difficult to predict and
could vary in a large range depending on service type and
user mobility. For a relatively small number of active users,
using a fixed number of iterations leads to the waste of
computing power and increases communication latency. For a
relatively large number of active users, using a fixed number
of iterations leads to poor user detection accuracy, as the
algorithm is not likely to converge yet. To this end, a novel
depth adaptive approach was developed to effectively reduce
the computational complexity of DL-based methods [39]. The
proposed method with adaptive depth provided the solution
to adapt the neural network to the varying conditions in the
number of access users.

Another line of research to improve MRA efficiency is the
tuning of access configurations, which controls the probability
of user access and alleviates access contention. DL-based
transmit power control schemes were proposed in [155],
[156]. Unlike conventional transmit power control schemes in
which complex optimization problems have to be solved in an
iterative manner, the DL-based scheme determines the transmit
power with a relatively low computation time. The joint design
of the transmit power control functions and the estimation

algorithm was proposed in [157], which improves the accuracy
of AUD and CE. A DL-based scheme was proposed to detect
and resolve preamble collisions in [158]. Given the detection
result, the preamble collision can be resolved according to
the different timing advance, which is also realized by DL. In
[159], DL was employed to detect random access collisions by
learning the features of the signals received in the BS and then
an additional contention process was scheduled for users with
collisions. A summary of existing work on machine learning
for MRA is given in Table IV.

IV. NON-ORTHOGONAL MULTIPLE ACCESS

In this section, we introduce progress in model-based meth-
ods and learning empowered methods for NOMA.

A. Model-Based Methods for NOMA

NOMA allows users to share the same resources and
distinguishes them in power, code, or some other emerging
domains. In this subsection, we will introduce methods for sev-
eral prominent NOMA schemes, including PD-NOMA, code-
domain NOMA (CD-NOMA), and pattern division multiple
access (PDMA). Then, we focus on methods dealing with
challenges including asynchronous NOMA and NOMA with
imperfect CSI.

1) Practical NOMA Schemes:

• PD-NOMA is realized in the power-domain [160], in
contrast to the traditional multiple access schemes re-
lying on the time, frequency, code-domain or on their
combinations. Users send messages using different power
depending on their respective channel quality after classic
channel coding and modulation. Multiple users share
the same time-frequency resources, and then multiuser
detection algorithms, such as SIC, are used at the receiver
to detect different user signals from the superimposed
signals. In this way, the SE can be enhanced at the cost of
increased receiver complexity compared to conventional
OMA. With the rise of multi-antenna technology, there
is an increasing number of studies that combine PD-
NOMA with multi-antenna to further improve SE [161]–
[165]. In the multi-antenna scenario, the user clustering,
beamforming design, and power allocation subject to the
quality of service constraints need to be simultaneously
considered and jointly optimized. For instance, the au-
thors of [165] proposed a two-step user clustering and
power control algorithm. Considering the intra-cluster
interference and inter-cluster interference, K-means algo-
rithm was used for user clustering, and then power control
was done. Simulation results showed that user clustering
by K-means can achieve lower energy consumption and
higher EE.

• CD-NOMA is inspired by CDMA systems, in which
users share the same time-frequency resources but adopt
unique user-specific spreading sequences. User-specific
scrambling/interleaving, symbol spreading and symbol to
resource mapping could be used to distinguish different
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TABLE IV: Summary of Existing Work on Machine Learning for MRA.

Category Characteristics Ref.

AUD
Exploit block restrictive activation nonlinear unit to capture the block sparse structure [140]
Establish a transfer learning-based ensemble model in CF mMIMO system [142]

Joint AUD and CE

Exploit LSTM [144]
Use deep unfolding method based on ADMM [145], [148]
Exploit group-sparse property to simplify network [146]
Employ initial data recovery phase as prior infomation [149]

Joint AUD and pilot design
Use standard auto-encoder structure [150]
Develop a DL-modified AMP network to exploit the pilot activtity correlation [151]
Propose GAMP-inspired DL method [152]

Imperfect synchronization
Design a learned AMP network for joint user activity detection, delay detection, and CE [153]
Consider data length diversity and formulate a structured sparse recovery [154]

Unknown sparsity level Develop a novel depth adaptive approach to adapt different number of access users [39]

Access configuration
Use DL scheme to replace conventional power control schemes [155], [156]
Jointly design the transmit power control functions and the estimation algorithm [157]
Resolve random access collision by DL [158], [159]

users at the transmitter side [51]. Low-density signa-
ture (LDS)-CDMA [166] uses a specially designed non-
orthogonal spreading sequence with sparse characteris-
tics. Each user extends its own information according to
the signature sequence to the corresponding code chip for
transmission. At the receiver, a near-optimum chip-level
iterative multiuser decoding based on the message passing
algorithm (MPA) is proposed to approximate optimum
detection by efficiently exploiting the LDS structure.
LDS-OFDM [167] retains the benefits of OFDM-based
multicarrier transmissions such as intersymbol interfer-
ence avoidance and operates at a lower complexity than
the optimal maximum a posteriori (MAP) detector of
LDS-CDMA. Sparse code multiple access (SCMA) [168]
directly maps the bits to multidimensional codewords
in the complex domain after channel coding at the
transmitter, and the transmitted codewords of different
users are non-orthogonally superimposed in a sparse
spreading manner on the same time-frequency resources,
and this sparse characteristic is used at the receiver for
low-complexity multiuser joint detection. It is crucial
to design the spreading sequences or the codewords
in CD-NOMA. A set of user-specific non-orthogonal
binary spreading sequences for uplink grant-free NOMA
is studied in [169] to improve the performance of the
joint channel estimation (CE) and multi-user detection.
An improved low-density spreading sequence design
based on projective geometry is proposed in [170]. In
[171], reinforcement learning was exploited to design
the SCMA codebooks, which generates codebooks with
superior quality and has a low complexity. Another
breakthrough to achieve ow-complexity CD-NOMA is
rearranging OFDM subcarrier sequences in a symbol to
efficiently supports multiuser access of lightweight IoT
nodes [172].

• PDMA [173] relies on uniquely designed multi-user di-
versity patterns to recognize non-orthogonal transmis-
sions in the power, time, frequency, spatial and code
domains. PDMA considers the joint design of the trans-

mitter and receiver. On the transmitter side, transmitted
data is mapped to a resource group that can consist of
time, frequency, and spatial resources, or any combination
of these resources, which is called PDMA pattern and can
be represented by a binary vector. The pattern is important
for separating the signals of users sharing the same
resources, and its design should take into account the
complexity of the detection. The general SIC algorithm
is used at the receiver side to perform multiuser detection,
to differentiate overlapping user signals based on different
user patterns.

2) Asynchronous NOMA: As discussed in the previous sec-
tion, the capacity region of the asynchronous uplink channel
is larger than that of the synchronous uplink channel. As
such, the burden of perfectly synchronizing different users
does not apply to NOMA. In addition, it is beneficial to add
intentional time asynchrony to improve the performance of
NOMA systems.

Uplink ANOMA: Uplink ANOMA systems can be created
by adding intentional timing mismatch among the symbols of
different users. Assuming the timing mismatch is known, over-
sampling generates sufficient statistics and provide sampling
diversity. ANOMA offers a larger capacity region, compared
to synchronous NOMA, but requires dealing with IUI and
ISI. A simple SIC is not optimal anymore and maximum-
likelihood sequence detection is needed to manage the ISI
[71]. One approach to manage ISI in ANOMA is to represent
the ANOMA system with a Toeplitz system model and apply
the trellis-based detection method to the corresponding Unger-
boeck model for ISI channels. Then, as proposed in [77], the
channel diagonalization and turbo principle can be used to
design an ANOMA transceiver. The optimal timing mismatch
for a system with two users is half of the symbol interval.
For systems with K users, a good timing mismatch choice
among different users is the symbol interval divided by K.
The operational rate point for two users can be outside of
the synchronous uplink channel’s capacity region, i.e., it will
outperform any possible synchronous NOMA system. In [78],
the sum throughput of two-user ANOMA systems is calculated
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analytically. It is shown that by intentionally adding a timing
mismatch, equal to half of the symbol interval between the
symbols of the two users and over-sampling, the performance
of ANOMA is always better than that of synchronous NOMA
for a sufficiently large frame. Even when the exact timing
mismatch between the two users is not known at the receiver,
using an arbitrary equal-distance over-sampling, ANOMA’s
sum throughput is still more than that of the synchronous
NOMA. The average symbol error rate of ANOMA using
QAM over Rayleigh fading channels is analytically calculated
in [174]. Also, an iterative detection method that takes into
account the correlated nature of the noise and the error
propagation is proposed. The approach is more effective for
lower-order QAMs. In [175], another iterative method using
message passing detection for ANOMA is designed and its
performance is analysed. A massive device-to-device network
utilizing ANOMA to reduce the decoding complexity, energy
consumption, and bit error rate is considered in [176]. To
manage co-channel interference, an optimization framework
is defined to maximize the number of successfully decoded
symbols.

Downlink ANOMA: The main idea behind downlink
ANOMA is to add intentional sub-symbol time delays be-
tween the symbols of different users before implementing the
superposition coding at the transmitter. At the receivers, over-
sampling provides sufficient statistics for decoding. Because
of the over-sampling, the noise is correlated and needs to be
whitened. Singular-value decomposition and precoding can be
used to create independent parallel channels that do not need
SIC [79]. In fact, adding intentional time delays will induce
frequency-selectivity that can improve the performance in
conjunction with beamforming and precoding methods [177].
The performance of ANOMA, with or without precoding, is
better than that of synchronous NOMA.

In NOMA, the stronger user decodes the signal of the
weaker user and cancel its interference. Since the stronger user
has access to the data from the weaker use, it can forward it
to the weaker user, acting as a relay. Then, the weaker user
has access to two copies of its symbols and can use them to
improve the performance. In [178], the achievable average rate
of such a cooperative NOMA (C-NOMA) scheme is analyzed.
In [179], C-NOMA is designed for multiple antennas. Using
MRC at the receivers and antenna selection at the transmitter,
the outage probability is calculated analytically. It is shown in
[180] that, similar to a regular NOMA, adding intentional time
delays to C-NOMA schemes will improve the performance.
The throughput of both users in such a C-ANOMA system
is calculated and it is shown analytically that C-ANOMA
outperforms C-NOMA. In addition, the optimal timing mis-
match is half of the symbol length for large frame sizes. In
[181], a system similar to C-ANOMA is used for satellite
communication. An optimization problem to jointly allocate
resources to improve the fairness is defined and solved for a
multi-satellite system.

3) NOMA With Imperfect CSI: While NOMA can provide
many advantageous over OMA, the benefits of NOMA are
usually shown under perfect assumptions, such as the avail-
ability of perfect CSI at both transmitter and receiver. For

the multi-user/multi-cell environments for which NOMA is
an essential technology, acquiring perfect CSI is not an easy
task (if not impossible). Thus, designing systems to deal with
imperfect CSI is very important when shifting from the OMA
paradigm to a NOMA paradigm. Channel state information
plays a crucial role in wireless communications. In a single-
user system, communication system design heavily depends
on how much channel information is available [182]. Although
the effect of imperfect CSI at the receiver on emerging NOMA
techniques is still an ongoing research topic, similar to OMA
systems, the estimated CSI can be modeled as the perfect
CSI plus a Gaussian residual error. The achievable rates in
NOMA depend on not only the individual estimates of channel
coefficients, but also their relation. In uplink NOMA, the BS
first decodes the signal of the strong user and then, after
removing its interference, decodes the signal of the weaker
user. In downlink NOMA, the stronger user decodes the
weaker user’s signal first and after removing it, decodes its
own signal. On the other hand, the weaker user only decodes
its own message considering the other user’s signal as noise.
Therefore, the decoding order which depends on the relative
relation between channel coefficients plays a significant role
in system performance. If the imperfect CSI at the receiver
results in incorrect decoding orders, it can have catastrophic
consequences.

Assuming perfect CSI at the receiver, the estimated channel
values need to be communicated with other nodes. In some
scenarios, channel reciprocity is used for this purpose. How-
ever, in most practical cases, the estimated channel values
should be quantized and sent back to other nodes through a
limited feedback channel. Downlink NOMA with limited feed-
back is analyzed in [183], where variable-length quantizers
that can approach the perfect CSI performance are designed. It
is proved that the relationship between the feedback rates and
the losses in rate and outage probability is at least exponential.
In [184], downlink NOMA systems in which the transmitter
does not know the perfect CSI is studied. It is shown that if
the power allocation strategy is not well-designed, outages can
occur. In addition, for specific target rates, a power allocation
method that achieves the OMA outage performance is de-
signed. In [185], the performance of a limited feedback system
using NOMA in a hybrid UHF/mmWave downlink network
is analyzed. The achieved outage probability is much lower
than that of a network with no feedback. In [186], optimal
quantizer algorithms for NOMA and ANOMA are designed.
A two-user downlink ANOMA system with limited feedback
is considered and its max-min rate’s upper and lower bounds
are expressed in closed-form. For the same max-min rate, the
required feedback rate of ANOMA is less than that of NOMA.
The design of a limited feedback that includes reconfigurable
intelligent surfaces in NOMA systems is considered in [187].
The rate loss resulted from the quantization error is calculated.

B. Machine Learning for NOMA

The capability of DL can greatly aid in resolving diverse
complex problems in NOMA such as CSI acquisition [188],
signal constellation design [189], resource allocation, user
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pairing and multiuser detection. Generally, two categories of
learning techniques have been applied in the literature to
solve the above problems, including DL and reinforcement
learning (RL). DL has been widely used for estimating CSI
[42], throughput prediction [190], transceiver design [191],
[192], and resource management [193], [194]. Based on the
agent-learning control mechanism, RL and deep RL (DRL) are
used in resource management, especially in dynamic resource
management [195]–[197].

Resource allocation is essential in NOMA in order to
achieve the optimal total sum rate. Traditional methods try to
maximize the EE or the sum rate under a series of constraints.
Most optimization problems are nonconvex and cannot be
equivalently transformed into convex optimization problems,
so it can only be solved suboptimally using methods such as
successive convex approximation (SCA) [198], which has been
used in power allocation. In [193], a DL-based framework
for subchannel and power allocation was proposed to improve
NOMA EE in mmWave networks. The subchannel allocation
was solved by semi-SL, in which some labeled data was
initially generated by a two-sided matching scheme. Using the
generated data along with unlabeled data, the network was
trained and was able to accurately predict the real label of
an unlabeled input. The power allocation was solved using
a DL scheme, which replaces the complex iterative process
and only uses simple multiplication and addition of matrices
to compute the output. The simulation results showed that
the proposed framework achieved a higher EE and a lower
complexity. Considering a relay-aided device to device system,
a deep neural network (DNN)-based algorithm was designed
in [194] to replace intractable coupled joint optimization
and acquire a joint power loading solution at the source
and relay nodes. Their results revealed that the DNN model
leads to promising performance in terms of sum rate and
computational complexity. In [199], a two-step algorithm was
designed to perform sub-band assignment and power allocation
successively for each NOMA-based IoT user to minimize the
transmit power sum. And unsupervised learning (USL) was
implemented for power control.

In addition to DL methods, RL was applied for dynamic
resource allocation in time-varying communication channels
[195]–[197], [200]–[202]. In [202], a model-free centralized
and distributed approach based on DRL was proposed in
multiband hybrid OMA-NOMA to jointly optimize user as-
sociation, transmit power allocation, sub-channel assignment,
and multiple access technique selection. In [195], a two-step
DRL-based algorithm was proposed to solve the dynamic
optimization problem of EE. To be specific, using the current
channel conditions as input, a deep q-network (DQN) was
designed to obtain the optimal subcarrier allocation policy,
and a deep deterministic policy gradient (DDPG) network was
used to dynamically output the transmit power for all users.
To maximize the average performance of sum rates in uplink
NOMA-IoT, two RL algorithms, i.e., SARSA-learning and
DRL, were proposed in [196] to dynamically allocate users
and balance resource blocks and network traffic. Numerical
results demonstrated that the two algorithms have a lower
complexity and outperformed OMA systems. In [197], DQN

and DDPG were proposed for sub-carrier assignment and
power allocation in RIS assisted semi-grant-free NOMA trans-
mission, respectively. Two DDPGs were integrated to assign
amplitude and phase shift to RIS’s reflecting elements. A
distributed cooperative channel assignment and power control
approach based on multi-agent RL is presented in [203] to
solve the massive access management problem.

The design of the transceiver is another important issue
in NOMA. In practice, there are multiple practical schemes,
e.g., PD-NOMA and CD-NOMA, and the signal formats of
each scheme are significantly different, requiring different
transceiver designs, which hinders the standardization and
implementation of NOMA. The DL method emerges and
makes possible a unified transceiver architecture. In [204], a
data-driven model was proposed for SCMA. The traditional
decoding algorithm in SCMA, such as MPA, was replaced
by a fully connected DNN (FC-DNN), which is trained using
a synthetic dataset to minimize the symbol error rate. It also
reduced the computation time to a large extent. The variational
autoencoder (VAE) was exploited to perform signal detection
with jointly designed spreading signatures [191]. An end-to-
end learning-based SCMA framework was introduced in [205]
to jointly design the codebooks and low-complexity decoder.
The above data-driven DNNs lead to a unified framework for
different NOMA schemes, while being trained using different
datasets. However, data-driven methods do not take advantage
of the structure of NOMA signals and thus lead to low training
efficiency. Model-driven methods bring structured DNN based
on traditional algorithms and domain knowledge. In [40],
[206], an SIC-inspired DNN was designed for multi-user
detection. The network was inspired by the conventional SIC
detection structure, in which DNNs replaced the detection
layer in SIC, and the output of the first branch was fed to
the second branch to cancel inter-user interference like SIC.
Numerical results demonstrated the effectiveness and superior
performance of the model-driven method. The DL methods
mentioned above consider block-wise optimization. A unified
end-to-end optimization framework called DeepNOMA was
proposed in [192], which consists of a channel model, a
multiple access signature mapping module, and a multiuser
detection model. End-to-end optimization is enabled by min-
imizing the overall reconstruction loss. What is more, each
users’ signals in non-orthogonal transmissions are treated as
multiple distinctive but correlated tasks, and multitask learning
and balancing techniques are used to improve the performance,
guarantee fairness among users, and avoid local optima.

In NOMA, there are also other important problems that
can be solved efficiently by DL. User pairing is essential in
NOMA systems, as a reasonable user pairing strategy can
improve system performance. In [207], after obtaining the
power allocation strategy, a user pairing matrix was designed
based on the channel gain of all users and a DQN-based
algorithm was utilized to solve the user pairing problem to get
the maximum sum rate. Reference [208] expanded the scenario
to multicell NOMA and jointly optimized the user pairing and
association problem. The pointer network (PtrNet) was used
to solve the combinatorial optimization problem, and DRL
was utilized at the training phase. Simulation results showed
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that the scheme achieved near-optimal performance, which is
better than the random user pairing and association heuristic
by up to 30%. A DL-based adaptive user pairing scheme,
which decides the two optimal user pairings, was proposed
in RIS-aided MIMO-NOMA to maximize the overall spectral
efficiency in [209].

Machine learning has also been leveraged to improve trans-
mission security in NOMA networks. In [210], the interaction
between the source station and the unmanned aerial vehicle
(UAV) was viewed as a dynamic game and a DRL algorithm
was applied for dynamic power allocation at the source station
to suppress the attack motivation of the UAV. The simulation
results showed that this strategy improves the system data rate
and suppresses the attack probability. The NOMA transmission
game against jamming was investigated in [211], where a fast
Q-based NOMA power allocation scheme that combines the
hotbooting technique and Dyna architecture is proposed for a
dynamic game to accelerate the learning and thus improve
the communication efficiency against smart jamming. The
summary of the existing work on machine learning for NOMA
is given in Table V.

V. INTERPLAY WITH OTHER NEXT-GENERATION
WIRELESS TECHNOLOGIES AND SCENARIOS

Having introduced the fundamentals and advanced signal
processing and learning techniques of MRA and NOMA, in
this section, we focus our attention on the promising interplay
with other new next-generation technologies and scenarios,
e.g., AoI, NFC, ISAC, STARS and semantic communications.

A. NGMA with New Scenarios

In the future, with the rapid development of IoT, the
diversity of IoT devices will increase, leading to varying
communication needs among different devices. For example,
in the context of Internet of Vehicles, in addition to the
massive access characteristic of MMTC, it is also necessary
to ensure low latency and high reliability for certain sensors.
In this subsection, we introduce the consideration of AoI and
heterogeneous services.

1) Age of information: Upcoming use cases and applica-
tions will soon impose new and stricter demands on MRA.
In the design of 6G systems, new KPIs will become pivotal,
e.g., AoI. In future 6G networks, information freshness will
be increasingly important for applications of various types of
real-time monitoring systems (e.g., smart driving) and state
update systems (e.g., industrial control). The use of outdated
information could profoundly compromise the precision and
dependability of systematic decision-making processes. To
quantify information freshness, a new metric, i.e., AoI, is
introduced to measure the information freshness at the receiver
[212]. To reduce the AoI of the system, an optimized age
based random access scheme is proposed in [213], and a neural
network where AoI is aided as the prior information is further
proposed. To improve the overall status update performance, a
joint access control and resource allocation scheme is proposed
in [214], taking AoI as the performance metric. To achieve a
low average AoI and large throughput in satellite-based IoT, a

grant-free age-optimal random access protocol is proposed in
[215], where the number of access time slots in each transmis-
sion frame is optimized. In [216], an RL-based transmission
strategy is proposed in which the AoI of the users and the
total throughput of the system are jointly optimized. Based
on the AoI levels of users, they are divided into two groups
and assigned distinct access patterns. According to [217], in
the slotted-ALOHA framework, a device is allowed to access
the channel with a constant probability if its AoI exceeds
a specified limit. The long-term expected AoI is calculated,
followed by an optimization of the access probability and the
threshold.

2) Heterogeneous services: In future wireless networks,
numerous distinct application scenarios are encountered.
In these contexts, users with different Quality of Service
(QoS) needs must coexist. Emerging in heterogeneous radio
access networks, a blend of enhanced mobile broadband
(eMBB), MMTC, and ultra-reliable low-latency communica-
tion (URLLC) devices could be accommodated within the
same spectrum resource. In [218]–[220], the coexistence of
eMBB and URLLC is studied. The joint resource allocation
problem to maximize the minimum expected achieved rate of
eMBB users while satisfying the low latency and high relia-
bility constraints of URLLC users is studied in [218]. Further-
more, URLLC traffic is overlapped on eMBB by adopting the
NOMA superposition technique. In [219], the non-orthogonal
coexistence between eMBB and URLLC in the downlink of
a multi-cell massive MIMO system is rigorously analyzed.
Puncturing and superposition coding are considered as alter-
native downlink coexistence strategies, and the eMBB spectral
efficiency and the URLLC error probability are analyzed. In
[220], the optimal frequency and power allocation scheme
and eMBB-URLLC pairing policy is derived for scheduling
URLLC traffic in a downlink system in the presence of
eMBB traffic. A preamble allocation scheme using hierarchical
reinforcement learning is proposed for the coexistence scenario
of MMTC and URLLC in [221]. A promising scheme based on
RSMA for network slicing is proposed in [222] to guarantee
the performance of heterogeneous devices. Analysis shows
that RSMA can outperform its NOMA counterpart, and obtain
significant gains over OMA in some regions. In [223], a
novel hierarchical hybrid access class barring (ACB) and
backoff (BO) scheme is proposed, where the hybrid ACB-
BO is exploited to balance the delay-energy tradeoff, and the
hierarchical structure is proposed to prioritize communication
services. Deep reinforcement learning is applied to the pro-
posed random access scheme to dynamically adjust the ACB
factors and BO indicators in an online manner.

B. Near-field Non-Orthogonal Multiple Access

In 6G, paradigm shifts are currently taking place in the
architecture to satisfy the stringent requirements. Specifically,
by increasing the aperture size of transceivers and using
extremely high-frequency bands, the achievable data rate and
connectivity can be massively improved. In the meantime,
near-field signal propagation in future wireless networks will
become important, which brings new opportunities for NOMA.
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TABLE V: Summary of Existing Work on Machine Learning for NOMA

Category Scenarios Algorithm Characteristics Ref.

Resource allocation

mmWave
NOMA DNN Use semi-SL for subchannel allocation [193]

Relay-aided
NOMA DNN Propose a joint power loading solution at source and realying nodes [194]

NOMA-IoT USL-based
DNN Implement USL for power control [199]

NOMA-aided
MEC DQN Use DQN-based offloading strategy to minimize the system cost [200]

Hybrid NOMA Actor-critic Use proximal policy optimization and recurrent neural networK [201]
Multi-band

hybrid
OMA-NOMA

DRL Propose model-free centralized and distributed approaches based on DRL [202]

RIS assisted
NOMA DQN, DDPG Propose a two-step DRL based aligorithm [195], [197]

NOMA-IoT SARSA-
learning,DRL Design novel 3D state and action spaces [196]

NOMA-IoT DQN Build a QoS-aware reward to cover both network EE and devices QoS [203]

Transceiver design Grant-free NOMA
FC-DNN Propose a unified NOMA framework [191], [204],

[205]
SIC-inspired

DNN Design a two branch network and the structure is SIC-liked [40], [206]

DeepNOMA Propose an end-to-end optimization framework [192]

User pairing
NOMA DQN Design and optimize a user pairing matirx [207]

Muticell NOMA PtrNet Use a reinforce-based method to perform parameter optimization [208]
RIS-aided

MIMO-NOMA DNN Propose DL-based adaptive user pairing scheme [209]

Secure issue
NOMA Q-learning View the interaction between BS an UAV as dynamic game [210]

MIMO NOMA Hotbooting
Q-learning Apply Dyna architecture and hotbooting techniques [211]

In the following, we first introduce the key features of NFC.
Then, we highlight the beamfocusing property in NFC which
can benefit NOMA. Finally, we introduce the beamfocusing-
empowered NOMA communications.

1) Key Features of NFC: In wireless communication, the
near-field region refers to the area close to the transceivers so
that the electromagnetic field in that region exhibit near-field
effects. One widely used rule-of-thumb for determine the near-
field region is the Rayleigh distance, which depends on the
aperture size of the transceivers and the carrier frequency. The
larger the aperture size and the higher the carrier frequency,
the larger the near-field region becomes. Within the near-
field region, signal propagation has different characteristics
compared to that within the far-field region. In the following,
we elaborate on the new features of NFC.

• Distance-Dependant Radiation Pattern: The near-field
region in wireless communication deviates from the free-
space path loss observed in far-field communications. In
particular, the near-field radiation pattern, which repre-
sents the angular distribution of signal power, exhibits
variations as a function of the communication distance.
This means that even in a single direction, the path
loss may oscillate instead of following a monotonically
decreasing trend, as described by the far-field Friis’ path
loss formula [224]. As we will elaborate in Section. V-B2,
this near-field property gives rise to the possibility of
beamfocusing.

• Spherical and Irregular Wavefronts: In contrast to the
planar waves in the far-field region, near-field radiation

has a spherical or irregular wavefront. Close to the
Rayleigh distance, the wavefront appears spherical, with
the energy spreading equally in all directions. For regions
close to the transmitter, the wavefront can become irreg-
ular or distorted. This is because the antenna’s physical
structure and geometry can introduce variations in the
propagation path and cause interference effects.

• Faster Decay and Reactive Field: Near-field also ex-
hibits a faster decay due to the dominance of spherical
waves and evanescent waves. Evanescent is a type of
electromagnetic field whose energy decrease exponen-
tially with distance. The region where evanescent wave
dominates is referred to as the reactive near-field. It is
important to note that the reactive near-field is confined
to just a few wavelengths from the antennas or antenna
arrays, even if they are infinitely large [225]. As a
result, this region is typically disregarded in near-field
communication and signal processing design.

• Enhanced Degrees-of-Freedom (DoFs): The line-of-
sight (LoS) MIMO channel in NFC typically exhibits a
higher number of DoFs. In contrast to the LoS MIMO
channel in conventional far-field communications, where
the achievable DoF is 1, the enhanced spatial multiplexing
gain can be achieved in NFC even without a rich scatter-
ing environment, which is the major benefit of NFC.

• Non-Uniform Pathloss: The communication channel in
NFC can exhibit high variability due to quick changes
in the relative positions and orientations between the
transmitter and receiver. As a result, the subchannels be-
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(a) Far-field beamsteering. (b) Near-field beamfocusing.

Fig. 6: Beampattern of far-field beamseering and near-field beamfocusing.

tween two multi-antenna transceivers exhibit non-uniform
pathloss. In channel modeling, non-uniform spherical
wave models should be used characterize these near-field
channels.

2) Near-field Beamfocusing Property: As previously dis-
cussed, the signal propagation in the near-field region exhibits
distinct characteristics, primarily manifesting as spherical
waves, in contrast to the planar waves observed in conventional
far-field communications. Consequently, the fundamental prin-
ciples underlying beamforming techniques diverge between
near-field and far-field communication scenarios within multi-
antenna systems. Specifically, as shown in Fig. 6a, in the far-
field region, the angular field distribution remains unaffected
by the distance from the transmit antenna array, resulting in
the capability of the far-field beamforming process to solely
steer towards a predetermined direction, commonly denoted as
beamsteering. Conversely, in the near-field region, the angular
field distribution is contingent upon the distance from the
transmit antenna array. Thus, as shown in Fig. 6b, the near-
field beamforming technique exhibits the ability to concentrate
the beam energy at a specific distance along a designated
direction, referred to as beamfocusing.

Note that near-field beamfocusing is not a new research
topic and can date back more than 60 years [226]–[228].
However, it was mainly investigated in the field of physics and
antenna propagation. In recent years, there has been a notable
trend towards the utilization of extremely large-scale antenna
arrays (ELAAs) and ultra-high frequencies, such as mmWave
and Terahertz (THz) bands, to meet the rigours communication
requirements of future wireless systems. Consequently, the
near-field region in wireless systems becomes non-negligible,
with its spatial extent reaching tens or even hundreds of meters
with respect to the BS [224]. Given this very large near-field
region, many researchers began to investigate the potential
benefits of near-field beamfocusing in wireless communica-
tions [229]–[231]. Specifically, the basic principle of near-
field beamfocusing in wireless communications was discussed
in [229], where several distances distinguishing the near-
field and far-field regions of an antenna array were defined.
Considering a multi-user communication scenario, the authors
of [230] investigated the beamfocusing capability of different
antenna architectures. It was demonstrated that in the near-
field region, different beams can be generated to focus on
different communication users located in the same direction
without causing significant inter-user interference. As a further
advance, a novel concept of location-division multiple access

Fig. 7: Illustration of near-field beamfocusing-empowered
NOMA, where the near-field beamfocusing vectors divide
users in the same angular direction into two clusters and the
signal energy is focused on the far-user in each cluster.

(LDMA) was proposed in [231]. By exploiting the additional
distance dimensional provided by near-field beamfocusing,
multiple users can be supported in the location domain in the
near-field region, which provides much higher DoFs than the
angular domain in the far-field region.

3) Near-field Beamfocusing-empowered NOMA: With the
aid of the promising beamfocusing property in NFC, there
are two main benefits that can be achieved by the near-field
beamfocusing-empowered NOMA.

• Far-to-near SIC decoding: With the properly designed
beamfocusing vectors at the BS, the signal can be more
focused on the users far from the BS than those near-
users, i.e., the effective channel gain of the far-user
can be larger than that of the near-user. As a result, it
enables the far-user to carry out SIC to detect and remove
the signal of the near-user, thus realizing the far-to-near
SIC decoding order, as shown in Fig. 7. This is almost
impossible to realize for conventional far-field NOMA
communications, where the SIC decoding order among
users is generally determined by their distance to the
BS. Therefore, the near-field beamfocusing-empowered
NOMA provides enhanced flexibility in the SIC decoding
order design, which helps to better satisfy the communi-
cation requirements of each user.

• Distance-domain user clustering: Moreover, with the
aid of beamfocusing, users located in the same angular
domain can be further distinguished via the distance
domain into multiple (nearly) orthogonal clusters, as
shown in Fig. 7. This is greatly different from the far-field
NOMA, where the user clustering is mainly determined
by angular similarity. By doing so, on the one hand,
the inter-user interference can be further mitigated due
to the orthogonality between user clusters. On the other
hand, with the reduced number of users in each cluster,
the number of SIC operations reduces accordingly, which
reduces the complexity of using NOMA.

To exploit the above benefits of the near-field beamfocusing-
empowered NOMA, two novel frameworks were proposed
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in [232] for a BS employing the hybrid beamforming struc-
ture, namely, single-location-beamfocusing near-field NOMA
and multiple-location-beamfocusing near-field NOMA. For the
single-location-beamfocusing near-field NOMA, users located
in the same angualr direction but having distinct commu-
nication requirements are clustered into one group, which
are served by one analog beamformer focusing on one spe-
cific user. For the multiple-location-beamfocusing near-field
NOMA, users in the same group can have different angular
directions, which is served by one analog beamformer focusing
on multiple users by exploiting the beam-splitting technique.
It shows that compared to conventional far-field NOMA,
the proposed near-field beamfocusing-empowered NOMA can
achieve higher spectral efficiency and enhanced inter-user
interference mitigation. Moreover, the authors of [233] in-
vestigated the NOMA-based coexistence of near-field and
far-field communications, where the near-field beamfocusing
vector is shown to be able to serve an additional far-field user
via NOMA. Note that the investigation of near-field/hybrid-
field NOMA communications is still in an early stage, more
research efforts are required to unlock the full benefits.

C. NOMA for Integrated Sensing and Communications

ISAC has been recognized as a crucial facilitator of ubiqui-
tous intelligence in 6G [25], [234]. ISAC systems aim to in-
tegrate communication and sensing functionalities, leveraging
shared spectrums, hardware platforms, and signal processing
modules. Nonetheless, the coexistence of these two functions
poses significant challenges in terms of interference cancel-
lation and resource allocation within the ISAC framework.
Consequently, the subsequent section presents a comprehen-
sive examination of ISAC systems from a multiple-access
perspective, while also exploring the potential advantages of
NOMA in enhancing ISAC systems.

1) ISAC from the Multiple Access Perspective: As de-
picted in Fig. 8, the ISAC system can be conceptualized
as a multiple-access framework consisting of two distinct
users: the communication user and the sensing user (target).
The communication user operates in either an uplink (UL)
mode, transmitting communication signals to the BS, or a
downlink (DL) mode, receiving communication signals from
the BS. In contrast, the sensing target behaves more like an
inherent full-duplex user, concurrently “receiving” and “trans-
mitting” signals. This distinction arises from the divergent
operational mechanisms between sensing and communication.
More specifically, while communication users are capable
of actively engaging in coding and decoding processes to
convey or recover information, the sensing target is passive.
Consequently, the BS is responsible for transmitting probing
signals to the sensing target and subsequently receiving the
sensing echo signals reflected by the target. This enables the
BS to acquire crucial parameters such as location, speed, and
shape. It is worth noting that in some cases, such as the
sensing-assisted beamforming framework described in [235],
the communication user and sensing target may be the same
physical object, which is out of the scope of our discussion.

2) Motivation of Employing NOMA for ISAC: Based on
the above discussion, the concept of mitigating inter-user
interference within multiple-access frameworks can be applied
to solve inter-function interference in ISAC systems. A direct
approach entails assigning “orthogonal” resource blocks in
the frequency, time, or code domain to communication and
sensing functions, resembling the concept of OMA where
“orthogonal” resource blocks are allocated to different users.
This orthogonal allocation strategy avoids inter-function inter-
ference in ISAC systems. However, while such an interference-
free design reduces implementation complexity, it may result
in inefficient resource utilization. As a remedy, non-orthogonal
ISAC is a more popular design principle [25]. In a manner
analogous to NOMA, this approach allows for the joint uti-
lization of resource blocks by both communication and sensing
functions, resulting in a substantial improvement in resource
efficiency. However, it is imperative to effectively mitigate the
occurrence of inter-function interference. Therefore, in the fol-
lowing, we discuss the property of inter-function interference
in non-orthogonal ISAC systems in both uplink and downlink
non-orthogonal ISAC systems.

• Uplink ISAC: The uplink ISAC system is depicted in Fig.
8a, where an uplink communication user and a sensing
target are present. In this configuration, the sensing target
can be considered as a virtual uplink communication user,
“transmitting” echo signals to the BS. Consequently, the
BS receives a superimposed uplink communication signal
and sensing echo signal, leading to mutual interference
between the communication and sensing functions.

• Downlink ISAC: The downlink ISAC system is illus-
trated in Fig. 8b, involving a downlink communication
user and a sensing target. Unlike uplink ISAC systems,
the sensing target cannot be entirely regarded as a virtual
downlink communication user in the downlink scenario.
This is because it has been demonstrated that, in the
downlink case, all communication signals can be uti-
lized for sensing, while the sensing signals should be
exclusively dedicated to achieving the full sensing DoFs
[236]. Consequently, only sensing-to-communication in-
terference is present in this case.

Given the resemblance between non-orthogonal ISAC and
NOMA in terms of their underlying principles, it is natural
to leverage NOMA techniques to address inter-function in-
terference in ISAC. However, due to the inherent distinction
between the original purpose of NOMA in enabling effi-
cient communication and the requirements of ISAC systems,
it becomes necessary to redesign NOMA specifically for
ISAC, resulting in the development of multi-functional NOMA.
Consequently, numerous studies have emerged for studying
NOMA-ISAC systems, which will be detailed in the following.

3) Existing Works on NOMA-ISAC: The performance of
uplink NOMA-ISAC systems was initially explored in [237],
wherein the authors employed the SIC technique to mitigate
inter-functional interference. Building upon this concept, the
authors of [238] proposed a NOMA-aided protocol that fa-
cilitates the seamless integration of communication, sensing,
and computing functions. It was demonstrated that the pro-
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Fig. 8: Illustration of ISAC systems from the multiple access perspective.

posed NOMA-aided protocol outperforms the conventional
protocol based on SDMA due to its superior interference
cancellation capabilities. As a novel contribution, a semi-
NOMA framework was conceived for uplink ISAC systems
in [24]. This framework involves the sharing of only a subset
of resource blocks between the communication and sensing
functions, thereby enabling a more adaptable resource allo-
cation scheme and enhanced interference cancellation capa-
bilities. Furthermore, a recent study [239] proposed a model
and pattern based environment sensing technique utilizing
CSI, which can be executed concurrently with communication
functions through NOMA techniques. Regarding downlink
ISAC systems, the potential of NOMA was initially explored
in [23]. While focusing on NOMA within the communica-
tion function, this study demonstrated that NOMA can still
offer additional DoFs for ISAC, particularly in scenarios
with system overload or highly correlated communication
channels. Building upon this foundation, the authors of [240]
extended the concept of NOMA to address the sensing-to-
communication interference between the two functions. They
proposed a NOMA-inspired ISAC framework that effectively
eliminates sensing-to-communication interference and enables
the simultaneous utilization of dedicated sensing signals for
communication. Furthermore, the integration of the sensing
function into multicast-unicast communication systems was
effectively achieved with the aid of NOMA, as illustrated in
[241]. To address security concerns in NOMA-ISAC systems,
[242] introduced a secure precoding approach, offering a
solution to the security problem. Lastly, the issue of sensing
scheduling in NOMA-ISAC systems was investigated in the
most recent work [243], which was jointly optimized with the
beamforming. Some other works (e.g., [244]) also investigate
the application of NOMA in full-duplex ISAC systems, where
the UL and DL communication users coexist. It is important to
note that, in addition to the resource allocation and interference
management issues discussed in the aforementioned works,
waveform design is also crucial in ISAC system development.
Specifically, sensing functions typically require deterministic
waveforms, while communication functions rely on random
signals to convey information [245]. Further research is needed
to explore how NOMA techniques can be utilized to address
this inherent tradeoff from the waveform perspective.

D. Simultaneously Transmitting and Reflecting Surfaces
(STARS) for NOMA

In contrast to wireless networks ranging from the initial 1G
to the latest 5G, which were primarily designed to overcome
challenges posed by unpredictable radio conditions such as
signal fading and blockages, RISs enable the establishment
of a “smart radio environment” to facilitate the realization of
6G in a flexible and sustainable manner [246]. Significantly,
the two-dimensional configuration and nearly passive opera-
tional characteristics of RISs contribute to their exceptional
compatibility with prevailing wireless technologies. Recently,
a novel type of STARS was proposed, which integrates both
transmission and reflection (T&R) functions into a single RIS
and achieves full-space coverage of the smart radio environ-
ment. In the following, we will first give a brief introduction
to STARS and then discuss the benefits of STARS-enhanced
NOMA.

1) Basis of STARS: At its core, STARS is a periodic
structure with adjustable T&R phase-shift coefficients. STARS
builds upon the capabilities of RISs by introducing the capa-
bility to simultaneously transmit signals while reflecting them.
This means that in addition to modifying the wireless channel
by reflecting the incident signals, STARS can also let signals
penetrate through the surface. By controlling the T&R coeffi-
cients of the reconfigurable elements, STARS can dynamically
adjust the phase and amplitude of both the transmitted and
reflected signals. The simultaneous transmissions and reflec-
tion capabilities of STARS offer several advantages in wireless
communication systems. Firstly, they provide enhanced signal
coverage and connectivity by simultaneously serving users
on both sides of the surface. This enables improved com-
munication links and increased network capacity. Secondly,
STARS can enable cooperative communication and multi-user
interference management. By intelligently controlling T&R
coefficients, STARS can coordinate the signals of multiple
users, manage interference, and optimize the overall system
performance. Furthermore, STARS is compatible with existing
wireless technologies, making it a promising candidate for
integration into future wireless networks. It can be seamlessly
integrated with other communication technologies, including
NOMA and MIMO, to further enhance network performance.
In terms of hardware modeling, each element of a STARS
can be treated as a lumped circuit with electric and magnetic
impedances. The basic hardware and channel models for
STARS were proposed in [247]. By configuring the values
of two complex-valued impedances, the T&R coefficients
of each STAR element can be controlled in terms of the
amplitude and phase-shift responses. In [248], three practical
operating protocols for STAR-RISs are proposed, namely, en-
ergy splitting (ES), mode switching (MS), and time switching
(TS). Moreover, for STARS with passive-lossless elements, the
phase shifts of the T&R coefficients are coupled. In [249], a
correlated T&R phase-shift model was proposed for STARS.

2) STARS enhanced NOMA: Compared to conventional
transmitting/reflecting-only RISs, STARS provides more DoFs
for facilitating the T&R NOMA. Recalling the fact that the
performance gain of NOMA over OMA relies on the channel
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Fig. 9: STARS-NOMA network and outage probabilities for NOMA users.

condition disparity between paired users. The key idea of
T&R NOMA is to pair a transmitted user and a reflected
user together for NOMA transmission, as shown in Fig. 9a.
The advantage of T&R NOMA is that by adjusting the T&R
amplitude and phase-shift coefficients, a distinct channel dif-
ference can be achieved between users located at each side of
STARS, which leads to high NOMA performance gain. Such
a T&R NOMA operation addresses the issue when employing
transmitting/reflecting-only RISs in NOMA, where the users
surrounding the transmitting/reflecting-only RIS might have
a similar channel condition. To further illustrate the benefits
of T&R NOMA, Fig. 9b depicts the outage probabilities
for STAR-NOMA and STAR-OMA users [249]. It can be
observed that with the aid of STARS, NOMA outperforms
OMA for both users’ outage probabilities. Moreover, the
performance gain of STAR-NOMA over STAR-OMA is more
pronounced in the high signal-to-noise ratio (SNR) region.

3) Existing Works on STARS-NOMA: Motivated by the
potential benefits brought by STARS for NOMA, increasing
research interests have been devoted to the performance anal-
ysis and optimization of STARS-NOMA. The STARS-NOMA
system was first proposed in [250] where the achievable
sum rate was maximized by jointly optimizing the decoding
order, power allocation coefficients, active beamforming, T&R
beamforming. In terms of performance analysis of the STAR-
NOMA network, various studies have been conducted to
evaluate the bit error rate (BER) performance [251], the impact
of the correlated T&R phase-shift [249], the ergodic rate for
users over Rician fading channels [252], the outage probability
of users over spatially correlated channels [253], and the
performance of an uplink STARS-NOMA network [254].
Apart from these studies, recent works focused on STARS-
NOMA networks with the more complex distribution of users
and scatters in the environment. For example, In [255], a fitting
method was proposed to model the distribution of STARS-
NOMA channels composing small-scale fading power as the
tractable Gamma distribution. Based on the proposed model,
a unified analytical framework based on stochastic geometry
was provided to capture the random locations of STARS, BSs,
and users. In [256], the ergodic rate of the STARS-NOMA
system was investigated, where the direct links from the BS
to cell-edge users are non-line-of-sight due to obstacles, and
STARS is used to provide line-of-sight links to these cell-edge

Fig. 10: Illustration of an end-to-end semantic communication
framework.

users.
In terms of optimization, existing works focused on the

beamforming design and power allocation scheme for STARS-
NOMA. In [257], the framework for applying NOMA to
STARS networks was first proposed and a cluster-based beam-
forming design was adopted to jointly optimize the decoding
order, power allocation coefficients, and beamforming at both
the BS side and STAR-RIS side. In [258], a joint power and
discrete amplitude allocation scheme was proposed for the
STARS-NOMA system, which can reduce CE workload and
hardware complexity. In addition, recall that one of the benefits
of STARS is that it can be seamlessly integrated with other
communication technologies. Exploiting STARS with other
technologies is a major interest for the research community.
For example, in [259], the concept of index modulation (IM)
was first incorporated into the STARS-NOMA system to
improve spectral efficiency. Specifically, the proposed IM-
aided STARS-NOMA system enables extra information bits
to be transmitted by allocating subsurfaces to different users
in a pre-defined subsurface allocation pattern. In [260], [261],
a new active STARS-NOMA network was investigated. In
particular, simple active devices are introduced into the STARS
to overcome the “double-fading” effect. Furthermore, STARS
was also exploited in a MIMO-enabled NOMA system [262].
Among others, exploiting STARS-NOMA in secured commu-
nication is an appealing option. In [263], [264], the secrecy
performance of STARS-NOMA systems over general cascaded
κ− µ fading and Rayleigh fading channels was investigated.

E. Interplay between NOMA and Semantic Communications

The Shannon classical information theory guides the devel-
opment of communication systems from 1G to 5G. Thanks
to the great efforts of information and communication tech-
nology (ICT) researchers in the past few decades, many
efficient communication technologies were proposed to ad-
dress the technical-level communication problem [26] and
thus approach the fundamental Shannon limit. However, the
communication requirements in the upcoming 6G, such as
extremely high data rate and massive connectivity, are far from
being satisfied, which calls for a new information transmission
paradigm to be developed. In this subsection, we first provide
a brief overview of semantic communications and then discuss
the interplay between semantic communications and NOMA.

1) Overview of Semantic Communications: Compared to
conventional information transmission, which treats the source
data equally into the bit sequences and ignores the intrin-
sic meaning, semantic communications are task- and goal-
oriented. As shown in Fig. 10, in semantic communications,
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only the information (conveyed by semantic symbols) which
is related to the specific meaning/actions/goals required by the
receiver should be transmitted [28], [31]. This is achieved by
the semantic and channel encoders at the transmitter, which
is empowered by advanced machine learning tools, e.g., deep
learning, for the semantic feature extraction from the source
data (e.g., text, voice, image, etc.). When receiving the seman-
tic symbols through the wireless channel, the receiver employs
the channel and semantic decoders to accomplish the required
tasks and/or achieve the transmission goals (e.g., visual ques-
tion answering [265], image recognition/classification [266]–
[268], action execution [269], CSI acquisition [270]–[272],
molecular communications [273], etc.). It can be observed that
only the key information needed to perform the function or de-
liver the meaning needs to be transmitted in semantic commu-
nications, the required radio resources can be greatly reduced.
Therefore, semantic communications are more energy-efficient
and sustainable than conventional bit-level communications.
More importantly, existing research contributions showed that
the superiority of semantic communications over conventional
bit-level communications is more significant in bad wireless
conditions, which enhances the reliability of communication
systems. It can be observed that semantic communications pro-
vides a promising information transmission option for future
wireless networks. In the following, we focus our attention on
the interplay between NOMA and semantic communications in
multi-user networks, namely, NOMA-enabled semantic com-
munications and semantic communications-enhanced NOMA.

2) NOMA-enabled Semantic Communications: On the one
hand, when employing semantic communications in multi-
user networks, one of the most fundamental problems is how
to develop efficient multiple access schemes to accommodate
the new semantic users given the limited radio resources. As
a first step, the authors of [274] studied the NOMA design
for facilitating the heterogeneous semantic and bit multi-user
communication, where a transmitter simultaneously serves one
semantic user and one conventional bit user. Recalling the fact
that the transceivers of semantic communications have to be
jointly trained in advance, it is almost impossible for the con-
ventional bit user to employ SIC to detect the semantic user’s
signal, which leads to a fixed bits-to-semantics SIC ordering
in the heterogeneous transmission. To manage the interference
received by the bit user and maximize the resource efficiency,
a novel semi-NOMA scheme was proposed in [274]. The total
available bandwidth is divided into one non-orthogonal sub-
band for the heterogeneous transmission and one orthogonal
sub-band for the bit-only transmission. By adjusting the band-
width and power allocation at the transmitter, the proposed
semi-NOMA can unify both conventional NOMA and OMA
schemes and thus achieves the maximum semantic-versus bit
rate region, i.e., being the optimal multiple access scheme
for the considered heterogeneous semantic and bit multi-user
communication. Moreover, the authors of [275] explored the
employment of NOMA to support pure semantic multi-user
communication, which is capable of serving multiple users
with different modalities of data via semantic communications.
The results showed that the proposed NOMA-enabled seman-
tic multi-user communication has strong robustness and can

achieve higher spectral and power efficiency.
3) Semantic Communications-enhanced NOMA: On the

other hand, how to employ semantic communications to
enhance the NOMA performance is another interesting re-
search topic. One important observation from existing research
is that for achieving the same transmission goal, seman-
tic communications generally require fewer radio resources
(e.g., transmit power and bandwidth) than conventional bit-
level communications. Motivated by this, an opportunistic
semantic and bit communication strategy was proposed in
[276] for the secondary user in uplink NOMA. The key
idea is that the secondary user can appropriately select a
semantic or bit communication option to control the resulting
co-channel interference when reusing the resource block of
the primary NOMA user. The advantages of the proposed
opportunistic semantic and bit communication strategy can be
explained as follows. When the primary NOMA user has a
high communication requirement (e.g., a high-resolution video
user), the transmit power that can be used by the secondary
NOMA user is strictly capped. In this case, employing bit-
level communications at the secondary NOMA user cannot
achieve a satisfactory communication performance due to the
limited power budget. As a result, semantic communications
comes to the rescue, which guarantees the performance of the
secondary user in the low SNR regime. Otherwise, when the
primary NOMA user has a low communication requirement
(e.g., an IoT user), the secondary NOMA user can use the bit-
level communication option to achieve the best performance
using a sufficiently high power (i.e., high SNR regime). Fig. 11
provides simulation results to further demonstrate the benefits
of the proposed opportunistic semantic and bit communication
strategy. It can be observed that with the employment of
semantic communications, the performance of the secondary
NOMA user can be greatly improved, especially when the
communication requirement of the primary NOMA user is
high.

VI. TOWARDS LEARNING-BASED NEXT GENERATION
MULTIPLE ACCESS: CHALLENGES AND FUTURE WORK

Model-driven methods take advantage of various domain
knowledge in the problems of NGMA. However, the model-
driven methods usually suffer from high computational com-
plexity and are restricted by the modeling of domain knowl-
edge. As a feasible alternative, data-driven methods learn from
data to solve detection and estimation problems, providing a
new way to improve performance and reduce computational
complexity. The use of learning-based methods for NGMA
still requires a lot of in-depth exploration. Some of the
challenges and future work are discussed in this section.

A. Construction of Training Dataset

The foundation of data-driven methods is the source of train-
ing data. The performance of data-driven methods is highly
dependent on the consistency between the training and testing
sets. Most existing data-driven methods for NGMA use data
generated according to some channel models in both training
and evaluation. Given the historical CSI data accumulated in
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Fig. 11: The ergodic (equivalent) semantic rate achieved by the
secondary NOMA user versus the ergodic bit rate required by
the primary NOMA user over fading channels. The system
parameter settings can be found in [276].

BS, it is possible to customize the algorithms for a specific
cell by using real dataset of the cell. In situations where real
data cannot be obtained, ray tracing could be employed to
generate more realistic channel data. Other features beyond
channel characteristics would be exploited in learning-based
methods. For example, data-driven methods can learn the
access probability of users, and use the prior information to
enhance random access.

If only a small amount of real data is available, a potential
approach is to use simulated data to train the learning model,
and then use transfer learning to fine-tune the learning model
on the real data. In practice, it is beneficial to use newly
obtained data to update the model. Another way is to generate
the dataset using generative AI methods, such as VAE and
generative adversarial network.

B. Specialized Neural Network Design

The convolutional neural network explores structural in-
formation in images, and the long short-term memory net-
work explores the relevance of sentences in natural language.
Therefore, it is necessary to design specialized networks for
different tasks in communication systems. In NGMA, domain
knowledge should be exploited in the design of learning-
based methods. A potential solution is to use deep unfolding
methods, which construct the neural network according to
some iterative optimization algorithm. The resulting neural
network inherits the domain knowledge embedded in the
traditional optimization problem.

Furthermore, computational complexity and storage require-
ment of the learning-based methods are strictly restricted in
our tasks. Light-weight networks are desired, especially for
low-cost devices. One approach to speed up neural network
deployments, while reducing model storage size, is model
pruning. Other techniques for model compression, e.g., quan-
tization, knowledge distillation, and low-rank factorization,

would also be useful tools in building the specialized neural
networks for our task.

C. Scalability and Generalization

Scalability and generalization are major concerns in the
implementation of learning-based methods for NGMA. The
existing work on machine learning for NGMA has shown
reduced computational complexity in the inference stage,
in comparison to the traditional optimization-based iterative
methods. However, the training phase of learning-based meth-
ods is time-consuming. Given various communication sce-
narios, e.g., different environments, SNRs, number of active
users and so on, applying one learning model for one specific
scenario is costly in both model training and model storage. To
relieve the burden in training a number of models, one could
employ meta-learning, which is a process that helps models
learn new and unseen tasks on their own with little effort.
Furthermore, deviations between training and testing data can
lead to a decrease in performance. For example, a model
trained at one SNR may experience performance degradation
at another SNR. Mixing training data with different settings
may improve the robustness of data-driven methods. However,
the ability of the network is limited, which can also lead
to unsatisfactory training results. It would be interesting to
investigate the mechanisms that can adjust the learning model
to adapt to different scenarios.

VII. CONCLUSION

In this article, we have presented a comprehensive overview
of the research efforts to date in signal processing and learning
for NGMA, with a focus on MRA and NOMA. In particular,
the fundamental limits and practical schemes are reviewed
first, and then the state-of-the-art research contributions in
the use of advanced signal processing and machine learning
techniques are provided. We further discuss the promising
interplay between NOMA and other new next-generation
technologies including NFC, ISAC, STARS, and semantic
communications. Finally, some challenges and future work
in the use of learning-based methods for NGMA are listed.
We believe that the in-depth overview of intelligent signal
processing and learning for NGMA will provide inspiration
for the development of new solutions for NGMA.
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